1
|
Jeon S, Lee YS, Oh SR, Jeong J, Lee DH, So KH, Hwang NS. Recent advances in endocrine organoids for therapeutic application. Adv Drug Deliv Rev 2023; 199:114959. [PMID: 37301512 DOI: 10.1016/j.addr.2023.114959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/21/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
The endocrine system, consisting of the hypothalamus, pituitary, endocrine glands, and hormones, plays a critical role in hormone metabolic interactions. The complexity of the endocrine system is a significant obstacle to understanding and treating endocrine disorders. Notably, advances in endocrine organoid generation allow a deeper understanding of the endocrine system by providing better comprehension of molecular mechanisms of pathogenesis. Here, we highlight recent advances in endocrine organoids for a wide range of therapeutic applications, from cell transplantation therapy to drug toxicity screening, combined with development in stem cell differentiation and gene editing technologies. In particular, we provide insights into the transplantation of endocrine organoids to reverse endocrine dysfunctions and progress in developing strategies for better engraftments. We also discuss the gap between preclinical and clinical research. Finally, we provide future perspectives for research on endocrine organoids for the development of more effective treatments for endocrine disorders.
Collapse
Affiliation(s)
- Suwan Jeon
- Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Sun Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seh Ri Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinseong Jeong
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Hyun Lee
- Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung-Ha So
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea; Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Nathaniel S Hwang
- Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea; Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul 08826, Republic of Korea; Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Framme JL, Lundqvist C, Lundell AC, van Schouwenburg PA, Lemarquis AL, Thörn K, Lindgren S, Gudmundsdottir J, Lundberg V, Degerman S, Zetterström RH, Borte S, Hammarström L, Telemo E, Hultdin M, van der Burg M, Fasth A, Oskarsdóttir S, Ekwall O. Long-Term Follow-Up of Newborns with 22q11 Deletion Syndrome and Low TRECs. J Clin Immunol 2022; 42:618-633. [PMID: 35080750 PMCID: PMC9016018 DOI: 10.1007/s10875-021-01201-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/12/2021] [Indexed: 01/03/2023]
Abstract
Background Population-based neonatal screening using T-cell receptor excision circles (TRECs) identifies infants with profound T lymphopenia, as seen in cases of severe combined immunodeficiency, and in a subgroup of infants with 22q11 deletion syndrome (22q11DS). Purpose To investigate the long-term prognostic value of low levels of TRECs in newborns with 22q11DS. Methods Subjects with 22q11DS and low TRECs at birth (22q11Low, N=10), matched subjects with 22q11DS and normal TRECs (22q11Normal, N=10), and matched healthy controls (HC, N=10) were identified. At follow-up (median age 16 years), clinical and immunological characterizations, covering lymphocyte subsets, immunoglobulins, TRECs, T-cell receptor repertoires, and relative telomere length (RTL) measurements were performed. Results At follow-up, the 22q11Low group had lower numbers of naïve T-helper cells, naïve T-regulatory cells, naïve cytotoxic T cells, and persistently lower TRECs compared to healthy controls. Receptor repertoires showed skewed V-gene usage for naïve T-helper cells, whereas for naïve cytotoxic T cells, shorter RTL and a trend towards higher clonality were found. Multivariate discriminant analysis revealed a clear distinction between the three groups and a skewing towards Th17 differentiation of T-helper cells, particularly in the 22q11Low individuals. Perturbations of B-cell subsets were found in both the 22q11Low and 22q11Normal group compared to the HC group, with larger proportions of naïve B cells and lower levels of memory B cells, including switched memory B cells. Conclusions This long-term follow-up study shows that 22q11Low individuals have persistent immunologic aberrations and increased risk for immune dysregulation, indicating the necessity of lifelong monitoring. Clinical Implications This study elucidates the natural history of childhood immune function in newborns with 22q11DS and low TRECs, which may facilitate the development of programs for long-term monitoring and therapeutic choices. Supplementary Information The online version contains supplementary material available at 10.1007/s10875-021-01201-5.
Collapse
Affiliation(s)
- Jenny Lingman Framme
- Department of Pediatrics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Department of Pediatrics, Halland Hospital Halmstad, Halmstad, Region Halland, Sweden.
| | - Christina Lundqvist
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anna-Carin Lundell
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pauline A van Schouwenburg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Andri L Lemarquis
- Department of Pediatrics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karolina Thörn
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Susanne Lindgren
- Department of Pediatrics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Judith Gudmundsdottir
- Department of Pediatrics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Children's Medical Center, National University Hospital of Iceland, Reykjavík, Iceland
| | - Vanja Lundberg
- Department of Pediatrics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sofie Degerman
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Rolf H Zetterström
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Stephan Borte
- ImmunoDeficiencyCenter Leipzig (IDCL), Municipal Hospital St. Georg Leipzig, Leipzig, Germany
| | - Lennart Hammarström
- Department of Biosciences and Nutrition, Neo, Karolinska Institute, Stockholm, Sweden
| | - Esbjörn Telemo
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Magnus Hultdin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Anders Fasth
- Department of Pediatrics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sólveig Oskarsdóttir
- Department of Pediatrics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Olov Ekwall
- Department of Pediatrics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Chitty-Lopez M, Duff C, Vaughn G, Trotter J, Monforte H, Lindsay D, Haddad E, Keller MD, Oshrine BR, Leiding JW. Case Report: Unmanipulated Matched Sibling Donor Hematopoietic Cell Transplantation In TBX1 Congenital Athymia: A Lifesaving Therapeutic Approach When Facing a Systemic Viral Infection. Front Immunol 2022; 12:721917. [PMID: 35095830 PMCID: PMC8794793 DOI: 10.3389/fimmu.2021.721917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Congenital athymia can present with severe T cell lymphopenia (TCL) in the newborn period, which can be detected by decreased T cell receptor excision circles (TRECs) on newborn screening (NBS). The most common thymic stromal defect causing selective TCL is 22q11.2 deletion syndrome (22q11.2DS). T-box transcription factor 1 (TBX1), present on chromosome 22, is responsible for thymic epithelial development. Single variants in TBX1 causing haploinsufficiency cause a clinical syndrome that mimics 22q11.2DS. Definitive therapy for congenital athymia is allogeneic thymic transplantation. However, universal availability of such therapy is limited. We present a patient with early diagnosis of congenital athymia due to TBX1 haploinsufficiency. While evaluating for thymic transplantation, she developed Omenn Syndrome (OS) and life-threatening adenoviremia. Despite treatment with anti-virals and cytotoxic T lymphocytes (CTLs), life threatening adenoviremia persisted. Given the imminent need for rapid establishment of T cell immunity and viral clearance, the patient underwent an unmanipulated matched sibling donor (MSD) hematopoietic cell transplant (HCT), ultimately achieving post-thymic donor-derived engraftment, viral clearance, and immune reconstitution. This case illustrates that because of the slower immune recovery that occurs following thymus transplantation and the restricted availability of thymus transplantation globally, clinicians may consider CTL therapy and HCT to treat congenital athymia patients with severe infections.
Collapse
Affiliation(s)
- Maria Chitty-Lopez
- Division of Pediatric Allergy and Immunology, University of South Florida, Tampa, FL, United States
| | - Carla Duff
- Division of Pediatric Allergy and Immunology, University of South Florida, Tampa, FL, United States
| | - Gretchen Vaughn
- Center for Cell and Gene Therapy for Non-Malignant Conditions, Cancer and Blood Disorders Institute at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Jessica Trotter
- Division of Pediatric Allergy and Immunology, University of South Florida, Tampa, FL, United States
| | - Hector Monforte
- Department of Pathology, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
- Division of Allergy and Immunology, Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - David Lindsay
- Division of Allergy and Immunology, Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
- Division of Immuno-Allergy and Rheumatology, The Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Elie Haddad
- Division of Immuno-Allergy and Rheumatology, The Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
- Division of Allergy and Immunology, Children’s National Hospital, Washington, DC, United States
| | - Michael D. Keller
- Division of Allergy and Immunology, Children’s National Hospital, Washington, DC, United States
| | - Benjamin R. Oshrine
- Center for Cell and Gene Therapy for Non-Malignant Conditions, Cancer and Blood Disorders Institute at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Jennifer W. Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University, Baltimore, MD, United States
- Infectious Diseases and Immunology Division. Arnold Palmer Hospital for Children, Orlando, FL, United States
| |
Collapse
|
4
|
Kuo CY, Signer R, Saitta SC. Immune and Genetic Features of the Chromosome 22q11.2 Deletion (DiGeorge Syndrome). Curr Allergy Asthma Rep 2018; 18:75. [PMID: 30377837 DOI: 10.1007/s11882-018-0823-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW This review provides an update on the progress in identifying the range of immunological dysfunction seen in DiGeorge syndrome and on more recent diagnostic and treatment approaches. RECENT FINDINGS Clinically, the associated thymic hypoplasia/aplasia is well known and can have profound effects on T cell function. Further, the humoral arm of the immune system can be affected, with hypogammaglobulinemia and poor vaccine-specific antibody response. Additionally, genetic testing utilizing chromosomal microarray demonstrates a small but significant number of 22q11 deletions that are not detectable by standard FISH testing. The recent addition of a TREC assay to newborn screening can identify a subset of infants whose severe immune defects may result from 22q11 deletion. This initial presentation now also places the immunologist in the role of "first responder" with regard to diagnosis and management of these patients. DiGeorge syndrome reflects a clinical phenotype now recognized by its underlying genetic diagnosis, chromosome 22q11.2 deletion syndrome, which is associated with multisystem involvement and variable immune defects among patients. Updated genetic and molecular techniques now allow for earlier identification of immune defects and confirmatory diagnoses, in this disorder with life-long clinical issues.
Collapse
Affiliation(s)
- Caroline Y Kuo
- Department of Pediatrics, Division of Allergy and Immunology and Rheumatology, Mattel Children's Hospital, UCLA School of Medicine, Los Angeles, CA, USA
| | - Rebecca Signer
- Department of Pediatrics, Division of Medical Genetics, Mattel Children's Hospital, UCLA School of Medicine, Los Angeles, CA, USA
| | - Sulagna C Saitta
- Department of Pathology, Division of Genomic Medicine, Children's Hospital Los Angeles, USC Keck School of Medicine, 4650 Sunset Blvd, Los Angeles, CA, 90027, USA. .,Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Liu ZZ, Wang ZL, Choi TI, Huang WT, Wang HT, Han YY, Zhu LY, Kim HT, Choi JH, Lee JS, Kim HG, Zhao J, Chen Y, Lu Z, Tian XL, Pan BX, Li BM, Kim CH, Xu HA. Chd7 Is Critical for Early T-Cell Development and Thymus Organogenesis in Zebrafish. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1043-1058. [PMID: 29353058 DOI: 10.1016/j.ajpath.2017.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/01/2017] [Accepted: 12/07/2017] [Indexed: 12/31/2022]
Abstract
Coloboma, heart defect, atresia choanae, retarded growth and development, genital hypoplasia, ear anomalies/deafness (CHARGE) syndrome is a congenital disorder affecting multiple organs and mainly caused by mutations in CHD7, a gene encoding a chromatin-remodeling protein. Immunodeficiency and reduced T cells have been noted in CHARGE syndrome. However, the mechanisms underlying T lymphopenia are largely unexplored. Herein, we observed dramatic decrease of T cells in both chd7knockdown and knockout zebrafish embryos. Unexpectedly, hematopoietic stem and progenitor cells and, particularly, lymphoid progenitor cells were increased peripherally in nonthymic areas in chd7-deficient embryos, unlikely to contribute to the T-cell decrease. Further analysis demonstrated that both the organogenesis and homing function of the thymus were seriously impaired. Chd7 might regulate thymus organogenesis through modulating the development of both neural crest cell-derived mesenchyme and pharyngeal endoderm-derived thymic epithelial cells. The expression of foxn1, a central regulator of thymic epithelium, was remarkably down-regulated in the pharyngeal region in chd7-deficient embryos. Moreover, the T-cell reduction in chd7-deficient embryos was partially rescued by overexpressing foxn1, suggesting that restoring thymic epithelium may be a potential therapeutic strategy for treating immunodeficiency in CHARGE syndrome. Collectively, the results indicated that chd7 was critical for thymic development and T-lymphopenia in CHARGE syndrome may be mainly attributed to the defects of thymic organogenesis. The current finding may benefit the diagnosis and therapy of T lymphopenia and immunodeficiency in CHARGE syndrome.
Collapse
Affiliation(s)
- Zhi-Zhi Liu
- Institute of Life Science, Nanchang University, Nanchang, China; School of Life Sciences, Nanchang University, Nanchang, China; Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China
| | - Zi-Long Wang
- Institute of Life Science, Nanchang University, Nanchang, China; Queen Mary School, Nanchang University, Nanchang, China
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Wen-Ting Huang
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Han-Tsing Wang
- Institute of Life Science, Nanchang University, Nanchang, China; School of Life Sciences, Nanchang University, Nanchang, China
| | - Ying-Ying Han
- Institute of Life Science, Nanchang University, Nanchang, China; School of Life Sciences, Nanchang University, Nanchang, China
| | - Lou-Yin Zhu
- Institute of Life Science, Nanchang University, Nanchang, China; School of Life Sciences, Nanchang University, Nanchang, China
| | - Hyun-Taek Kim
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Jung-Hwa Choi
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Jin-Soo Lee
- National Cancer Center, Goyang, Republic of Korea
| | - Hyung-Goo Kim
- Department of Obstetrics and Gynecology, Augusta University, Augusta, Georgia; Children's Hospital of Jiang Xi, Nanchang, China; Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, Georgia
| | - Jian Zhao
- Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Yue Chen
- Children's Hospital of Jiang Xi, Nanchang, China
| | - Zhuo Lu
- Institute of Life Science, Nanchang University, Nanchang, China; School of Life Sciences, Nanchang University, Nanchang, China
| | - Xiao-Li Tian
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Bing-Xing Pan
- Institute of Life Science, Nanchang University, Nanchang, China; School of Life Sciences, Nanchang University, Nanchang, China; Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China
| | - Bao-Ming Li
- Institute of Life Science, Nanchang University, Nanchang, China; School of Life Sciences, Nanchang University, Nanchang, China; Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea.
| | - Hong A Xu
- Institute of Life Science, Nanchang University, Nanchang, China; School of Life Sciences, Nanchang University, Nanchang, China; Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China.
| |
Collapse
|
6
|
Davies EG, Cheung M, Gilmour K, Maimaris J, Curry J, Furmanski A, Sebire N, Halliday N, Mengrelis K, Adams S, Bernatoniene J, Bremner R, Browning M, Devlin B, Erichsen HC, Gaspar HB, Hutchison L, Ip W, Ifversen M, Leahy TR, McCarthy E, Moshous D, Neuling K, Pac M, Papadopol A, Parsley KL, Poliani L, Ricciardelli I, Sansom DM, Voor T, Worth A, Crompton T, Markert ML, Thrasher AJ. Thymus transplantation for complete DiGeorge syndrome: European experience. J Allergy Clin Immunol 2017; 140:1660-1670.e16. [PMID: 28400115 PMCID: PMC5716670 DOI: 10.1016/j.jaci.2017.03.020] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 03/03/2017] [Accepted: 03/15/2017] [Indexed: 12/17/2022]
Abstract
Background Thymus transplantation is a promising strategy for the treatment of athymic complete DiGeorge syndrome (cDGS). Methods Twelve patients with cDGS underwent transplantation with allogeneic cultured thymus. Objective We sought to confirm and extend the results previously obtained in a single center. Results Two patients died of pre-existing viral infections without having thymopoiesis, and 1 late death occurred from autoimmune thrombocytopenia. One infant had septic shock shortly after transplantation, resulting in graft loss and the need for a second transplant. Evidence of thymopoiesis developed from 5 to 6 months after transplantation in 10 patients. Median circulating naive CD4 counts were 44 × 106/L (range, 11-440 × 106/L) and 200 × 106/L (range, 5-310 × 106/L) at 12 and 24 months after transplantation and T-cell receptor excision circles were 2,238/106 T cells (range, 320-8,807/106 T cells) and 4,184/106 T cells (range, 1,582-24,596/106 T cells). Counts did not usually reach normal levels for age, but patients were able to clear pre-existing infections and those acquired later. At a median of 49 months (range, 22-80 months), 8 have ceased prophylactic antimicrobials, and 5 have ceased immunoglobulin replacement. Histologic confirmation of thymopoiesis was seen in 7 of 11 patients undergoing biopsy of transplanted tissue, including 5 showing full maturation through to the terminal stage of Hassall body formation. Autoimmune regulator expression was also demonstrated. Autoimmune complications were seen in 7 of 12 patients. In 2 patients early transient autoimmune hemolysis settled after treatment and did not recur. The other 5 experienced ongoing autoimmune problems, including thyroiditis (3), hemolysis (1), thrombocytopenia (4), and neutropenia (1). Conclusions This study confirms the previous reports that thymus transplantation can reconstitute T cells in patients with cDGS but with frequent autoimmune complications in survivors.
Collapse
Affiliation(s)
- E Graham Davies
- Infection, Immunity and Inflammation Theme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Immunology, Great Ormond Street Hospital, London, United Kingdom.
| | - Melissa Cheung
- Infection, Immunity and Inflammation Theme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Kimberly Gilmour
- Department of Immunology, Great Ormond Street Hospital, London, United Kingdom
| | - Jesmeen Maimaris
- Infection, Immunity and Inflammation Theme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Joe Curry
- Department of Immunology, Great Ormond Street Hospital, London, United Kingdom
| | - Anna Furmanski
- Infection, Immunity and Inflammation Theme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; School of Life Sciences, University of Bedfordshire, Luton, United Kingdom
| | - Neil Sebire
- Department of Immunology, Great Ormond Street Hospital, London, United Kingdom
| | - Neil Halliday
- Institute of Immunity and Transplantation, Division of Infection & Immunity, School of Life and Medical Sciences, Royal Free Hospital, University College London, London, United Kingdom
| | - Konstantinos Mengrelis
- Infection, Immunity and Inflammation Theme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Stuart Adams
- Department of Immunology, Great Ormond Street Hospital, London, United Kingdom
| | - Jolanta Bernatoniene
- Department of Paediatric Immunology and Infectious Diseases, Bristol Children's Hospital, Bristol, United Kingdom
| | - Ronald Bremner
- Department of Gastroenterology, Birmingham Children's Hospital, Birmingham, United Kingdom
| | - Michael Browning
- Department of Immunology, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Blythe Devlin
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC
| | - Hans Christian Erichsen
- Division of Paediatric and Adolescent Medicine, Section of Paediatric Medicine and Transplantation, Oslo University Hospital, Oslo, Norway
| | - H Bobby Gaspar
- Infection, Immunity and Inflammation Theme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Immunology, Great Ormond Street Hospital, London, United Kingdom
| | - Lizzie Hutchison
- Department of Paediatric Immunology and Infectious Diseases, Bristol Children's Hospital, Bristol, United Kingdom
| | - Winnie Ip
- Infection, Immunity and Inflammation Theme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Immunology, Great Ormond Street Hospital, London, United Kingdom
| | - Marianne Ifversen
- Paediatric Clinic II, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - T Ronan Leahy
- Department of Paediatric Immunology and Infectious Diseases, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Elizabeth McCarthy
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC
| | - Despina Moshous
- Paediatric Immunology, Haematology and Rheumatology Unit, Hopital Necker, Paris, France
| | - Kim Neuling
- Department of Paediatrics, University Hospital, Coventry, United Kingdom
| | - Malgorzata Pac
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Alina Papadopol
- Paediatric Clinic, Polyclinic Regina Maria Baneasa, Bucharest, Romania
| | - Kathryn L Parsley
- Infection, Immunity and Inflammation Theme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Immunology, Great Ormond Street Hospital, London, United Kingdom
| | - Luigi Poliani
- Institute of Immunity and Translational Medicine, University of Brescia, Brescia, Italy
| | - Ida Ricciardelli
- Infection, Immunity and Inflammation Theme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - David M Sansom
- Institute of Immunity and Transplantation, Division of Infection & Immunity, School of Life and Medical Sciences, Royal Free Hospital, University College London, London, United Kingdom
| | - Tiia Voor
- The Children's Clinic, Tartu University Hospital, Tartu, Estonia
| | - Austen Worth
- Infection, Immunity and Inflammation Theme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Immunology, Great Ormond Street Hospital, London, United Kingdom
| | - Tessa Crompton
- Infection, Immunity and Inflammation Theme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - M Louise Markert
- Department of Immunology, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Adrian J Thrasher
- Infection, Immunity and Inflammation Theme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
7
|
Rota IA, Dhalla F. FOXN1 deficient nude severe combined immunodeficiency. Orphanet J Rare Dis 2017; 12:6. [PMID: 28077132 PMCID: PMC5225657 DOI: 10.1186/s13023-016-0557-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/15/2016] [Indexed: 12/13/2022] Open
Abstract
Nude severe combined immunodeficiency is a rare inherited disease caused by autosomal recessive loss-of-function mutations in FOXN1. This gene encodes a transcription factor essential for the development of the thymus, the primary lymphoid organ that supports T-cell development and selection. To date nine cases have been reported presenting with the clinical triad of absent thymus resulting in severe T-cell immunodeficiency, congenital alopecia universalis and nail dystrophy. Diagnosis relies on testing for FOXN1 mutations, which allows genetic counselling and guides therapeutic management. Options for treating the underlying immune deficiency include HLA-matched genoidentical haematopoietic cell transplantation containing mature donor T-cells or thymus tissue transplantation. Experience from other severe combined immune deficiency syndromes suggests that early diagnosis, supportive care and definitive management result in better patient outcomes. Without these the prognosis is poor due to early-onset life threatening infections.
Collapse
Affiliation(s)
- Ioanna A Rota
- Developmental Immunology Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Fatima Dhalla
- Developmental Immunology Group, Department of Paediatrics, University of Oxford, Oxford, UK. .,Department of Clinical Immunology, Oxford University Hospitals, Oxford, UK.
| |
Collapse
|
8
|
|
9
|
Bonilla FA, Khan DA, Ballas ZK, Chinen J, Frank MM, Hsu JT, Keller M, Kobrynski LJ, Komarow HD, Mazer B, Nelson RP, Orange JS, Routes JM, Shearer WT, Sorensen RU, Verbsky JW, Bernstein DI, Blessing-Moore J, Lang D, Nicklas RA, Oppenheimer J, Portnoy JM, Randolph CR, Schuller D, Spector SL, Tilles S, Wallace D. Practice parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clin Immunol 2015; 136:1186-205.e1-78. [PMID: 26371839 DOI: 10.1016/j.jaci.2015.04.049] [Citation(s) in RCA: 427] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/18/2015] [Accepted: 04/23/2015] [Indexed: 02/07/2023]
Abstract
The American Academy of Allergy, Asthma & Immunology (AAAAI) and the American College of Allergy, Asthma & Immunology (ACAAI) have jointly accepted responsibility for establishing the "Practice parameter for the diagnosis and management of primary immunodeficiency." This is a complete and comprehensive document at the current time. The medical environment is a changing environment, and not all recommendations will be appropriate for all patients. Because this document incorporated the efforts of many participants, no single individual, including those who served on the Joint Task Force, is authorized to provide an official AAAAI or ACAAI interpretation of these practice parameters. Any request for information about or an interpretation of these practice parameters by the AAAAI or ACAAI should be directed to the Executive Offices of the AAAAI, the ACAAI, and the Joint Council of Allergy, Asthma & Immunology. These parameters are not designed for use by pharmaceutical companies in drug promotion.
Collapse
|
10
|
Davies EG. Immunodeficiency in DiGeorge Syndrome and Options for Treating Cases with Complete Athymia. Front Immunol 2013; 4:322. [PMID: 24198816 PMCID: PMC3814041 DOI: 10.3389/fimmu.2013.00322] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/23/2013] [Indexed: 11/13/2022] Open
Abstract
The commonest association of thymic stromal deficiency resulting in T-cell immunodeficiency is the DiGeorge syndrome (DGS). This results from abnormal development of the third and fourth pharyngeal arches and is most commonly associated with a microdeletion at chromosome 22q11 though other genetic and non-genetic causes have been described. The immunological competence of affected individuals is highly variable, ranging from normal to a severe combined immunodeficiency when there is complete athymia. In the most severe group, correction of the immunodeficiency can be achieved using thymus allografts which can support thymopoiesis even in the absence of donor-recipient matching at the major histocompatibility loci. This review focuses on the causes of DGS, the immunological features of the disorder, and the approaches to correction of the immunodeficiency including the use of thymus transplantation.
Collapse
Affiliation(s)
- E Graham Davies
- Centre for Immunodeficiency, Institute of Child Health, University College London and Great Ormond Street Hospital , London , UK
| |
Collapse
|
11
|
Gennery AR. Immunological aspects of 22q11.2 deletion syndrome. Cell Mol Life Sci 2012; 69:17-27. [PMID: 21984609 PMCID: PMC11114664 DOI: 10.1007/s00018-011-0842-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 09/13/2011] [Accepted: 09/13/2011] [Indexed: 12/16/2022]
Abstract
Chromosome 22q11 deletion is the most common chromosomal deletion syndrome and is found in the majority of patients with DiGeorge syndrome and velo-cardio-facial syndrome. Patients with CHARGE syndrome may share similar features. Cardiac malformations, speech delay, and immunodeficiency are the most common manifestations. The immunological phenotype may vary widely between patients. Severe T lymphocyte immunodeficiency is rare-thymic transplantation offers a new approach to treatment, as well as insights into thymic physiology and central tolerance. Combined partial immunodeficiency is more common, leading to recurrent sinopulmonary infection in early childhood. Autoimmunity is an increasingly recognized complication. New insights into pathophysiology are reviewed.
Collapse
Affiliation(s)
- A R Gennery
- Institute of Cellular Medicine, Old Children's Outpatients, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK.
| |
Collapse
|
12
|
Abstract
Human SCID (Severe Combined Immunodeficiency) is a prenatal disorder of T lymphocyte development, that depends on the expression of numerous genes. The knowledge of the genetic basis of SCID is essential for diagnosis (e.g., clinical phenotype, lymphocyte profile) and treatment (e.g., use and type of pre-hematopoietic stem cell transplant conditioning).Over the last years novel genetic defects causing SCID have been discovered, and the molecular and immunological mechanisms of SCID have been better characterized. Distinct forms of SCID show both common and peculiar (e.g., absence or presence of nonimmunological features) aspects, and they are currently classified into six groups according to prevalent pathophysiological mechanisms: impaired cytokine-mediated signaling; pre-T cell receptor defects; increased lymphocyte apoptosis; defects in thymus embryogenesis; impaired calcium flux; other mechanisms.This review is the updated, extended and largely modified translation of the article "Cossu F: Le basi genetiche delle SCID", originally published in Italian language in the journal "Prospettive in Pediatria" 2009, 156:228-238.
Collapse
Affiliation(s)
- Fausto Cossu
- Pediatric HSCT Unit, 2 Pediatric Clinic of University, Ospedale Microcitemico, Via Jenner s/n, 09121 Cagliari, Sardinia, Italy.
| |
Collapse
|
13
|
Cole TS, Cant AJ. Clinical experience in T cell deficient patients. Allergy Asthma Clin Immunol 2010; 6:9. [PMID: 20465788 PMCID: PMC2877019 DOI: 10.1186/1710-1492-6-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 05/13/2010] [Indexed: 01/01/2023] Open
Abstract
T cell disorders have been poorly understood until recently. Lack of knowledge of underlying molecular mechanisms together with incomplete data on long term outcome have made it difficult to assess prognosis and give the most effective treatment. Rapid progress in defining molecular defects, improved supportive care and much improved results from hematopoietic stem cell transplantation (HSCT) now mean that curative treatment is possible for many patients. However, this depends on prompt recognition, accurate diagnosis and careful treatment planning.This review will discuss recent progress in our clinical and molecular understanding of a variety of disorders including: severe combined immunodeficiency, specific T cell immunodeficiencies, signaling defects, DNA repair defects, immune-osseous dysplasias, thymic disorders and abnormalities of apoptosis.There is still much to discover in this area and some conditions which are as yet very poorly understood. However, with increased knowledge about how these disorders can present and the particular problems each group may face it is hoped that these patients can be recognized early and managed appropriately, so providing them with the best possible outcome.
Collapse
Affiliation(s)
- Theresa S Cole
- Paediatric Immunology Dept, Ward 23, Newcastle General Hospital, Westgate Road, Newcastle, NE4 6BE, UK.
| | | |
Collapse
|
14
|
Chinen J, Buckley RH. Transplantation immunology: solid organ and bone marrow. J Allergy Clin Immunol 2010; 125:S324-35. [PMID: 20176267 PMCID: PMC2857984 DOI: 10.1016/j.jaci.2009.11.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 11/09/2009] [Accepted: 11/11/2009] [Indexed: 12/21/2022]
Abstract
Development of the field of organ and tissue transplantation has accelerated remarkably since the human MHC was discovered in 1967. Matching of donor and recipient for MHC antigens has been shown to have a significant positive effect on graft acceptance. The roles of the different components of the immune system involved in the tolerance or rejection of grafts and in graft-versus-host disease have been clarified. These components include antibodies, antigen-presenting cells, helper and cytotoxic T-cell subsets, immune cell-surface molecules, signaling mechanisms, and cytokines. The development of pharmacologic and biological agents that interfere with the alloimmune response has had a crucial role in the success of organ transplantation. Combinations of these agents work synergistically, leading to lower doses of immunosuppressive drugs and reduced toxicity. Reports of significant numbers of successful solid-organ transplantations include those of the kidneys, liver, heart, and lung. The use of bone marrow transplantation for hematologic diseases, particularly hematologic malignancies and primary immunodeficiencies, has become the treatment of choice in many of these conditions. Other sources of hematopoietic stem cells are also being used, and diverse immunosuppressive drug regimens of reduced intensity are being proposed to circumvent the mortality associated with the toxicity of these drugs. Gene therapy to correct inherited diseases by means of infusion of gene-modified autologous hematopoietic stem cells has shown efficacy in 2 forms of severe combined immunodeficiency, providing an alternative to allogeneic tissue transplantation.
Collapse
Affiliation(s)
- Javier Chinen
- Department of Pediatrics, Allergy/Immunology, Baylor College of Medicine, Houston, USA
| | | |
Collapse
|