1
|
Goebel GA, de Assis CS, Cunha LAO, Minafra FG, Pinto JA. Survival After Hematopoietic Stem Cell Transplantation in Severe Combined Immunodeficiency (SCID): A Worldwide Review of the Prognostic Variables. Clin Rev Allergy Immunol 2024; 66:192-209. [PMID: 38689103 DOI: 10.1007/s12016-024-08993-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
This study aims to perform an extensive review of the literature that evaluates various factors that affect the survival rates of patients with severe combined immunodeficiency (SCID) after hematopoietic stem cell transplantation (HSCT) in developed and developing countries. An extensive search of the literature was made in four different databases (PubMed, Embase, Scopus, and Web of Science). The search was carried out in December 2022 and updated in July 2023, and the terms such as "hematopoietic stem cell transplantation," "bone marrow transplant," "mortality," "opportunistic infections," and "survival" associated with "severe combined immunodeficiency" were sought based on the MeSH terms. The language of the articles was "English," and only articles published from 2000 onwards were selected. Twenty-three articles fulfilled the inclusion criteria for review and data extraction. The data collected corroborates that early HSCT, but above all, HSCT in patients without active infections, is related to better overall survival. The universal implementation of newborn screening for SCID will be a fundamental pillar for enabling most transplants to be carried out in this "ideal scenario" at an early age and free from infection. HSCT with an HLA-identical sibling donor is also associated with better survival rates, but this is the least common scenario. For this reason, transplantation with matched unrelated donors (MUD) and mismatched related donors (mMRD/Haploidentical) appear as alternatives. The results obtained with MUD are improving and show survival rates similar to those of MSD, as well as they do not require manipulation of the graft with expensive technologies. However, they still have high rates of complications after HSCT. Transplants with mMRD/Haplo are performed just in a few large centers because of the high costs of the technology to perform CD3/CD19 depletion and TCRαβ/CD19 depletion or CD34 + selection techniques in vitro. The new possibility of in vivo T cell depletion using post-transplant cyclophosphamide could also be a viable alternative for performing mMRD transplants in centers that do not have this technology, especially in developing countries.
Collapse
Affiliation(s)
- Gabriela Assunção Goebel
- Hospital das Clínicas da Universidade Federal de Minas Gerais, Av. Professor Alfredo Balena, 110, Belo Horizonte, Minas Gerais, Brazil.
| | - Cíntia Silva de Assis
- Hospital das Clínicas da Universidade Federal de Minas Gerais, Av. Professor Alfredo Balena, 110, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana Araújo Oliveira Cunha
- Hospital das Clínicas da Universidade Federal de Minas Gerais, Av. Professor Alfredo Balena, 110, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Gontijo Minafra
- Department of Pediatrics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jorge Andrade Pinto
- Department of Pediatrics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
2
|
Bradford KL, Moretti FA, Carbonaro-Sarracino DA, Gaspar HB, Kohn DB. Adenosine Deaminase (ADA)-Deficient Severe Combined Immune Deficiency (SCID): Molecular Pathogenesis and Clinical Manifestations. J Clin Immunol 2017; 37:626-637. [PMID: 28842866 DOI: 10.1007/s10875-017-0433-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 08/07/2017] [Indexed: 12/18/2022]
Abstract
Deficiency of adenosine deaminase (ADA, EC3.5.4.4), a housekeeping enzyme of purine metabolism encoded by the Ada gene, is a cause of human severe combined immune deficiency (SCID). Numerous deleterious mutations occurring in the ADA gene have been found in patients with profound lymphopenia (T- B- NK-), thus underscoring the importance of functional purine metabolism for the development of the immune defense. While untreated ADA SCID is a fatal disorder, there are multiple life-saving therapeutic modalities to restore ADA activity and reconstitute protective immunity, including enzyme replacement therapy (ERT), allogeneic hematopoietic stem cell transplantation (HSCT) and gene therapy (GT) with autologous gene-corrected hematopoietic stem cells (HSC). We review the pathogenic mechanisms and clinical manifestations of ADA SCID.
Collapse
Affiliation(s)
- Kathryn L Bradford
- Department of Pediatrics, University of California, Los Angeles (UCLA), 3163 Terasaki Life Science Bldg., 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| | - Federico A Moretti
- Centre for Immunodeficiency, Molecular Immunology Unit, University College London Institute of Child Health, London, UK
| | | | - Hubert B Gaspar
- Centre for Immunodeficiency, Molecular Immunology Unit, University College London Institute of Child Health, London, UK
| | - Donald B Kohn
- Department of Pediatrics, University of California, Los Angeles (UCLA), 3163 Terasaki Life Science Bldg., 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA.
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, USA.
- Department of Molecular & Medical Pharmacology, UCLA University of California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Kubiak C, Jyonouchi S, Kuo C, Garcia-Lloret M, Dorsey MJ, Sleasman J, Zbrozek AS, Perez EE. Fiscal implications of newborn screening in the diagnosis of severe combined immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2014; 2:697-702. [PMID: 25439359 PMCID: PMC5911282 DOI: 10.1016/j.jaip.2014.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 03/25/2014] [Accepted: 05/06/2014] [Indexed: 12/31/2022]
Abstract
In the United States, newborn screening (NBS) is currently recommended for identification of 31 debilitating and potentially fatal conditions. However, individual states determine which of the recommended conditions are screened. The addition of severe combined immunodeficiency (SCID) screening to the recommended NBS panel has been fully instituted by 18 states, with another 11 states piloting programs or planning to begin screening in 2014. Untreated, SCID is uniformly fatal by 2 years of age. Hematopoietic stem cell transplantation usually is curative, but the success rate depends on the age at which the procedure is performed. Short-term implementation costs may be a barrier to adding SCID to states' NBS panels. A retrospective economic analysis was performed to determine the cost-effectiveness of NBS for early (<3.5 months) versus late (≥3.5 months) treatment of children with SCID at 3 centers over 5 years. The mean total charges at these centers for late treatment were 4 times greater than early treatment ($1.43 million vs $365,785, respectively). Mean charges for intensive care treatments were >5 times higher ($350,252 vs $66,379), and operating room-anesthesia charges were approximately 4 times higher ($57,105 vs $15,885). The cost-effectiveness of early treatment for SCID provides a strong economic rationale for the addition of SCID screening to NBS programs of other states.
Collapse
Affiliation(s)
- Catherine Kubiak
- Department of Pediatrics, Division of Allergy and Immunology, Morsani College of Medicine, University of South Florida, Tampa, Fla
| | - Soma Jyonouchi
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Caroline Kuo
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, Calif
| | - Maria Garcia-Lloret
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, Calif
| | - Morna J Dorsey
- Department of Pediatrics, Division of Allergy and Immunology, Morsani College of Medicine, University of South Florida, Tampa, Fla
| | - John Sleasman
- Department of Pediatrics, Division of Allergy and Immunology, Morsani College of Medicine, University of South Florida, Tampa, Fla
| | | | - Elena E Perez
- Department of Pediatrics, Division of Allergy and Immunology, Morsani College of Medicine, University of South Florida, Tampa, Fla.
| |
Collapse
|
4
|
Sauer AV, Morbach H, Brigida I, Ng YS, Aiuti A, Meffre E. Defective B cell tolerance in adenosine deaminase deficiency is corrected by gene therapy. J Clin Invest 2012; 122:2141-52. [PMID: 22622038 DOI: 10.1172/jci61788] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 03/14/2012] [Indexed: 12/24/2022] Open
Abstract
Adenosine deaminase (ADA) gene defects are among the most common causes of SCID. Restoration of purine metabolism and immune functions can be achieved by enzyme replacement therapy, or more effectively by bone marrow transplant or HSC gene therapy (HSC-GT). However, autoimmune complications and autoantibody production, including anti-nuclear antibodies (ANAs), frequently occur in ADA-SCID patients after treatment. To assess whether ADA deficiency affects the establishment of B cell tolerance, we tested the reactivity of recombinant antibodies isolated from single B cells of ADA-SCID patients before and after HSC-GT. We found that before HSC-GT, new emigrant/transitional and mature naive B cells from ADA-SCID patients contained more autoreactive and ANA-expressing clones, indicative of defective central and peripheral B cell tolerance checkpoints. We further observed impaired B cell receptor (BCR) and TLR functions in B cells after ADA inhibition, which may underlie the defects in B cell tolerance. Strikingly, after HSC-GT, ADA-SCID patients displayed quasi-normal early B cell tolerance checkpoints, as evidenced by restored removal of developing autoreactive and ANA-expressing B cells. Hence, ADA plays an essential role in controlling autoreactive B cell counterselection by regulating BCR and TLR functions.
Collapse
Affiliation(s)
- Aisha V Sauer
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milan, Italy
| | | | | | | | | | | |
Collapse
|
5
|
Dinardo L, Brown V, Perez E, Bunin N, Sullivan KE. A single-center study of hematopoietic stem cell transplantation for primary immune deficiencies (PIDD). Pediatr Transplant 2012; 16:63-72. [PMID: 22093026 DOI: 10.1111/j.1399-3046.2011.01606.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PIDD are rare inherited disorders that can result in life-threatening infections. Allogeneic HSCT is the only cure for many primary immune deficiencies; however, the specific diseases and optimal type(s) of transplants are not clear. This study compares transplant outcomes in a large cohort with a relatively uniform pre- and post-transplant management strategies. We conducted a retrospective analysis of 39 pediatric patients who underwent HSCT for SCID (n = 25) or other immune deficiencies (n = 14) from 1986 to 2010. A structured case report form was used to collect clinical information. The outcomes of survival, immune reconstitution, engraftment, incidence of GvHD and IVIG dependency were tabulated. Overall survival rates were 88% for SCID and 86% for other primary immune deficiencies, which are high compared to other historical series. No single variable was associated with mortality. Immunoglobulin dependence occurred only in patients who had X-linked SCID and a parental donor haploidentical transplant. Because of improved supportive care and use of alternative donors and conditioning regimens, HSCT has become an acceptable option for an increasing number of PIDD subtypes not previously transplanted with high frequency. This study encourages greater use of transplantation.
Collapse
Affiliation(s)
- Laura Dinardo
- Division of Oncology, Children's Hospital of Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
6
|
Sauer AV, Brigida I, Carriglio N, Aiuti A. Autoimmune dysregulation and purine metabolism in adenosine deaminase deficiency. Front Immunol 2012; 3:265. [PMID: 22969765 PMCID: PMC3427915 DOI: 10.3389/fimmu.2012.00265] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/02/2012] [Indexed: 12/12/2022] Open
Abstract
Genetic defects in the adenosine deaminase (ADA) gene are among the most common causes for severe combined immunodeficiency (SCID). ADA-SCID patients suffer from lymphopenia, severely impaired cellular and humoral immunity, failure to thrive, and recurrent infections. Currently available therapeutic options for this otherwise fatal disorder include bone marrow transplantation (BMT), enzyme replacement therapy with bovine ADA (PEG-ADA), or hematopoietic stem cell gene therapy (HSC-GT). Although varying degrees of immune reconstitution can be achieved by these treatments, breakdown of tolerance is a major concern in ADA-SCID. Immune dysregulation such as autoimmune hypothyroidism, diabetes mellitus, hemolytic anemia, and immune thrombocytopenia are frequently observed in milder forms of the disease. However, several reports document similar complications also in patients on long-term PEG-ADA and after BMT or GT treatment. A skewed repertoire and decreased immune functions have been implicated in autoimmunity observed in certain B-cell and/or T-cell immunodeficiencies, but it remains unclear to what extent specific mechanisms of tolerance are affected in ADA deficiency. Herein we provide an overview about ADA-SCID and the autoimmune manifestations reported in these patients before and after treatment. We also assess the value of the ADA-deficient mouse model as a useful tool to study both immune and metabolic disease mechanisms. With focus on regulatory T- and B-cells we discuss the lymphocyte subpopulations particularly prone to contribute to the loss of self-tolerance and onset of autoimmunity in ADA deficiency. Moreover we address which aspects of immune dysregulation are specifically related to alterations in purine metabolism caused by the lack of ADA and the subsequent accumulation of metabolites with immunomodulatory properties.
Collapse
Affiliation(s)
| | | | - Nicola Carriglio
- San Raffaele Telethon Institute for Gene TherapyMilan, Italy
- Università degli Studi di Roma Tor VergataRome, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene TherapyMilan, Italy
- Università degli Studi di Roma Tor VergataRome, Italy
- *Correspondence: Alessandro Aiuti, San Raffaele Telethon Institute for Gene Therapy, Via Olgettina 58, Dibit 2A2, Milan 20132, Italy. e-mail:
| |
Collapse
|
7
|
Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID. Blood 2011; 119:1428-39. [PMID: 22184407 DOI: 10.1182/blood-2011-07-366781] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adenosine acts as anti-inflammatory mediator on the immune system and has been described in regulatory T cell (Treg)-mediated suppression. In the absence of adenosine deaminase (ADA), adenosine and other purine metabolites accumulate, leading to severe immunodeficiency with recurrent infections (ADA-SCID). Particularly ADA-deficient patients with late-onset forms and after enzyme replacement therapy (PEG-ADA) are known to manifest immune dysregulation. Herein we provide evidence that alterations in the purine metabolism interfere with Treg function, thereby contributing to autoimmune manifestations in ADA deficiency. Tregs isolated from PEG-ADA-treated patients are reduced in number and show decreased suppressive activity, whereas they are corrected after gene therapy. Untreated murine ADA(-/-) Tregs show alterations in the plasma membrane CD39/CD73 ectonucleotidase machinery and limited suppressive activity via extracellular adenosine. PEG-ADA-treated mice developed multiple autoantibodies and hypothyroidism in contrast to mice treated with bone marrow transplantation or gene therapy. Tregs isolated from PEG-ADA-treated mice lacked suppressive activity, suggesting that this treatment interferes with Treg functionality. The alterations in the CD39/CD73 adenosinergic machinery and loss of function in ADA-deficient Tregs provide new insights into a predisposition to autoimmunity and the underlying mechanisms causing defective peripheral tolerance in ADA-SCID.
Collapse
|
8
|
van der Burg M, Gennery AR. Educational paper. The expanding clinical and immunological spectrum of severe combined immunodeficiency. Eur J Pediatr 2011; 170:561-71. [PMID: 21479529 PMCID: PMC3078321 DOI: 10.1007/s00431-011-1452-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 03/10/2011] [Indexed: 12/20/2022]
Abstract
Severe combined immunodeficiency (SCID) is one of the most severe forms of primary immunodeficiency characterized by absence of functional T lymphocytes. It is a paediatric emergency, which is life-threatening when recognized too late. The clinical presentation varies from the classical form of SCID through atypical SCID to Omenn syndrome. In addition, there is a considerable immunological variation, which can hamper the diagnosis. In this educational review, we describe the immunopathological background, clinical presentations and diagnostic process of SCID, as well as the therapeutic possibilities.
Collapse
Affiliation(s)
- Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, Rotterdam 3015 GE, The Netherlands.
| | - Andy R. Gennery
- Department of Pediatric Immunology, Great North Children’s Hospital, Royal Victoria Infirmary, Newcastle upon Tyne, UK ,Institute of Cellular Medicine, Child Health, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| |
Collapse
|
9
|
Abstract
Human SCID (Severe Combined Immunodeficiency) is a prenatal disorder of T lymphocyte development, that depends on the expression of numerous genes. The knowledge of the genetic basis of SCID is essential for diagnosis (e.g., clinical phenotype, lymphocyte profile) and treatment (e.g., use and type of pre-hematopoietic stem cell transplant conditioning).Over the last years novel genetic defects causing SCID have been discovered, and the molecular and immunological mechanisms of SCID have been better characterized. Distinct forms of SCID show both common and peculiar (e.g., absence or presence of nonimmunological features) aspects, and they are currently classified into six groups according to prevalent pathophysiological mechanisms: impaired cytokine-mediated signaling; pre-T cell receptor defects; increased lymphocyte apoptosis; defects in thymus embryogenesis; impaired calcium flux; other mechanisms.This review is the updated, extended and largely modified translation of the article "Cossu F: Le basi genetiche delle SCID", originally published in Italian language in the journal "Prospettive in Pediatria" 2009, 156:228-238.
Collapse
Affiliation(s)
- Fausto Cossu
- Pediatric HSCT Unit, 2 Pediatric Clinic of University, Ospedale Microcitemico, Via Jenner s/n, 09121 Cagliari, Sardinia, Italy.
| |
Collapse
|
10
|
New insights into the pathogenesis of adenosine deaminase-severe combined immunodeficiency and progress in gene therapy. Curr Opin Allergy Clin Immunol 2009; 9:496-502. [DOI: 10.1097/aci.0b013e3283327da5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Current World Literature. Curr Opin Allergy Clin Immunol 2009; 9:574-8. [DOI: 10.1097/aci.0b013e328333c13c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
TRECing long-term success in SCID. Blood 2009; 114:1287-8. [DOI: 10.1182/blood-2009-06-223495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|