1
|
Qin Z, Liu W, Qin Z, Zhang H, Huang X. Host combats porcine reproductive and respiratory syndrome virus infection at non-coding RNAs level. Virulence 2024; 15:2416551. [PMID: 39403796 PMCID: PMC11492689 DOI: 10.1080/21505594.2024.2416551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/06/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) poses a significant threat to the global swine industry. The emergence of new, highly virulent strains has precipitated recurrent outbreaks worldwide, underscoring the ongoing battle between host and virus. Thus, there is an imperative to formulate a more comprehensive and effective disease control strategy. Studies have shown that host non-coding RNA (ncRNA) is an important regulator of host - virus interactions in PRRSV infection. Hence, a thorough comprehension of the roles played by ncRNAs in PRRSV infection can augment our understanding of the pathogenic mechanisms underlying PRRSV infection. This review focuses on elucidating contemporary insights into the roles of host microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) in PRRSV infection, providing both theoretical foundations and fresh perspectives for ongoing research into the mechanisms driving PRRSV infection and its pathogenesis.
Collapse
Affiliation(s)
- Zhi Qin
- College of Mechanical and Electrical Engineering, Qingdao Agricultural University, Qingdao, P.R. China
| | - Weiye Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, P.R. China
| | - Zhihua Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, P.R. China
| | - Hongliang Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, P.R. China
| | - Xuewei Huang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, P.R. China
| |
Collapse
|
2
|
Wang J, Sun H, Li R, Xu S, Guo J, Xing G, Jia B, Qiao S, Chen XX, Zhang G. PRRSV non-structural protein 5 inhibits antiviral innate immunity by degrading multiple proteins of RLR signaling pathway through FAM134B-mediated ER-phagy. J Virol 2024; 98:e0081624. [PMID: 39264156 PMCID: PMC11495150 DOI: 10.1128/jvi.00816-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Viruses employ various evasion strategies to establish prolonged infection, with evasion of innate immunity being particularly crucial. Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant pathogen in swine industry, characterized by reproductive failures in sows and respiratory distress in pigs of all ages, leading to substantial economic losses globally. In this study, we found that the non-structural protein 5 (Nsp5) of PRRSV antagonizes innate immune responses via inhibiting the expression of type I interferon (IFN-I) and IFN-stimulated genes (ISGs), which is achieved by degrading multiple proteins of RIG-I-like receptor (RLR) signaling pathway (RIG-I, MDA5, MAVS, TBK1, IRF3, and IRF7). Furthermore, we showed that PRRSV Nsp5 is located in endoplasmic reticulum (ER), where it promotes accumulation of RLR signaling pathway proteins. Further data demonstrated that Nsp5 activates reticulophagy (ER-phagy), which is responsible for the degradation of RLR signaling pathway proteins and IFN-I production. Mechanistically, Nsp5 interacts with one of the ER-phagy receptor family with sequence similarity 134 member B (FAM134B), promoting the oligomerization of FAM134B. These findings elucidate a novel mechanism by which PRRSV utilizes FAM134B-mediated ER-phagy to elude host antiviral immunity.IMPORTANCEInnate immunity is the first line of host defense against viral infections. Therefore, viruses developed numerous mechanisms to evade the host innate immune responses for their own benefit. PRRSV, one of the most important endemic swine viruses, poses a significant threat to the swine industry worldwide. Here, we demonstrate for the first time that PRRSV utilizes its non-structural protein Nsp5 to degrade multiple proteins of RLR signaling pathways, which play important roles in IFN-I production. Moreover, FAM134B-mediated ER-phagy was further proved to be responsible for the protein's degradation. Our study highlights the critical role of ER-phagy in immune evasion of PRRSV to favor replication and provides new insights into the prevention and control of PRRSV.
Collapse
Affiliation(s)
- Jing Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Huiqin Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Rui Li
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Shixuan Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Junqing Guo
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Guangxu Xing
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Bin Jia
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Songlin Qiao
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Xin-xin Chen
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
- Longhu Laboratory, Zhengzhou, China
| |
Collapse
|
3
|
Xu Y, Ding L, Zhang Y, Ren S, Li J, Liu F, Sun W, Chen Z, Yu J, Wu J. Research progress on the pattern recognition receptors involved in porcine reproductive and respiratory syndrome virus infection. Front Cell Infect Microbiol 2024; 14:1428447. [PMID: 39211800 PMCID: PMC11358126 DOI: 10.3389/fcimb.2024.1428447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating infectious diseases of pigs globally. The pathogen, porcine reproductive and respiratory syndrome virus (PRRSV), is an enveloped positive-stranded RNA virus, which is considered to be the key triggers for the activation of effective innate immunity through pattern recognition receptor (PRR)-dependent signaling pathways. Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), C-type lectin receptors (CLRs), NOD-like receptors (NLRs) and Cytoplasmic DNA receptors (CDRs) are used as PRRs to identify distinct but overlapping microbial components. The innate immune system has evolved to recognize RNA or DNA molecules from microbes through pattern recognition receptors (PRRs) and to induce defense response against infections, including the production of type I interferon (IFN-I) and inflammatory cytokines. However, PRRSV is capable of continuous evolution through gene mutation and recombination to evade host immune defenses and exploit host cell mechanisms to synthesize and transport its components, thereby facilitating successful infection and replication. This review presents the research progress made in recent years in the study of these PRRs and their associated adapters during PRRSV infection.
Collapse
Affiliation(s)
- Yulin Xu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Luogang Ding
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Yuyu Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Sufang Ren
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Jianda Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Fei Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Wenbo Sun
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Zhi Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Jiang Yu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Jiaqiang Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| |
Collapse
|
4
|
Ringo RS, Choonnasard A, Okabayashi T, Saito A. Conserved Antagonization of Type I Interferon Signaling by Arterivirus GP5 Proteins. Viruses 2024; 16:1240. [PMID: 39205214 PMCID: PMC11358952 DOI: 10.3390/v16081240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Arteriviruses can establish persistent infections in animals such as equids, pigs, nonhuman primates, rodents, and possums. Some Arteriviruses can even cause overt and severe diseases such as Equine Arteritis in horses and Porcine Reproductive and Respiratory Syndrome in pigs, leading to huge economic losses. Arteriviruses have evolved viral proteins to antagonize the host cell's innate immune responses by inhibiting type I interferon (IFN) signaling, assisting viral evasion and persistent infection. So far, the role of the Arterivirus glycoprotein 5 (GP5) protein in IFN signaling inhibition remains unclear. Here, we investigated the inhibitory activity of 47 Arterivirus GP5 proteins derived from various hosts. We demonstrated that all GP5 proteins showed conserved activity for antagonizing TIR-domain-containing adapter proteins inducing interferon-β (TRIF)-mediated IFN-β signaling through TRIF degradation. In addition, Arterivirus GP5 proteins showed a conserved inhibitory activity against IFN-β signaling, induced by either pig or human TRIF. Furthermore, certain Arterivirus GP5 proteins could inhibit the induction of IFN-stimulated genes. These findings highlight the role of Arterivirus GP5 proteins in supporting persistent infection.
Collapse
Affiliation(s)
- Rissar Siringo Ringo
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan; (R.S.R.); (A.C.); (T.O.)
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Amonrat Choonnasard
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan; (R.S.R.); (A.C.); (T.O.)
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Tamaki Okabayashi
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan; (R.S.R.); (A.C.); (T.O.)
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan; (R.S.R.); (A.C.); (T.O.)
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|
5
|
Yang H, Sun M, Qiu H, Xu H, Deng Z, Gu H, Wang N, Du L, Shi F, Zhou J, He F. Nanobody peptide conjugate: a novel CD163 based broad neutralizing strategy against porcine reproductive and respiratory syndrome virus. J Nanobiotechnology 2024; 22:388. [PMID: 38956618 PMCID: PMC11218349 DOI: 10.1186/s12951-024-02662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome virus (PRRSV) is a prevalent swine pathogen, which has caused adverse impact on the global swine industry for almost 30 years. However, due to the immune suppression caused by the virus and the genetic diversity in PRRSV, no virus-targeting broad neutralizing strategy has been successfully developed yet. Antiviral peptide and nanobody have attracted extensive attention with the ease in production and the efficacy in practice. In this study, four new fusion proteins named nanobody peptide conjugates (NPCs) were developed by combining PRRSV specific non-neutralizing nanobodies with CD163-derived peptides targeting the receptor binding domain (RBD) of PRRSV proteins. RESULTS Four NPCs were successfully constructed using two nanobodies against PRRSV N and nsp9 individually, recombining with two antiviral peptides 4H7 or 8H2 from porcine CD163 respectively. All four NPCs demonstrated specific capability of binding to PRRSV and broad inhibitory effect against various lineages of PRRSV in a dose-dependent manner. NPCs interfere with the binding of the RBD of PRRSV proteins to CD163 in the PRRSV pre-attachment stage by CD163 epitope peptides in the assistance of Nb components. NPCs also suppress viral replication during the stage of post-attachment, and the inhibitory effects depend on the antiviral functions of Nb parts in NPCs, including the interference in long viral RNA synthesis, NF-κB and IFN-β activation. Moreover, an interaction was predicted between aa K31 and T32 sites of neutralizing domain 4H7 of NPC-N/nsp9-4H7 and the motif 171NLRLTG176 of PRRSV GP2a. The motif 28SSS30 of neutralizing domain 8H2 of NPC-N/nsp9-8H2 could also form hydrogens to bind with the motif 152NAFLP156 of PRRSV GP3. The study provides valuable insights into the structural characteristics and potential functional implications of the RBD of PRRSV proteins. Finally, as indicated in a mouse model, NPC intranasally inoculated in vivo for 12-24 h sustains the significant neutralizing activity against PRRSV. These findings inspire the potential of NPC as a preventive measure to reduce the transmission risk in the host population against respiratory infectious agents like PRRSV. CONCLUSION The aim of the current study was to develop a peptide based bioactive compound to neutralize various PRRSV strains. The new antiviral NPC (nanobody peptide conjugate) consists of a specific nanobody targeting the viral protein and a neutralizing CD163 epitope peptide for virus blocking and provides significant antiviral activity. The study will greatly promote the antiviral drug R&D against PRRSV and enlighten a new strategy against other viral diseases.
Collapse
Affiliation(s)
- Haotian Yang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang, P.R. China
| | - Meiqi Sun
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang, P.R. China
| | - He Qiu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang, P.R. China
| | - Huiling Xu
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang, P.R. China
| | - Zhuofan Deng
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang, P.R. China
| | - Han Gu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang, P.R. China
| | - Nan Wang
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang, P.R. China
| | - Liuyang Du
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Fushan Shi
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Fang He
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China.
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang, P.R. China.
| |
Collapse
|
6
|
Li J, Miller LC, Sang Y. Current Status of Vaccines for Porcine Reproductive and Respiratory Syndrome: Interferon Response, Immunological Overview, and Future Prospects. Vaccines (Basel) 2024; 12:606. [PMID: 38932335 PMCID: PMC11209547 DOI: 10.3390/vaccines12060606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) remains a formidable challenge for the global pig industry. Caused by PRRS virus (PRRSV), this disease primarily affects porcine reproductive and respiratory systems, undermining effective host interferon and other immune responses, resulting in vaccine ineffectiveness. In the absence of specific antiviral treatments for PRRSV, vaccines play a crucial role in managing the disease. The current market features a range of vaccine technologies, including live, inactivated, subunit, DNA, and vector vaccines, but only modified live virus (MLV) and killed virus (KV) vaccines are commercially available for PRRS control. Live vaccines are promoted for their enhanced protective effectiveness, although their ability to provide cross-protection is modest. On the other hand, inactivated vaccines are emphasized for their safety profile but are limited in their protective efficacy. This review updates the current knowledge on PRRS vaccines' interactions with the host interferon system, and other immunological aspects, to assess their current status and evaluate advents in PRRSV vaccine development. It presents the strengths and weaknesses of both live attenuated and inactivated vaccines in the prevention and management of PRRS, aiming to inspire the development of innovative strategies and technologies for the next generation of PRRS vaccines.
Collapse
Affiliation(s)
- Jiuyi Li
- Department of Food and Animal Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209, USA;
| | - Laura C. Miller
- Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA;
| | - Yongming Sang
- Department of Food and Animal Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209, USA;
| |
Collapse
|
7
|
Liu B, Zheng X, Sun X, Wan B, Dong J, Zhou Z, Nan Y, Wu C. Characterization of in vitro viral neutralization targets of highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) in alveolar macrophage and evaluation of protection potential against HP-PRRSV challenged based on combination of HP-PRRSV-structure proteins in vitro. Vet Microbiol 2024; 292:110035. [PMID: 38484577 DOI: 10.1016/j.vetmic.2024.110035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) poses a significant threat to the global pork industry, resulting in substantial economic losses. Current control measures rely on modified live virus (MLV) vaccines with safety concerns. However, the lack of consensus on protective PRRSV antigens is impeding the development of effective and safety subunit vaccines. In this study, we conducted in vitro virus neutralization (VN) assays in MARC-145 and CRL-2843CD163/CD169 cell lines and primary porcine alveolar macrophages (PAMs) to systemically identify PRRSV structural proteins (SPs) recognized by virus-neutralizing antibodies in hyperimmune serum collected from piglets infected with highly pathogenic PRRSV (HP-PRRSV). Additionally, piglets immunized with different combinations of recombinant PRRSV-SPs were challenged with HP-PRRSV to evaluate their in vivo protection potential. Intriguingly, different in vitro VN activities of serum antibodies elicited by each PRRSV SP were observed depending on the cell type used in the VN assay. Notably, antibodies specific for GP3, GP4, and M exhibited highest in vitro VN activities in PAMs, correlating with complete protection (100% survival) against HP-PRRSV challenge in vivo after immunization of piglets with combination of GP3, GP4, M and N (GP3/GP4/M/N). Further analysis of lung pathology, weight gain, and viremia post-challenge revealed that the combination of GP3/GP4/M/N provided superior protective efficacy against severe infection. These findings underscore the potential of this SP combination to serve as an effective PRRSV subunit vaccine, marking a significant advancement in pork industry disease management.
Collapse
Affiliation(s)
- Bing Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xu Zheng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangyu Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bingjie Wan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianhui Dong
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Innolever Biotechnology Co., Ltd., Yangling, Shaanxi 712100, China
| | - Zhaobin Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Hu Y, Wu X, Tian Y, Jiang D, Ren J, Li Z, Ding X, Zhang Q, Yoo D, Miller LC, Lee C, Cong X, Li J, Du Y, Qi J. GTPase activity of porcine Mx1 plays a dominant role in inhibiting the N-Nsp9 interaction and thus inhibiting PRRSV replication. J Virol 2024; 98:e0184423. [PMID: 38436247 PMCID: PMC11019876 DOI: 10.1128/jvi.01844-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/08/2024] [Indexed: 03/05/2024] Open
Abstract
Porcine Mx1 is a type of interferon-induced GTPase that inhibits the replication of certain RNA viruses. However, the antiviral effects and the underlying mechanism of porcine Mx1 for porcine reproductive and respiratory syndrome virus (PRRSV) remain unknown. In this study, we demonstrated that porcine Mx1 could significantly inhibit PRRSV replication in MARC-145 cells. By Mx1 segment analysis, it was indicated that the GTPase domain (68-341aa) was the functional area to inhibit PRRSV replication and that Mx1 interacted with the PRRSV-N protein through the GTPase domain (68-341aa) in the cytoplasm. Amino acid residues K295 and K299 in the G domain of Mx1 were the key sites for Mx1-N interaction while mutant proteins Mx1(K295A) and Mx1(K299A) still partially inhibited PRRSV replication. Furthermore, we found that the GTPase activity of Mx1 was dominant for Mx1 to inhibit PRRSV replication but was not essential for Mx1-N interaction. Finally, mechanistic studies demonstrated that the GTPase activity of Mx1 played a dominant role in inhibiting the N-Nsp9 interaction and that the interaction between Mx1 and N partially inhibited the N-Nsp9 interaction. We propose that the complete anti-PRRSV mechanism of porcine Mx1 contains a two-step process: Mx1 binds to the PRRSV-N protein and subsequently disrupts the N-Nsp9 interaction by a process requiring the GTPase activity of Mx1. Taken together, the results of our experiments describe for the first time a novel mechanism by which porcine Mx1 evolves to inhibit PRRSV replication. IMPORTANCE Mx1 protein is a key mediator of the interferon-induced antiviral response against a wide range of viruses. How porcine Mx1 affects the replication of porcine reproductive and respiratory syndrome virus (PRRSV) and its biological function has not been studied. Here, we show that Mx1 protein inhibits PRRSV replication by interfering with N-Nsp9 interaction. Furthermore, the GTPase activity of porcine Mx1 plays a dominant role and the Mx1-N interaction plays an assistant role in this interference process. This study uncovers a novel mechanism evolved by porcine Mx1 to exert anti-PRRSV activities.
Collapse
Affiliation(s)
- Yue Hu
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Xiangju Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Yunfei Tian
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Dandan Jiang
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Jinrui Ren
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Ziyong Li
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Xiuliang Ding
- Animal Nutrition Institute, Chongqing Academy of Animal Sciences, Chongqing, China
| | - Quanfang Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Laura C. Miller
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Changhee Lee
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Xiaoyan Cong
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Juntong Li
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Jing Qi
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| |
Collapse
|
9
|
Huang X, Liu W. Role of microRNAs in host defense against porcine reproductive and respiratory syndrome virus infection: a hidden front line. Front Immunol 2024; 15:1376958. [PMID: 38590524 PMCID: PMC10999632 DOI: 10.3389/fimmu.2024.1376958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most globally devastating viruses threatening the swine industry worldwide. Substantial advancements have been achieved in recent years towards comprehending the pathogenesis of PRRSV infection and the host response, involving both innate and adaptive immune responses. Not only a multitude of host proteins actively participate in intricate interactions with viral proteins, but microRNAs (miRNAs) also play a pivotal role in the host response to PRRSV infection. If a PRRSV-host interaction at the protein level is conceptualized as the front line of the battle between pathogens and host cells, then their fight at the RNA level resembles the hidden front line. miRNAs are endogenous small non-coding RNAs of approximately 20-25 nucleotides (nt) that primarily regulate the degradation or translation inhibition of target genes by binding to the 3'-untranslated regions (UTRs). Insights into the roles played by viral proteins and miRNAs in the host response can enhance our comprehensive understanding of the pathogenesis of PRRSV infection. The intricate interplay between viral proteins and cellular targets during PRRSV infection has been extensively explored. This review predominantly centers on the contemporary understanding of the host response to PRRSV infection at the RNA level, in particular, focusing on the twenty-six miRNAs that affect viral replication and the innate immune response.
Collapse
Affiliation(s)
- Xuewei Huang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | | |
Collapse
|
10
|
Fabros D, Charerntantanakul W. Type I and II interferons, transcription factors and major histocompatibility complexes were enhanced by knocking down the PRRSV-induced transforming growth factor beta in monocytes co-cultured with peripheral blood lymphocytes. Front Immunol 2024; 15:1308330. [PMID: 38510257 PMCID: PMC10950996 DOI: 10.3389/fimmu.2024.1308330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
The innate and adaptive immune responses elicited by porcine reproductive and respiratory syndrome virus (PRRSV) infection are known to be poor. This study investigates the impact of PRRSV-induced transforming growth factor beta 1 (TGFβ1) on the expressions of type I and II interferons (IFNs), transcription factors, major histocompatibility complexes (MHC), anti-inflammatory and pro-inflammatory cytokines in PRRSV-infected co-cultures of monocytes and peripheral blood lymphocytes (PBL). Phosphorothioate-modified antisense oligodeoxynucleotide (AS ODN) specific to the AUG region of porcine TGFβ1 mRNA was synthesized and successfully knocked down TGFβ1 mRNA expression and protein translation. Monocytes transfected with TGFβAS1 ODN, then simultaneously co-cultured with PBL and inoculated with either classical PRRSV-2 (cPRRSV-2) or highly pathogenic PRRSV-2 (HP-PRRSV-2) showed a significant reduction in TGFβ1 mRNA expression and a significant increase in the mRNA expressions of IFNα, IFNγ, MHC-I, MHC-II, signal transducer and activator of transcription 1 (STAT1), and STAT2. Additionally, transfection of TGFβAS1 ODN in the monocyte and PBL co-culture inoculated with cPRRSV-2 significantly increased the mRNA expression of interleukin-12p40 (IL-12p40). PRRSV-2 RNA copy numbers were significantly reduced in monocytes and PBL co-culture transfected with TGFβAS1 ODN compared to the untransfected control. The yields of PRRSV-2 RNA copy numbers in PRRSV-2-inoculated monocytes and PBL co-culture were sustained and reduced by porcine TGFβ1 (rTGFβ1) and recombinant porcine IFNα (rIFNα), respectively. These findings highlight the strategy employed by PRRSV to suppress the innate immune response through the induction of TGFβ expression. The inclusion of TGFβ as a parameter for future PRRSV vaccine and vaccine adjuvant candidates is recommended.
Collapse
|
11
|
Sagrera M, Garza-Moreno L, Sibila M, Oliver-Ferrando S, Cárceles S, Casanovas C, Prieto P, García-Flores A, Espigares D, Segalés J. Frequency of PCV-2 viremia in nursery piglets from a Spanish swine integration system in 2020 and 2022 considering PRRSV infection status. Porcine Health Manag 2024; 10:4. [PMID: 38229182 DOI: 10.1186/s40813-024-00354-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Porcine circovirus 2 (PCV-2) poses a significant economic threat for the swine industry, causing a range of diseases collectively referred to as porcine circovirus diseases (PCVDs). Despite PCV-2 vaccine effectiveness, the need for monitoring infectious pressure remains. PCV-2 coinfection with other pathogens like porcine reproductive and respiratory syndrome virus (PRRSV) can exacerbate disease severity and lead to PCV-2-systemic disease cases. Monitoring both PRRSV and PCV-2 in co-infected farms is crucial for an effective management and vaccination programs. The present cross-sectional study aimed to determine PCV-2 antibody levels in piglets at weaning and PCV-2 and PRRSV viremia in pooled serum samples at weaning (vaccination age) and at 6 and 9 weeks of age from a Spanish swine integration system in 2020 (48 farms) and in 2022 (28 out of the 48 analysed previously). RESULTS The frequency of PCV-2 detection in pools of piglet sera was 2.1% (2020) and 7.1% (2022) at vaccination age but increased at the end of the nursery period (10.4% in 2020 and 39.3% in 2022) in both years. Co-infections between PCV-2 and PRRSV were detected in a significant proportion of PRRSV positive farms (15% in 2020, and 60% in 2022). PCV-2 antibody levels (ELISA S/P ratios) at weaning were lower in PCV-2 qPCR positive farms at different sampling time-points (0.361 in 2020 and 0.378 in 2022) compared to PCV-2 qPCR negative ones (0.587 in 2020 and 0.541 in 2022). The 28 farms tested both years were classified in four different epidemiological scenarios depending on their PCV-2 virological status. Those PCV-2 qPCR negative farms in 2020 that turned to be positive in 2022 had a statistically significant increase of PRRSV RT-qPCR detection and a PCV-2 antibody levels reduction, facts that were not observed in the rest of the scenarios. CONCLUSION This epidemiological study in farms from the same integration system determined the occurrence, in 2020 and in 2022, of PCV-2 and PRRSV infections in piglets during the nursery period by using pooled serum samples.
Collapse
Affiliation(s)
- Mònica Sagrera
- IRTA. Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de La UAB, 08193, Bellaterra, Cerdanyola del Vallès, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- Ceva Salud Animal, Avenida Diagonal, 609-615, 08028, Barcelona, Spain
| | | | - Marina Sibila
- IRTA. Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de La UAB, 08193, Bellaterra, Cerdanyola del Vallès, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- WOAH Collaborating Center for Research and Control of Emerging and Re-Emerging Pig Diseases (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain
| | | | - Sonia Cárceles
- Ceva Salud Animal, Avenida Diagonal, 609-615, 08028, Barcelona, Spain
| | - Carlos Casanovas
- Ceva Salud Animal, Avenida Diagonal, 609-615, 08028, Barcelona, Spain
| | - Patricia Prieto
- Inga Food S.A., Ronda de Poniente, 9, 28760, Tres Cantos, Madrid, Spain
| | | | - David Espigares
- Ceva Salud Animal, Avenida Diagonal, 609-615, 08028, Barcelona, Spain
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
- WOAH Collaborating Center for Research and Control of Emerging and Re-Emerging Pig Diseases (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain.
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
12
|
Stepanova K, Toman M, Sinkorova J, Sinkora S, Pfeiferova S, Kupcova Skalnikova H, Abuhajiar S, Moutelikova R, Salat J, Stepanova H, Nechvatalova K, Leva L, Hermanova P, Kratochvilova M, Dusankova B, Sinkora M, Horak V, Hudcovic T, Butler JE, Sinkora M. Modified live vaccine strains of porcine reproductive and respiratory syndrome virus cause immune system dysregulation similar to wild strains. Front Immunol 2024; 14:1292381. [PMID: 38283357 PMCID: PMC10811158 DOI: 10.3389/fimmu.2023.1292381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Porcine reproductive and respiratory syndrome virus (PRRSV) emerged about 30 years ago and continues to cause major economic losses in the pork industry. The lack of effective modified live vaccines (MLV) allows the pandemic to continue. Background and objective We have previously shown that wild strains of PRRSV affect the nascent T cell repertoire in the thymus, deplete T cell clones recognizing viral epitopes essential for neutralization, while triggering a chronic, robust, but ineffective antibody response. Therefore, we hypothesized that the current MLV are inappropriate because they cause similar damage and fail to prevent viral-induced dysregulation of adaptive immunity. Methods We tested three MLV strains to demonstrate that all have a comparable negative effect on thymocytes in vitro. Further in vivo studies compared the development of T cells in the thymus, peripheral lymphocytes, and antibody production in young piglets. These three MLV strains were used in a mixture to determine whether at least some of them behave similarly to the wild virus type 1 or type 2. Results Both the wild and MLV strains cause the same immune dysregulations. These include depletion of T-cell precursors, alteration of the TCR repertoire, necrobiosis at corticomedullary junctions, low body weight gain, decreased thymic cellularity, lack of virus-neutralizing antibodies, and production of non-neutralizing anti-PRRSV antibodies of different isotypes. Discussion and conclusion The results may explain why the use of current MLV in young animals may be ineffective and why their use may be potentially dangerous. Therefore, alternative vaccines, such as subunit or mRNA vaccines or improved MLV, are needed to control the PRRSV pandemic.
Collapse
Affiliation(s)
- Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Miroslav Toman
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Jana Sinkorova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Simon Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Sarka Pfeiferova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Helena Kupcova Skalnikova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD (Pig Models of Diseases), Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czechia
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Salim Abuhajiar
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD (Pig Models of Diseases), Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czechia
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Romana Moutelikova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Jiri Salat
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Hana Stepanova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Katerina Nechvatalova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Lenka Leva
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Petra Hermanova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Mirka Kratochvilova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Blanka Dusankova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Vratislav Horak
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD (Pig Models of Diseases), Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czechia
| | - Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - John E. Butler
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| |
Collapse
|
13
|
Sinkora M, Toman M, Stepanova K, Stepanova H, Leva L, Sinkorova J, Moutelikova R, Salat J, Srutkova D, Schwarzer M, Sinkora S, Skalnikova HK, Nechvatalova K, Hudcovic T, Hermanova P, Pfeiferova S, Kratochvilova M, Kavanova L, Dusankova B, Sinkora MJ. The mechanism of immune dysregulation caused by porcine reproductive and respiratory syndrome virus (PRRSV). Microbes Infect 2023; 25:105146. [PMID: 37142116 DOI: 10.1016/j.micinf.2023.105146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
PRRSV is capable of evading the effective immune response, thus persisting in piglets and throughout the swine herd. We show here that PRRSV invades the thymus and causes depletion of T-cell precursors and alteration of the TCR repertoire. Developing thymocytes are affected during negative selection when they transit from the triple-negative to triple-positive stages at the corticomedullary junction just before entering the medulla. The restriction of repertoire diversification occurs in both helper and cytotoxic αβ-T cells. As a result, critical viral epitopes are tolerated, and infection becomes chronic. However, not all viral epitopes are tolerated. Infected piglets develop antibodies capable of recognizing PRRSV, but these are not virus neutralizing. Further analysis showed that the lack of an effective immune response against the critical viral structures results in the absence of a germinal center response, overactivation of T and B cells in the periphery, robust production of useless antibodies of all isotypes, and the inability to eliminate the virus. Overall, the results show how a respiratory virus that primarily infects and destroys myelomonocytic cells has evolved strategies to disrupt the immune system. These mechanisms may be a prototype for how other viruses can similarly modulate the host immune system.
Collapse
Affiliation(s)
- Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic.
| | - Miroslav Toman
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Hana Stepanova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Lenka Leva
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Jana Sinkorova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Romana Moutelikova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Jiri Salat
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Simon Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Helena Kupcova Skalnikova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Katerina Nechvatalova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Petra Hermanova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Sarka Pfeiferova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Mirka Kratochvilova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Lenka Kavanova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Blanka Dusankova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Marek Jr Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| |
Collapse
|
14
|
Sun Q, Xu H, An T, Cai X, Tian Z, Zhang H. Recent Progress in Studies of Porcine Reproductive and Respiratory Syndrome Virus 1 in China. Viruses 2023; 15:1528. [PMID: 37515213 PMCID: PMC10384046 DOI: 10.3390/v15071528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Due to the high incidence of PRRSV mutation and recombination, PRRSV infection is difficult to prevent and control in China and worldwide. Two species of PRRSV, Betaarterivirus suid 1 (PRRSV-1) and Betaarterivirus suid 2 (PRRSV-2), exist in China, and PRRSV-1 has always received less attention in China. However, the number of PRRSV-1 strains detected in China has increased recently. To date, PRRSV-1 has spread to more than 23 regions in China. Based on the phylogenetic analysis of ORF5 and the whole genome of PRRSV-1, Chinese PRRSV-1 can be divided into at least seven independent subgroups. Among them, BJEU06-1-like has become the mainstream subgroup in some regions of China. This subgroup of strains has a 5-aa (4 + 1) characteristic discontinuous deletion pattern at aa 357~aa 360 and aa 411 in Nsp2. Previous studies have indicated that the pathogenicity of PRRSV-1 in China is mild, but recent studies found that the pathogenicity of PRRSV-1 was enhanced in China. Therefore, the emergence of PRRSV-1 deserves attention, and the prevention and control of PRRSV-1 infection in China should be strengthened. PRRSV infection is usually prevented and controlled by a combination of virus monitoring, biosafety restrictions, herd management measures and vaccination. However, the use of PRRSV-1 vaccines is currently banned in China. Thus, we should strengthen the monitoring of PRRSV-1 and the biosafety management of pig herds in China. In this review, we summarize the prevalence of PRRSV-1 in China and clarify the genomic characteristics, pathogenicity, vaccine status, and prevention and control management system of PRRSV-1 in China. Consequently, the purpose of this review is to provide a basis for further development of prevention and control measures for PRRSV-1.
Collapse
Affiliation(s)
- Qi Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Hu Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Zhijun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| |
Collapse
|
15
|
Lagumdzic E, Pernold CPS, Ertl R, Palmieri N, Stadler M, Sawyer S, Stas MR, Kreutzmann H, Rümenapf T, Ladinig A, Saalmüller A. Gene expression of peripheral blood mononuclear cells and CD8 + T cells from gilts after PRRSV infection. Front Immunol 2023; 14:1159970. [PMID: 37409113 PMCID: PMC10318438 DOI: 10.3389/fimmu.2023.1159970] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive-stranded RNA virus, which emerged in Europe and U.S.A. in the late 1980s and has since caused huge economic losses. Infection with PRRSV causes mild to severe respiratory and reproductive clinical symptoms in pigs. Alteration of the host immune response by PRRSV is associated with the increased susceptibility to secondary viral and bacterial infections resulting in more serious and chronic disease. However, the expression profiles underlying innate and adaptive immune responses to PRRSV infection are yet to be further elucidated. In this study, we investigated gene expression profiles of PBMCs and CD8+ T cells after PRRSV AUT15-33 infection. We identified the highest number of differentially expressed genes in PBMCs and CD8+ T cells at 7 dpi and 21 dpi, respectively. The gene expression profile of PBMCs from infected animals was dominated by a strong innate immune response at 7 dpi which persisted through 14 dpi and 21 dpi and was accompanied by involvement of adaptive immunity. The gene expression pattern of CD8+ T cells showed a strong adaptive immune response to PRRSV, leading to the formation of highly differentiated CD8+ T cells starting from 14 dpi. The hallmark of the CD8+ T-cell response was the increased expression of effector and cytolytic genes (PRF1, GZMA, GZMB, GZMK, KLRK1, KLRD1, FASL, NKG7), with the highest levels observed at 21 dpi. Temporal clustering analysis of DEGs of PBMCs and CD8+ T cells from PRRSV-infected animals revealed three and four clusters, respectively, suggesting tight transcriptional regulation of both the innate and the adaptive immune response to PRRSV. The main cluster of PBMCs was related to the innate immune response to PRRSV, while the main clusters of CD8+ T cells represented the initial transformation and differentiation of these cells in response to the PRRSV infection. Together, we provided extensive transcriptomics data explaining gene signatures of the immune response of PBMCs and CD8+ T cells after PRRSV infection. Additionally, our study provides potential biomarker targets useful for vaccine and therapeutics development.
Collapse
Affiliation(s)
- Emil Lagumdzic
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Clara P. S. Pernold
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Reinhard Ertl
- VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - Nicola Palmieri
- University Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Maria Stadler
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Spencer Sawyer
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Melissa R. Stas
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Heinrich Kreutzmann
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Till Rümenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Andrea Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
16
|
Kick AR, Grete AF, Crisci E, Almond GW, Käser T. Testable Candidate Immune Correlates of Protection for Porcine Reproductive and Respiratory Syndrome Virus Vaccination. Vaccines (Basel) 2023; 11:vaccines11030594. [PMID: 36992179 DOI: 10.3390/vaccines11030594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an on-going problem for the worldwide pig industry. Commercial and experimental vaccinations often demonstrate reduced pathology and improved growth performance; however, specific immune correlates of protection (CoP) for PRRSV vaccination have not been quantified or even definitively postulated: proposing CoP for evaluation during vaccination and challenge studies will benefit our collective efforts towards achieving protective immunity. Applying the breadth of work on human diseases and CoP to PRRSV research, we advocate four hypotheses for peer review and evaluation as appropriate testable CoP: (i) effective class-switching to systemic IgG and mucosal IgA neutralizing antibodies is required for protective immunity; (ii) vaccination should induce virus-specific peripheral blood CD4+ T-cell proliferation and IFN-γ production with central memory and effector memory phenotypes; cytotoxic T-lymphocytes (CTL) proliferation and IFN-γ production with a CCR7- phenotype that should migrate to the lung; (iii) nursery, finishing, and adult pigs will have different CoP; (iv) neutralizing antibodies provide protection and are rather strain specific; T cells confer disease prevention/reduction and possess greater heterologous recognition. We believe proposing these four CoP for PRRSV can direct future vaccine design and improve vaccine candidate evaluation.
Collapse
Affiliation(s)
- Andrew R Kick
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Department of Chemistry & Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Alicyn F Grete
- Department of Chemistry & Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Elisa Crisci
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Glen W Almond
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
17
|
Ruedas-Torres I, Sánchez-Carvajal JM, Carrasco L, Pallarés FJ, Larenas-Muñoz F, Rodríguez-Gómez IM, Gómez-Laguna J. PRRSV-1 induced lung lesion is associated with an imbalance between costimulatory and coinhibitory immune checkpoints. Front Microbiol 2023; 13:1007523. [PMID: 36713151 PMCID: PMC9878400 DOI: 10.3389/fmicb.2022.1007523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) induces a dysregulation on the innate and adaptive immune responses. T-cell activation requires a proper interaction and precise balance between costimulatory and coinhibitory molecules, commonly known as immune checkpoints. This study aims to evaluate the expression of immune checkpoints in lung and tracheobronchial lymph node from piglets infected with two PRRSV-1 strains of different virulence during the early stage of infection. Seventy 4-week-old piglets were grouped into three experimental groups: (i) control, (ii) 3249-infected group (low virulent strain), and (iii) Lena-infected group (virulent strain) and were euthanized at 1, 3, 6, 8, and 13 days post-infection (dpi). Lung and tracheobronchial lymph node were collected to evaluate histopathological findings, PRRSV viral load and mRNA expression of costimulatory (CD28, CD226, TNFRSF9, SELL, ICOS, and CD40) and coinhibitory (CTLA4, TIGIT, PD1/PDL1, TIM3, LAG3, and IDO1) molecules through RT-qPCR. Our findings highlight a mild increase of costimulatory molecules together with an earlier and stronger up-regulation of coinhibitory molecules in both organs from PRRSV-1-infected animals, especially in the lung from virulent Lena-infected animals. The simultaneous expression of coinhibitory immune checkpoints could work in synergy to control and limit the inflammation-induced tissue damage. Further studies should be addressed to determine the role of these molecules in later stages of PRRSV infection.
Collapse
|
18
|
Attenuated Porcine Reproductive and Respiratory Syndrome Virus Regains Its Fatal Virulence by Serial Passaging in Pigs or Porcine Alveolar Macrophages To Increase Its Adaptation to Target Cells. Microbiol Spectr 2022; 10:e0308422. [PMID: 36219105 PMCID: PMC9769833 DOI: 10.1128/spectrum.03084-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a globally important disease threatening the pork industry, and modified live-virus (MLV) vaccines are widely used for its prevention. However, PRRS MLV shows high potential for reversion to virulence, leading to a major concern about its safety. Yet the revertant mechanism is still poorly understood. Here, attenuated virus JXwn06-P80, derived from the highly pathogenic PRRS virus (PRRSV) strain JXwn06 by serial passaging in MARC-145 cells, was reversely passaged in pigs through intranasal inoculation to mimic natural infection for 13 rounds, and the pathogenicity of viruses at the 3rd, 5th, 9th, 10th, and 11th passages was evaluated in pigs. From the 9th passage, the viruses caused mortality, which was related to their increased adaptability and replication efficiency (100 times higher than those of JXwn06-P80) in porcine alveolar macrophage (PAM) target cells. Similarly, JXwn06-P80 could also regain fatal virulence through reverse passage in PAMs for 25 or more passages, indicating that the increased adaptability in PAMs directly contributes to its regained fatal virulence. Next, the full-genome sequences were analyzed to explore the genetic evolutionary processes during adaptation both in vivo and in vitro. Finally, by a reverse genetic operation, four reverse mutation sites, NSP12-W121R, ORF2b (open reading frame 2b)-H9D, ORF5-H15L, and ORF5-V189L, were finally identified to partially contribute to the ability of the virus to adapt to PAMs, which may be related to virulence reversion during reverse passage. These findings provided direct scientific evidence for the virulence reversion of PRRS MLV and provided valuable clues for exploring its molecular mechanism. IMPORTANCE Reversion to virulence of a live attenuated vaccine is a public concern; however, direct scientific evidence is limited, and the mechanism is still poorly understood. Here, we present direct evidence for the reversion to virulence of PRRS MLV after serial passaging in pigs or target cells and found a correlation between virulence reversion and increased replication fitness in primary PAMs. The genetic evolutionary process during adaptation will provide valuable clues for exploring the molecular mechanism of PRRS MLV virulence reversion and offer important implications for understanding the reversion mechanisms of other vaccines.
Collapse
|
19
|
Effects of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Infection on the Surface Glycoprofiling of Porcine Pulmonary Microvascular Endothelial Cells. Viruses 2022; 14:v14112569. [PMID: 36423178 PMCID: PMC9695484 DOI: 10.3390/v14112569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Previously, our study has demonstrated that porcine pulmonary microvascular endothelial cells (PPMVECs) were susceptible to highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) and produced a significant non-specific immune response to it. The significance of microvascular endothelial glycocalyx is increasingly attracting attention, and its rich carbohydrate components are not only important signaling molecules, but also remarkably influence the signaling of most proteins. Comprehending changes in the carbohydrate chains contributes to understanding cell functions. This study aimed to reveal the effects of HP-PRRSV infection on the surface carbohydrate chains of PPMVECs. PPMVECs were isolated and cultured in vitro and infected with HP-PRRSV HN and JXA1 strains. Scanning electron microscopy analysis indicated that at 48 h post-infection, some broken holes were in their cell membranes, and that the surface fibrous glycocalyx was obviously reduced or even disappeared. Lectin microarray analysis indicated that the fluorescence intensities of 8 and 7 lectin sites were significantly changed by the HP-PRRSV HN and JXA1 strains, respectively, among which there were 6 common lectin sites. The up-regulation of common lectins (RCA-I, LEL, and STL) and the down-regulation of common lectins (LCA, DSA, and PHA-E) were confirmed by lectin fluorescence staining and lectin flow cytometry, respectively. Together, the results show that the HP-PRRSV infection can induce the glycocalyx disruption of PPMVECs and their surface glycoprofiling changes, and that the poly-N-acetyllactosamine and complex N-glycan are the main up-regulated and down-regulated carbohydrate chains, respectively. Our findings may provide insights into revealing the pathogenesis of HP-PRRSV from the perspective of glycobiology.
Collapse
|
20
|
Wu Q, Han Y, Wu X, Wang Y, Su Q, Shen Y, Guan K, Michal JJ, Jiang Z, Liu B, Zhou X. Integrated time-series transcriptomic and metabolomic analyses reveal different inflammatory and adaptive immune responses contributing to host resistance to PRRSV. Front Immunol 2022; 13:960709. [PMID: 36341362 PMCID: PMC9631489 DOI: 10.3389/fimmu.2022.960709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/05/2022] [Indexed: 11/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious disease that affects the global pig industry. To understand mechanisms of susceptibility/resistance to PRRSV, this study profiled the time-serial white blood cells transcriptomic and serum metabolomic responses to PRRSV in piglets from a crossbred population of PRRSV-resistant Tongcheng pigs and PRRSV-susceptible Large White pigs. Gene set enrichment analysis (GSEA) illustrated that PRRSV infection up-regulated the expression levels of marker genes of dendritic cells, monocytes and neutrophils and inflammatory response, but down-regulated T cells, B cells and NK cells markers. CIBERSORT analysis confirmed the higher T cells proportion in resistant pigs during PRRSV infection. Resistant pigs showed a significantly higher level of T cell activation and lower expression levels of monocyte surface signatures post infection than susceptible pigs, corresponding to more severe suppression of T cell immunity and inflammatory response in susceptible pigs. Differentially expressed genes between resistant/susceptible pigs during the course of infection were significantly enriched in oxidative stress, innate immunity and humoral immunity, cell cycle, biotic stimulated cellular response, wounding response and behavior related pathways. Fourteen of these genes were distributed in 5 different QTL regions associated with PRRSV-related traits. Chemokine CXCL10 levels post PRRSV infection were differentially expressed between resistant pigs and susceptible pigs and can be a promising marker for susceptibility/resistance to PRRSV. Furthermore, the metabolomics dataset indicated differences in amino acid pathways and lipid metabolism between pre-infection/post-infection and resistant/susceptible pigs. The majority of metabolites levels were also down-regulated after PRRSV infection and were significantly positively correlated to the expression levels of marker genes in adaptive immune response. The integration of transcriptome and metabolome revealed concerted molecular events triggered by the infection, notably involving inflammatory response, adaptive immunity and G protein-coupled receptor downstream signaling. This study has increased our knowledge of the immune response differences induced by PRRSV infection and susceptibility differences at the transcriptomic and metabolomic levels, providing the basis for the PRRSV resistance mechanism and effective PRRS control.
Collapse
Affiliation(s)
- Qingqing Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yu Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xianmeng Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuan Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qiuju Su
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yang Shen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Kaifeng Guan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jennifer J. Michal
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Zhihua Jiang
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Engineering Technology Research Center of Hubei Province Local Pig Breed Improvement, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Xiang Zhou, ; Bang Liu,
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Engineering Technology Research Center of Hubei Province Local Pig Breed Improvement, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Xiang Zhou, ; Bang Liu,
| |
Collapse
|
21
|
Liu X, Zhou X, Noor AU, Zhang X, Song C, Sun H. Enhancing half-life and cytotoxicity of porcine respiratory and reproductive syndrome virus soluble receptors by taming their Fc domains. Vet Microbiol 2022; 273:109526. [PMID: 35988378 DOI: 10.1016/j.vetmic.2022.109526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen. Although tremendous effort has been made for the vaccine development, only modified live vaccines are widely used with arguably limited efficacy. Our previous study showed that the Fc-fused first four Ig-like domains of Sn (Sn4D-Fc) and the SRCR domains 5-9 of CD163 (SRCR59-Fc) can act as PRRSV soluble receptors (VSRs). In this study, we improved the VSR-based anti-PRRSV strategy by taming their Fc domains. Sequence alignment showed that the CH3 domain of pig IgG1 contained five putative amino acids involved in the interaction with the neonatal Fc receptor (FcRn). The M455L/N461S variant of SRCR59-Fc/Sn4D-Fc was created for the higher affinity of FcRn binding. Both rBac-SRCR59-lsFc/Sn4D-lsFc and rBac-SRCR59-Fc/Sn4D-Fc expressing the mutated or wild-type VSRs were generated for conceptual validation. Both immunofluorescence and Western blotting analysis showed that the two rBac vectors could express the encoded VSRs in cells with similar expression levels and anti-PRRSV effects. In the rBac-injected mice, the expression of SRCR59-lsFc/Sn4D-lsFc was significantly prolonged than that of SRCR59-Fc/Sn4D-Fc. Both plasma stability and serum half-life of the purified SRCR59-lsFc/Sn4D-lsFc were significantly improved than that of SRCR59-Fc/Sn4D-Fc. SRCR59-lsFc/Sn4D-lsFc-treated peripheral blood mononuclear cells showed significantly stronger cytotoxicity on PRRSV-infected primary alveolar macrophages than SRCR59-Fc/Sn4D-Fc-treated cells. For the first time, we demonstrated that both half-life and effector function of pig IgG Fc-fused proteins could be significantly improved by taming their CH3 domains. The rBac-SRCR59-lsFc/Sn4D-lsFc could be further developed as a novel anti-PRRSV reagent.
Collapse
Affiliation(s)
- Xiaoming Liu
- The College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiaohui Zhou
- The College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Aziz Ullah Noor
- The College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xinyu Zhang
- The College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Chengyi Song
- The College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Huaichang Sun
- The College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
22
|
Sun Q, Xu H, Li C, Gong B, Li Z, Tian ZJ, Zhang H. Emergence of a novel PRRSV-1 strain in mainland China: A recombinant strain derived from the two commercial modified live viruses Amervac and DV. Front Vet Sci 2022; 9:974743. [PMID: 36157177 PMCID: PMC9505512 DOI: 10.3389/fvets.2022.974743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/04/2022] [Indexed: 11/27/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) is one of the main pathogens causing porcine reproductive and respiratory syndrome (PRRS). In recent years, the rate of PRRSV-1 detection in China has gradually increased, and the PRRSV-1 strains reported in China belong to subtype I (Global; Clade A-L). In the present study, a novel PRRSV-1 strain, TZJ2134, was found during epidemiological surveillance of PRRSV-1 in Shandong Province in China. We obtained two fragments of the TZJ2134 genome: TZJ2134-L12 (located at nt 1672-nt 2112 in the partial Nsp2 gene) and TZJ2134-(A+B) (located at nt 7463-nt 11272 in the partial Nsp9, complete Nsp10 and partial Nsp11 genes). Phylogenetic and recombination analyses based on the two sequences showed that TZJ2134 is a recombinant strain derived from two commercial PRRSV-1 modified live vaccine (MLV) strains (the Amervac vaccine and DV vaccine strains) that formed a new recombinant subgroup of DV+Amervac-like isolates with other strains. However, PRRSV-1 MLV is not currently allowed for use in China. This study is the first to detected recombinant PRRSV-1 MLV strain in China and provides new data for the epidemiological study of PRRSV-1 in China. The existence of the TZJ2134 strain is a reminder that the swine surveillance at the Chinese customs should be strengthened.
Collapse
Affiliation(s)
- Qi Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hu Xu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bangjun Gong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhen Li
- Pingdingshan Center for Animal Disease Control and Prevention, Pingdingshan, China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongliang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- *Correspondence: Hongliang Zhang
| |
Collapse
|
23
|
Chen R, Liu B, Zhang X, Qin M, Dong J, Gu G, Wu C, Wang J, Nan Y. A porcine reproductive and respiratory syndrome virus (PRRSV)-specific IgM as a novel adjuvant for an inactivated PRRSV vaccine improves protection efficiency and enhances cell-mediated immunity against heterologous PRRSV challenge. Vet Res 2022; 53:65. [PMID: 35986391 PMCID: PMC9389807 DOI: 10.1186/s13567-022-01082-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Current strategies for porcine reproductive and respiratory syndrome (PRRS) control are inadequate and mainly restricted to immunization using different PRRS virus (PPRSV) vaccines. Although there are no safety concerns, the poor performance of inactivated PRRSV vaccines has restricted their practical application. In this research, we employed the novel PRRSV-specific IgM monoclonal antibody (Mab)-PR5nf1 as a vaccine adjuvant for the formulation of a cocktail composed of inactivated PRRSV (KIV) and Mab-PR5nf1 along with a normal adjuvant to enhance PRRSV-KIV vaccine-mediated protection and further compared it with a normal KIV vaccine and modified live virus vaccine (MLV). After challenge with highly pathogenic (HP)-PRRSV, our results suggested that the overall survival rate (OSR) and cell-mediated immunity (CMI), as determined by serum IFN-γ quantification and IFN-γ ELISpot assay, were significantly improved by adding PRRSV-specific IgM to the PRRSV-KIV vaccine. It was also notable that both the OSR and CMI in the Mab-PR5nf1-adjuvanted KIV group were even higher than those in the MLV group, whereas the CMI response is normally poorly evoked by KIV vaccines or subunit vaccines. Compared with those in piglets immunized with the normal KIV vaccine, viral shedding and serum neutralizing antibody levels were also improved, and reduced viral shedding appeared to be a result of enhanced CMI caused by the inclusion of IgM as an adjuvant. In conclusion, our data provide not only a new formula for the development of an effective PRRSV-KIV vaccine for practical use but also a novel method for improving antigen-specific CMI induction by inactivated vaccines and subunit vaccines.
Collapse
|
24
|
You X, Lei Y, Zhang P, Xu D, Ahmed Z, Yang Y. Role of transcription factors in porcine reproductive and respiratory syndrome virus infection: A review. Front Microbiol 2022; 13:924004. [PMID: 35928151 PMCID: PMC9344050 DOI: 10.3389/fmicb.2022.924004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an infectious disease caused by the PRRS virus that leads to reproductive disorders and severe dyspnoea in pigs, which has serious economic impacts. One of the reasons PRRSV cannot be effectively controlled is that it has developed countermeasures against the host immune response, allowing it to survive and replicate for long periods. Transcription Factors acts as a bridge in the interactions between the host and PRRSV. PRRSV can create an environment conducive to PRRSV replication through transcription factors acting on miRNAs, inflammatory factors, and immune cells. Conversely, some transcription factors also inhibit PRRSV proliferation in the host. In this review, we systematically described how PRRSV uses host transcription factors such as SP1, CEBPB, STATs, and AP-1 to escape the host immune system. Determining the role of transcription factors in immune evasion and understanding the pathogenesis of PRRSV will help to develop new treatments for PRRSV.
Collapse
Affiliation(s)
- Xiangbin You
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, China
| | - Ying Lei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, China
| | - Ping Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Dequan Xu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Youbing Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, China
- *Correspondence: Youbing Yang
| |
Collapse
|
25
|
Chen D, Xu S, Jiang R, Guo Y, Yang X, Zhang Y, Zhou L, Ge X, Han J, Guo X, Yang H. IL-1β induced by PRRSV co-infection inhibited CSFV C-strain proliferation via the TLR4/NF-κB/MAPK pathways and the NLRP3 inflammasome. Vet Microbiol 2022; 273:109513. [DOI: 10.1016/j.vetmic.2022.109513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022]
|
26
|
Patience JF, Ramirez A. Invited review: strategic adoption of antibiotic-free pork production: the importance of a holistic approach. Transl Anim Sci 2022; 6:txac063. [PMID: 35854972 PMCID: PMC9278845 DOI: 10.1093/tas/txac063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/13/2022] [Indexed: 02/07/2023] Open
Abstract
The discovery of the use of antibiotics to enhance growth in the 1950s proved to be one of the most dramatic and influential in the history of animal agriculture. Antibiotics have served animal agriculture, as well as human and animal medicine, well for more than seven decades, but emerging from this tremendous success has been the phenomenon of antimicrobial resistance. Consequently, human medicine and animal agriculture are being called upon, through legislation and/or marketplace demands, to reduce or eliminate antibiotics as growth promotants and even as therapeutics. As explained in this review, adoption of antibiotic-free (ABF) pork production would represent a sea change. By identifying key areas requiring attention, the clear message of this review is that success with ABF production, also referred to as "no antibiotics ever," demands a multifaceted and multidisciplinary approach. Too frequently, the topic has been approached in a piecemeal fashion by considering only one aspect of production, such as the use of certain feed additives or the adjustment in health management. Based on the literature and on practical experience, a more holistic approach is essential. It will require the modification of diet formulations to not only provide essential nutrients and energy, but to also maximize the effectiveness of normal immunological and physiological capabilities that support good health. It must also include the selection of effective non-antibiotic feed additives along with functional ingredients that have been shown to improve the utility and architecture of the gastrointestinal tract, to improve the microbiome, and to support the immune system. This holistic approach will require refining animal management strategies, including selection for more robust genetics, greater focus on care during the particularly sensitive perinatal and post-weaning periods, and practices that minimize social and environmental stressors. A clear strategy is needed to reduce pathogen load in the barn, such as greater emphasis on hygiene and biosecurity, adoption of a strategic vaccine program and the universal adoption of all-in-all-out housing. Of course, overall health management of the herd, as well as the details of animal flows, cannot be ignored. These management areas will support the basic biology of the pig in avoiding or, where necessary, overcoming pathogen challenges without the need for antibiotics, or at least with reduced usage.
Collapse
Affiliation(s)
- John F Patience
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
- Iowa Pork Industry Center, Iowa State University, Ames, IA 50011-1178, USA
| | - Alejandro Ramirez
- College of Veterinary Medicine, University of Arizona, Oro Valley, AZ 85737, USA
| |
Collapse
|
27
|
Fang K, Liu S, Li X, Chen H, Qian P. Epidemiological and Genetic Characteristics of Porcine Reproductive and Respiratory Syndrome Virus in South China Between 2017 and 2021. Front Vet Sci 2022; 9:853044. [PMID: 35464348 PMCID: PMC9024240 DOI: 10.3389/fvets.2022.853044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/21/2022] [Indexed: 11/26/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) remains a major threat to the swine industry in China and has caused enormous losses every year. To monitor the epidemiological and genetic characteristics of PRRSV in South China, 6,795 clinical samples from diseased pigs were collected between 2017 and 2021, and 1,279 (18.82%) of them were positive for PRRSV by RT-PCR detecting the ORF5 gene. Phylogenetic analysis based on 479 ORF5 sequences revealed that a large proportion of them were highly-pathogenic PRRSVs (409, 85.39%) and PRRSV NADC30-like strains (66, 13.78%). Furthermore, 93.15% of these highly-pathogenic strains were found to be MLV-derived. We next recovered 11 PRRSV isolates from the positive samples and generated the whole genome sequences of them. Bioinformatic analysis showed that seven isolates were MLV-derived. Besides, six isolates were found to be recombinant strains. These eleven isolates contained different types of amino acid mutations in their GP5 and Nsp2 proteins compared to those of the PRRSVs with genome sequences publicly available in GenBank. Taken together, our findings contribute to understanding the prevalent status of PRRSV in South China and provide useful information for PRRS control especially the use of PRRSV MLV vaccines.
Collapse
Affiliation(s)
- Kui Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shudan Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- *Correspondence: Ping Qian
| |
Collapse
|
28
|
miR-142-3p Suppresses Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Infection by Directly Targeting Rac1. Vet Microbiol 2022; 269:109434. [DOI: 10.1016/j.vetmic.2022.109434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/23/2022] [Accepted: 04/10/2022] [Indexed: 11/20/2022]
|
29
|
Papakonstantinou G, Meletis E, Christodoulopoulos G, Tzika ED, Kostoulas P, Papatsiros VG. Heterologous Challenge with PRRSV-1 MLV in Pregnant Vaccinated Gilts: Potential Risk on Health and Immunity of Piglets. Animals (Basel) 2022; 12:ani12040450. [PMID: 35203159 PMCID: PMC8868225 DOI: 10.3390/ani12040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/25/2022] [Accepted: 02/11/2022] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Modified live virus (MLV) vaccines are considered as the key component to control the Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). The majority of pig farms apply the ‘mass’ vaccination strategy in breeding female animals. However, this PRRS MLV vaccination protocol involves the risk of inoculation of sows in the last stage of gestation, resulting in possible infection of the fetus as the virus can efficiently cross the placenta during the last period of pregnancy. Thus, we evaluated the ability of the vaccine virus to act as a pathogenic strain, to be transmitted to fetuses and to affect the health status of neonatal piglets. The results indicated that the study gilts transmitted the vaccine virus to their offspring, as well as that the PRRSV-infected piglets showed a poor clinical performance. Consequently, the pig farms that apply PRRS MLV vaccination in a routine blanket vaccination strategy must avoid inoculating pregnant gilts the last week before their parturition. Abstract The objective of the present study was to evaluate the potential risks of the four commercial PRRS-1 MLV vaccines in pregnant vaccinated gilts at the last stage of gestation under field conditions. The study was conducted at four pig farms, including 25 gilts from each farm (25 × 4 = 100 gilts), which were equally allocated to five different study groups. A PRRS-1 MLV vaccination was applied on the 100th day of their pregnancy with the different commercial vaccines that are available in the Greek market. The results indicated virus congenital infection and viremia in piglets (20/200 = 10% PRRSV infected piglets), and detection of PRRSV-specific antibodies (181/200 = 90.5% piglets found with PRRSV antibodies). The subsequent phylogenetic analyses revealed high percentages of similarity between the PRRSV-1 strain detected in infected litters and the PRRSV-1 vaccine strain to which the study gilts had been previously exposed to. Health status analyses of trial piglets resulted in differences between litters from vaccinated sows and litters from non-vaccinated sows at 110th day of gestation as regards the number of weak-born piglets, mummies, and piglets with splay-leg and/or respiratory symptoms. The current study’s results indicate several potential dangers of the PRRS MLV vaccination in late gestation.
Collapse
Affiliation(s)
- Georgios Papakonstantinou
- Clinic of Medicine, Faculty of Veterinary Medicine, School of Health Sciences, University of Thessaly, 43100 Karditsa, Greece; (G.C.); (V.G.P.)
- Correspondence:
| | - Eleftherios Meletis
- Laboratory of Epidemiology & Artificial Intelligence, Faculty of Public Health, School of Health Sciences, University of Thessaly, 43100 Karditsa, Greece; (E.M.); (P.K.)
| | - Georgios Christodoulopoulos
- Clinic of Medicine, Faculty of Veterinary Medicine, School of Health Sciences, University of Thessaly, 43100 Karditsa, Greece; (G.C.); (V.G.P.)
| | - Eleni D. Tzika
- Farm Animals Clinic, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece;
| | - Polychronis Kostoulas
- Laboratory of Epidemiology & Artificial Intelligence, Faculty of Public Health, School of Health Sciences, University of Thessaly, 43100 Karditsa, Greece; (E.M.); (P.K.)
| | - Vasileios G. Papatsiros
- Clinic of Medicine, Faculty of Veterinary Medicine, School of Health Sciences, University of Thessaly, 43100 Karditsa, Greece; (G.C.); (V.G.P.)
| |
Collapse
|
30
|
Li C, Liu Z, Chen K, Qian J, Hu Y, Fang S, Sun Z, Zhang C, Huang L, Zhang J, Huang N. Efficacy of the Synergy Between Live-Attenuated and Inactivated PRRSV Vaccines Against a NADC30-Like Strain of Porcine Reproductive and Respiratory Syndrome Virus in 4-Week Piglets. Front Vet Sci 2022; 9:812040. [PMID: 35187144 PMCID: PMC8847452 DOI: 10.3389/fvets.2022.812040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/10/2022] [Indexed: 01/14/2023] Open
Abstract
The NADC30-like strain of porcine reproductive and respiratory syndrome virus (PRRSV) is a novel strain responsible for substantial economic losses to swine production in China. This study evaluated the cross-protective efficacy of the synergy between live-attenuated and inactivated PRRSV vaccines compared with a single vaccination with PRRS modified-live virus (MLV) vaccine against challenge with NADC30-like strain, v2016/ZJ/09-03. A total of 45 PRRSV free pigs were randomly divided into five groups: (1) strict control (SC); (2) positive control (PC); (3) single MLV dose (M1); (4) primed intramuscularly with MLV and boosted with killed vaccine 3 weeks later (MK1); and (5) intramuscular prime MLV boosted subcutaneously with killed vaccine B 3 weeks later (MK2). Serological tests in MK groups revealed no differences in both anti-N and anti-GP protein antibodies compared with M1 group, and failed to provide further protection against clinical signs, virus shedding, and gross lesions. However, the viremic titer, gross lung lesions, and average daily weight gain were significantly improved in the MLV vaccinated groups, suggesting that MLV provides substantial cross-protection against the NADC30-like virus. Thus, as a booster, the killed vaccine confers minimal additional protection in NADC30-like infected piglets.
Collapse
Affiliation(s)
- Chaosi Li
- Boehringer Ingelheim Animal Health (Shanghai) Co. Ltd., Shanghai, China
| | - Zhicheng Liu
- Maoming Branch Center of Guangdong Laboratory for LingNan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kai Chen
- Boehringer Ingelheim Animal Health (Shanghai) Co. Ltd., Shanghai, China
| | - Jie Qian
- Boehringer Ingelheim Animal Health (Shanghai) Co. Ltd., Shanghai, China
| | - Yulong Hu
- Boehringer Ingelheim Animal Health (Shanghai) Co. Ltd., Shanghai, China
| | - Shuhe Fang
- Boehringer Ingelheim Animal Health (Shanghai) Co. Ltd., Shanghai, China
| | - Zhi Sun
- Asian Veterinary Research and Development Center, Boehringer Ingelheim (China) Investment Co., Ltd., Shanghai, China
| | - Chunhong Zhang
- Maoming Branch Center of Guangdong Laboratory for LingNan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lv Huang
- Boehringer Ingelheim Animal Health (Shanghai) Co. Ltd., Shanghai, China
| | - Jianfeng Zhang
- Maoming Branch Center of Guangdong Laboratory for LingNan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Nian Huang
- Boehringer Ingelheim Animal Health (Shanghai) Co. Ltd., Shanghai, China
| |
Collapse
|
31
|
Ruedas-Torres I, Gómez-Laguna J, Sánchez-Carvajal JM, Larenas-Muñoz F, Barranco I, Pallarés FJ, Carrasco L, Rodríguez-Gómez IM. Activation of T-bet, FOXP3, and EOMES in Target Organs From Piglets Infected With the Virulent PRRSV-1 Lena Strain. Front Immunol 2021; 12:773146. [PMID: 34956200 PMCID: PMC8697429 DOI: 10.3389/fimmu.2021.773146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/08/2021] [Indexed: 01/13/2023] Open
Abstract
Transcription factors (TFs) modulate genes involved in cell-type-specific proliferative and migratory properties, metabolic features, and effector functions. Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogen agents in the porcine industry; however, TFs have been poorly studied during the course of this disease. Therefore, we aimed to evaluate the expressions of the TFs T-bet, GATA3, FOXP3, and Eomesodermin (EOMES) in target organs (the lung, tracheobronchial lymph node, and thymus) and those of different effector cytokines (IFNG, TNFA, and IL10) and the Fas ligand (FASL) during the early phase of infection with PRRSV-1 strains of different virulence. Target organs from mock-, virulent Lena-, and low virulent 3249-infected animals humanely euthanized at 1, 3, 6, 8, and 13 days post-infection (dpi) were collected to analyze the PRRSV viral load, histopathological lesions, and relative quantification through reverse transcription quantitative PCR (RT-qPCR) of the TFs and cytokines. Animals belonging to both infected groups, but mainly those infected with the virulent Lena strain, showed upregulation of the TFs T-bet, EOMES, and FOXP3, together with an increase of the cytokine IFN-γ in target organs at the end of the study (approximately 2 weeks post-infection). These results are suggestive of a stronger polarization to Th1 cells and regulatory T cells (Tregs), but also CD4+ cytotoxic T lymphocytes (CTLs), effector CD8+ T cells, and γδT cells in virulent PRRSV-1-infected animals; however, their biological functionality should be the object of further studies.
Collapse
|
32
|
Time-series transcriptomic analysis of bronchoalveolar lavage cells from virulent and low virulent PRRSV-1-infected piglets. J Virol 2021; 96:e0114021. [PMID: 34851149 PMCID: PMC8826917 DOI: 10.1128/jvi.01140-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has evolved to escape the immune surveillance for a survival advantage leading to a strong modulation of host’s immune responses and favoring secondary bacterial infections. However, limited data are available on how the immunological and transcriptional responses elicited by virulent and low-virulent PRRSV-1 strains are comparable and how they are conserved during the infection. To explore the kinetic transcriptional signature associated with the modulation of host immune response at lung level, a time-series transcriptomic analysis was performed in bronchoalveolar lavage cells upon experimental in vivo infection with two PRRSV-1 strains of different virulence, virulent subtype 3 Lena strain or the low-virulent subtype 1 3249 strain. The time-series analysis revealed overlapping patterns of dysregulated genes enriched in T-cell signaling pathways among both virulent and low-virulent strains, highlighting an upregulation of co-stimulatory and co-inhibitory immune checkpoints that were disclosed as Hub genes. On the other hand, virulent Lena infection induced an early and more marked “negative regulation of immune system process” with an overexpression of co-inhibitory receptors genes related to T-cell and NK cell functions, in association with more severe lung lesion, lung viral load, and BAL cell kinetics. These results underline a complex network of molecular mechanisms governing PRRSV-1 immunopathogenesis at lung level, revealing a pivotal role of co-inhibitory and co-stimulatory immune checkpoints in the pulmonary disease, which may have an impact on T-cell activation and related pathways. These immune checkpoints, together with the regulation of cytokine-signaling pathways, modulated in a virulence-dependent fashion, orchestrate an interplay among pro- and anti-inflammatory responses. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the major threats to swine health and global production, causing substantial economic losses. We explore the mechanisms involved in the modulation of host immune response at lung level performing a time-series transcriptomic analysis upon experimental infection with two PRRSV-1 strains of different virulence. A complex network of molecular mechanisms was revealed to control the immunopathogenesis of PRRSV-1 infection, highlighting an interplay among pro- and anti-inflammatory responses as a potential mechanism to restrict inflammation-induced lung injury. Moreover, a pivotal role of co-inhibitory and co-stimulatory immune checkpoints was evidenced, which may lead to progressive dysfunction of T cells, impairing viral clearance and leading to persistent infection, favoring as well secondary bacterial infections or viral rebound. However, further studies should be conducted to evaluate the functional role of immune checkpoints in advanced stages of PRRSV infection and explore a possible T-cell exhaustion state.
Collapse
|
33
|
Pasternak JA, MacPhee DJ, Lunney JK, Rowland RRR, Dyck MK, Fortin F, Dekkers JCM, Plastow GS, Harding JCS. Thyroid hormone suppression in feeder pigs following polymicrobial or porcine reproductive and respiratory syndrome virus-2 challenge. J Anim Sci 2021; 99:6420436. [PMID: 34734242 DOI: 10.1093/jas/skab325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2021] [Indexed: 01/18/2023] Open
Abstract
Thyroid hormones are powerful regulators of growth, development, and basal metabolic rate and can be dysregulated under conditions of severe stress or illness. To understand the role of these hormones in porcine disease response, serum samples were obtained from three batches of nursery-aged pigs (n = 208) exposed to a natural polymicrobial disease challenge with an array of bacterial and viral pathogens. Levels of total thyroxin (T4) and triiodothyronine (T3) assessed in sera by radioimmunoassay, decreased significantly by 14 days post-exposure (DPE). Levels of T3 partially rebounded by 48 DPE, while T4 levels remain depressed. Post-exposure T3 and T4 levels were positively correlated with acute and long-term average daily gain (ADG). Cross-sectional sampling of animals maintained at the high health source farms, showed no equivalent change in either hormone when managed under standard industrial conditions. To further elucidate the effect of porcine reproductive and respiratory syndrome virus (PRRSV)-infection on thyroid hormone levels, archived sera over 42 days post inoculation (DPI) from nursery pigs (N = 190) challenged with one of two PRRSV2 strains by the PRRS Host Genetics Consortium were similarly assessed, with animals selected in a two-by-two design, to investigate biological extremes in ADG and viral load (VL). All animals showed a similar decrease in both thyroid hormones reaching a minimum at 7 DPI and returning to near pre-challenge levels by 42 DPI. Post-challenge T3 and T4 levels were significantly greater in high ADG groups, with no significant association with VL or strain. The results of this study demonstrate porcine susceptibility to thyroid disruption in response to disease challenge and demonstrate a relationship between this response and growth performance.
Collapse
Affiliation(s)
- J Alex Pasternak
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Daniel J MacPhee
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | | | - Raymond R R Rowland
- College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| | - Michael K Dyck
- Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Frédéric Fortin
- Centre de développement du porc du Québec Inc., Québec City, QC G1V 4M6, Canada
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Graham S Plastow
- Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - John C S Harding
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | | |
Collapse
|
34
|
Zhang Q, Yang F, Gao J, Zhang W, Xu X. Development of multiplex TaqMan qPCR for simultaneous detection and differentiation of eight common swine viral and bacterial pathogens. Braz J Microbiol 2021; 53:359-368. [PMID: 34709596 DOI: 10.1007/s42770-021-00633-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 10/17/2021] [Indexed: 11/24/2022] Open
Abstract
It is laborious to diagnose the infections of classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus type 2 (PCV2), and Suid herpesvirus 1 (SuHV-1) because of the similar clinical symptoms in piglets. Staphylococcus aureus (S. aureus), Streptococcus suis (S. suis), Salmonella choleraesuis (S. choleraesuis, serotype: 6,7:c:1,5), and Escherichia coli (E. coli) are common secondary bacterial pathogens in viral infections. Furthermore, the mixed infection of these viral and bacterial pathogens is more and more common in practical swine breeding. Therefore, a TaqMan multiplex qPCR method for simultaneous detection and differentiation of their pathogen was established in this study by designing specific primers and probes for the E2 gene of CSFV, the ORF7 gene of PRRSV, the ORF1 gene of PCV2 and the gE gene of SuHV-1, the nuc gene of S. aureus, the ef-tu gene of S. suis, the ivnA gene of S. choleraesuis, and the 23S rRNA gene of E. coli, and its specificity, sensitivity, and reproducibility were subsequently tested. The results showed that TaqMan multiplex qPCR method showed a high specificity with no cross reaction between different viruses, and a good repeatability with its coefficient of variation lower than 5%. Besides, the sensitivity of this method was also at least 10 times higher compared with conventional PCR. Overall, this study provided a reliable multiplex TaqMan qPCR method for the diagnosis and differentiation of the mentioned pathogens in pigs, laying a certain technical basis for disease prevention and control.
Collapse
Affiliation(s)
- Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Feng Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
35
|
Successive Inoculations of Pigs with Porcine Reproductive and Respiratory Syndrome Virus 1 (PRRSV-1) and Swine H1N2 Influenza Virus Suggest a Mutual Interference between the Two Viral Infections. Viruses 2021; 13:v13112169. [PMID: 34834975 PMCID: PMC8625072 DOI: 10.3390/v13112169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/03/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza A virus (swIAV) are major pathogens of the porcine respiratory disease complex, but little is known on their interaction in super-infected pigs. In this study, we investigated clinical, virological and immunological outcomes of successive infections with PRRSV-1 and H1N2 swIAV. Twenty-four specific pathogen-free piglets were distributed into four groups and inoculated either with PRRSV at study day (SD) 0, or with swIAV at SD8, or with PRRSV and swIAV one week apart at SD0 and SD8, respectively, or mock-inoculated. In PRRSV/swIAV group, the clinical signs usually observed after swIAV infection were attenuated while higher levels of anti-swIAV antibodies were measured in lungs. Concurrently, PRRSV multiplication in lungs was significantly affected by swIAV infection, whereas the cell-mediated immune response specific to PRRSV was detected earlier in blood, as compared to PRRSV group. Moreover, levels of interferon (IFN)-α measured from SD9 in the blood of super-infected pigs were lower than those measured in the swIAV group, but higher than in the PRRSV group at the same time. Correlation analyses suggested an important role of IFN-α in the two-way interference highlighted between both viral infections.
Collapse
|
36
|
Zhang F, Chen S, Yang T, Ao H, Zhai L, Li Q, Xing K, Liu Y, Liu H, Yu Y, Wang C. Novel DNA methylation markers of PRRSV-specific antibodies and their intergenerational transmission from pregnant sows to piglets. Gene 2021; 801:145831. [PMID: 34274485 DOI: 10.1016/j.gene.2021.145831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 01/11/2023]
Abstract
The main strategy for preventing porcine reproductive and respiratory syndrome (PRRS) is vaccination. However, current commercial porcine reproductive and respiratory syndrome virus (PRRSV) vaccines have limited effectiveness and may even cause infections in pigs. The identification of stable molecular markers associated with immune responses to PRRSV vaccination in pigs provides a new approach for PRRS prevention. DNA methylation, the most stable epigenetic molecular marker related to PRRSV vaccination, has not been investigated. In the current research, we used whole genome bisulfite sequencing (WGBS) to investigate DNA methylation in pregnant sows that received PRRSV vaccination and their piglets with high and low PRRSV-specific antibody levels. By performing methylation data analysis and basing on our previous transcriptomic studies, we identified several differentially methylated genes (DMGs) that are involved in the pathways of inflammatory and immune responses. Among the DMGs, ISG15, MX1, SERPINE1, GNG11 and IFIT3 were common hub genes in the two generations. MX1 and GNG11 were located in quantitative trait loci related with PRRSV antibody titer and PRRSV susceptibility, respectively. These results suggest that PRRSV vaccination in sows induces DNA methylation changes in genes and DNA methylation changes occur through intergenerational transmission. The novel DNA methylation markers and target genes observed in our study provide new insights into the molecular mechanisms of immune responses to PRRSV vaccination across two pig generations.
Collapse
Affiliation(s)
- Fengxia Zhang
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China; Innovation Team of Pig Health Breeding, Institute of Animal Husbandry and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Siqian Chen
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Ting Yang
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Hong Ao
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liwei Zhai
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Qianjun Li
- Innovation Team of Pig Health Breeding, Institute of Animal Husbandry and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yibing Liu
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Huatao Liu
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Ying Yu
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China.
| | - Chuduan Wang
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China.
| |
Collapse
|
37
|
Guzmán M, Meléndez R, Jiménez C, Piche M, Jiménez E, León B, Cordero JM, Ramirez-Carvajal L, Uribe A, Van Nes A, Stegeman A, Romero JJ. Analysis of ORF5 sequences of Porcine Reproductive and Respiratory Syndrome virus (PRRSV) circulating within swine farms in Costa Rica. BMC Vet Res 2021; 17:217. [PMID: 34118903 PMCID: PMC8196928 DOI: 10.1186/s12917-021-02925-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/04/2021] [Indexed: 11/30/2022] Open
Abstract
Background Worldwide, Porcine Reproductive and Respiratory Syndrome (PRRS) is among the diseases that cause the highest economic impact in modern pig production. PRRS was first detected in Costa Rica in 1996 and has since then severely affected the local swine industry. Studies of the molecular characterization of circulating strains, correlation with clinical records, and associations with pathogens associated with Porcine Respiratory Disease Complex (PRDC) have not been done in Costa Rica. Results Sequencing and phylogenetic analysis of ORF5 proved that PRRSV-2 was the only species detected in all locations analyzed. These sequences were grouped into three clusters. When comparing samples from San Jose, Alejuela, and Puntarenas to historical isolates of the previously described lineages (1 to 9), it has been shown that these were closely related to each other and belonged to Lineage 5, along with the samples from Heredia. Intriguingly, samples from Cartago clustered in a separate clade, phylogenetically related to Lineage 1. Epitope analysis conducted on the GP5 sequence of field isolates from Costa Rica revealed seven peptides with at least 80% amino acid sequence identity with previously described and experimentally validated immunogenic regions. Previously described epitopes A, B, and C, were detected in the Santa Barbara-Heredia isolate. Conclusions Our data suggest that the virus has three distinct origins or introductions to the country. Future studies will elucidate how recently introduced vaccines will shape the evolutionary change of circulating field strains. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02925-7.
Collapse
Affiliation(s)
- Mónica Guzmán
- Department of Veterinary Diagnostics (DDV), Veterinary Services National Laboratories (LANASEVE), Animal Health National Service (SENASA), Ministry of Livestock and Agriculture (MAG), Heredia, Costa Rica
| | - Ronald Meléndez
- Department of Population Health Sciences, University of Utrecht, Utrecht, The Netherlands. .,Consultoría Regional de Investigación en Producción Animal Sostenible (CRIPAS), School of Veterinary Medicine (EMV), Universidad Nacional (UNA), Heredia, Costa Rica.
| | - Carlos Jiménez
- Department of Virology, School of Veterinary Medicine (EMV), Universidad Nacional (UNA), Heredia, Costa Rica
| | - Marta Piche
- Department of Virology, School of Veterinary Medicine (EMV), Universidad Nacional (UNA), Heredia, Costa Rica
| | | | - Bernal León
- Department of Veterinary Diagnostics (DDV), Veterinary Services National Laboratories (LANASEVE), Animal Health National Service (SENASA), Ministry of Livestock and Agriculture (MAG), Heredia, Costa Rica
| | - Juan M Cordero
- Department of Veterinary Diagnostics (DDV), Veterinary Services National Laboratories (LANASEVE), Animal Health National Service (SENASA), Ministry of Livestock and Agriculture (MAG), Heredia, Costa Rica
| | - Lisbeth Ramirez-Carvajal
- Department of Veterinary Diagnostics (DDV), Veterinary Services National Laboratories (LANASEVE), Animal Health National Service (SENASA), Ministry of Livestock and Agriculture (MAG), Heredia, Costa Rica.
| | | | - Arie Van Nes
- Department of Population Health Sciences, University of Utrecht, Utrecht, The Netherlands.
| | - Arjan Stegeman
- Department of Population Health Sciences, University of Utrecht, Utrecht, The Netherlands
| | - Juan José Romero
- Consultoría Regional de Investigación en Producción Animal Sostenible (CRIPAS), School of Veterinary Medicine (EMV), Universidad Nacional (UNA), Heredia, Costa Rica
| |
Collapse
|
38
|
Ruedas-Torres I, Rodríguez-Gómez IM, Sánchez-Carvajal JM, Guil-Luna S, Larenas-Muñoz F, Pallarés FJ, Carrasco L, Gómez-Laguna J. Up-Regulation of Immune Checkpoints in the Thymus of PRRSV-1-Infected Piglets in a Virulence-Dependent Fashion. Front Immunol 2021; 12:671743. [PMID: 34046040 PMCID: PMC8144631 DOI: 10.3389/fimmu.2021.671743] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/15/2021] [Indexed: 12/19/2022] Open
Abstract
Virulent porcine reproductive and respiratory syndrome virus (PRRSV) strains, such as the Lena strain, have demonstrated a higher thymus tropism than low virulent strains. Virulent PRRSV strains lead to severe thymus atrophy, which could be related to marked immune dysregulation. Impairment of T-cell functions through immune checkpoints has been postulated as a strategy executed by PRRSV to subvert the immune response, however, its role in the thymus, a primary lymphoid organ, has not been studied yet. Therefore, the goal of this study was to evaluate the expression of selected immune checkpoints (PD1/PDL1, CTLA4, TIM3, LAG3, CD200R1 and IDO1) in the thymus of piglets infected with two different PRRSV-1 strains. Thymus samples from piglets infected with the low virulent 3249 strain, the virulent Lena strain and mock-infected were collected at 1, 3, 6, 8 and 13 days post-infection (dpi) to analyze PRRSV viral load, relative quantification and immunohistochemical staining of immune checkpoints. PD1/PDL1, CTLA4, TIM3, LAG3 and IDO1 immune checkpoints were significantly up-regulated in the thymus of PRRSV infected piglets, especially in those infected with the virulent Lena strain from 6 dpi onwards. This up-regulation was associated with disease progression, high viral load and cell death. Co-expression of these molecules can affect T-cell development, maturation and selection, negatively regulating the host immune response against PRRSV.
Collapse
Affiliation(s)
- Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology and Toxicology, International Agrifood Campus of Excellence (ceiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Irene M Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology and Toxicology, International Agrifood Campus of Excellence (ceiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - José María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, International Agrifood Campus of Excellence (ceiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Silvia Guil-Luna
- Maimónides Institute for Biomedical Research of Córdoba, IMIBIC, Córdoba, Spain
| | - Fernanda Larenas-Muñoz
- Department of Anatomy and Comparative Pathology and Toxicology, International Agrifood Campus of Excellence (ceiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Francisco J Pallarés
- Department of Anatomy and Comparative Pathology and Toxicology, International Agrifood Campus of Excellence (ceiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology and Toxicology, International Agrifood Campus of Excellence (ceiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, International Agrifood Campus of Excellence (ceiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| |
Collapse
|
39
|
Zhou X, Ge X, Zhang Y, Han J, Guo X, Chen Y, Zhou L, Yang H. Attenuation of porcine deltacoronavirus disease severity by porcine reproductive and respiratory syndrome virus coinfection in a weaning pig model. Virulence 2021; 12:1011-1021. [PMID: 33797313 PMCID: PMC8023240 DOI: 10.1080/21505594.2021.1908742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) is a potentially emerging zoonotic pathogen that causes severe diarrhea in young pigs, with a risk of fatal dehydration. Its pathogenicity on neonatal piglet has been previously reported, however, it is less known if the coinfection with immunosuppressive pathogens can influence PDCoV disease manifestation. Here, a coinfection model of PDCoV and porcine reproductive and respiratory syndrome virus (PRRSV), a global-spread immunosuppressive virus, was set to study their interaction. Weaning pigs in the coinfection group were intranasally inoculated with PRRSV NADC30-like virus and latterly orally inoculated with PDCoV at three day-post-inoculation (DPI). Unexpectedly, compared with pigs in the PDCoV single-infected group, the coinfected pigs did not show any obvious diarrhea, as PDCoV fecal shedding, average daily weight gain (ADWG), gross and microscopic lesions and PDCoV IHC scores consistently indicated that PRRSV coinfection lessened PDCoV caused diarrhea. Additionally, three proinflammatory cytokines TNF-α, IL-1 and IL-6, which can be secreted by PRRSV infected macrophages, were detected to be highly expressed at the intestine from both PRRSV infected groups. By adding to PDCoV-infected cells, these three cytokines were further confirmed to be able to inhibit the PDCoV replication post its cellular entry. Meanwhile, the inhibition effect of the supernatant from PRRSV-infected PAMs could be obviously blocked by the antagonist of these three cytokines. In conclusion, PRRSV coinfection increased TNF-α, IL-1, and IL-6 in the microenvironment of intestines, which inhibits the PDCoV proliferation, leading to lessened severity of diarrhea. The findings provide some new insight into the pathogenesis and replication regulation of PDCoV.
Collapse
Affiliation(s)
- Xinrong Zhou
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Yongning Zhang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Yanhong Chen
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
40
|
Wei Y, Zeng S, Zou C, Zhang H, Peng O, Xue C, Cao Y. Porcine TRIM21 RING-finger E3 ubiquitin ligase is essential for anti-PRRSV activity. Vet Microbiol 2021; 256:109043. [PMID: 33780804 DOI: 10.1016/j.vetmic.2021.109043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/19/2021] [Indexed: 12/15/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) causes substantial economic losses to the global pig industry. Members of the tripartite motif (TRIM) family are the important effectors of the innate immune response against viral infections. We have previously characterized the entire porcine TRIM (pTRIM) family, and predicted pTRIM5, 14, 21, 25 and 38 as host restriction factors against PRRSV infection. However, little is known about whether and how pTRIMs restrict the infection of PRRSV. In this study, we firstly performed the amino acid alignments of the RING domain of pTRIM5, 21, 25 and 38, and found that pTRIM proteins contained the characteristic consensus C3HC4 type zinc-binding motif which is important for the ubiquitination function. Then we detected the mRNA changes of pTRIMs in porcine alveolar macrophages (PAMs) by transcriptome sequencing after PRRSV infection in piglets. Transcriptional profiles showed that the expression of pTRIM5, 21 and 26 was significantly (P < 0.05) up-regulated, consistent with their expression in vitro. Finally, as the most up-regulated gene after PRRSV infection both in vivo and in vitro, pTRIM21 was investigated for its anti-PRRSV activity in immortalized PAMs (iPAMs) in two aspects: knockdown and overexpression of pTRIM21. Knockdown of endogenic pTRIM21 could significantly promote PRRSV replication at 12 and 24 h post infection in iPAMs. Meanwhile, overexpression of pTRIM21 could significantly suppress PRRSV replication but not affect its attachment and endocytosis. Moreover, pTRIM21 RING-finger E3 ubiquitin ligase was essential for anti-PRRSV activity. Our data enhance our understanding of the pTRIMs against PRRSV infection, which may help us develop novel therapeutic tools to control PRRSV.
Collapse
Affiliation(s)
- Ying Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| | - Siying Zeng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chuangchao Zou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ouyang Peng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
41
|
Kick AR, Amaral AF, Frias-De-Diego A, Cortes LM, Fogle JE, Crisci E, Almond GW, Käser T. The Local and Systemic Humoral Immune Response Against Homologous and Heterologous Strains of the Type 2 Porcine Reproductive and Respiratory Syndrome Virus. Front Immunol 2021; 12:637613. [PMID: 33767705 PMCID: PMC7985350 DOI: 10.3389/fimmu.2021.637613] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The humoral immune response plays a crucial role in the combat and protection against many pathogens including the economically most important, highly prevalent, and diverse pig pathogen PRRSV – the Porcine Reproductive and Respiratory Syndrome Virus. In addition to viremia and viral shedding analyses, this study followed the local and systemic humoral immune response of pigs for 63 days upon inoculation with one of three types of Type-2 PRRSV (PRRSV-2) strains – one modified live virus (MLV) vaccine strain, and two lineage 1 PRRSV-2 strains, NC134 and NC174. The local response was analyzed by quantifying immunoglobulin (Ig)A in nasal swabs. The systemic response was studied by the quantification of IgG with ELISA and homo- and heterologous neutralizing antibodies (NAs) utilizing a novel method of flow cytometry. In all PRRSV-2 inoculated groups, viral nasal shedding started at 3 dpi, peaked between 3 and 7 days post inoculation, and was cleared at 28–35 dpi with sporadic rebounds thereafter. The local IgA response started 4–7 days after viral shedding occurred and showed a bi-phasic course with peaks at 14 dpi and at 28–35 dpi. Of note, the NC134 and NC174 strains induced a much stronger local IgA response. As reported earlier, main viremia lasted from 7 dpi to 28 dpi (NC174), 42 dpi (NC134) or until the end of the study (MLV). Similar to the local IgA response, the systemic IgG response started 4–7 days after viremia; but in contrast to viremia, serum IgG levels stayed high for all PRRSV-2 inoculated groups until the end of the study. A significant finding was that while the serum NA response in the MLV group was delayed by 28 days, serum NAs in pigs infected with our two NC134 and NC174 strains could be detected as early as 7 dpi (NC134) and 14 dpi (NC174). Compared to homologous NA responses, the NA responses against heterologous strains was strong but slightly delayed between our lineage 1 one strains or non-existent between the MLV and lineage 1 strains. This study improves our understanding of the relationship between local and systemic infections and the humoral immune response induced by PRRSV-2 infection or MLV vaccination. Our data also provide novel insights into the timeline of the development of homologous and heterologous NA levels – by both MLV vaccination or infection with two strains from the currently prevalent PRRSV-2 lineage 1.
Collapse
Affiliation(s)
- Andrew R Kick
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Amanda F Amaral
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Alba Frias-De-Diego
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Lizette M Cortes
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Jonathan E Fogle
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Elisa Crisci
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Glen W Almond
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
42
|
Zhong Z, Zhu X, Tang Q, Hong L, Gu Y, He Z, Tao X, Yang X, Liang Y, Shen L, Tan Y, Zeng K, Ying S, Yang Y, Lei Y, Wang Y, Gong J, Chen X, Zhou R, Zhu L, Lv X. Temporal microRNA expression profile of pig peripheral blood during postnatal development. Anim Biotechnol 2021; 33:680-689. [PMID: 33455520 DOI: 10.1080/10495398.2020.1824920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Gene expression profiles of blood can reflect the physiopathologic status of the immune system. The dynamic microRNA (miRNA) expression profiles of peripheral blood from pigs at different developmental stages, and how differential expression of miRNAs might relate to immune system development, are unknown. In this study, peripheral blood samples taken at five developmental stages were used to construct 15 miRNA libraries (three biological replicates/stage): 0 days (newborn), 30 days (weaning), 60 days (weaned), and 180 and 360 days (puberty). We identified 295 known mature miRNAs. Hierarchical clustering of the miRNA expression profile showed significant differences between individuals at the neonatal and postnatal stages. Functional enrichment analysis revealed that miRNAs differentially expressed between pairwise comparisons of the developmental stages were over-represented in immune-related pathways such as toll-like receptor signaling. The time-course of expression of the over-representated miRNAs exhibited a pattern of steady decline over time, for both the complete miRNA compendium and immune-related miRNAs. We identified six marker miRNAs that were highly negatively correlated with chronologic age and enriched for genes involved in immune-related pathways. This study of a peripheral blood miRNA transcriptome offers insight into immune system development in swine and provides a resource for pig genome annotation.
Collapse
Affiliation(s)
- Zhijun Zhong
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Xingxing Zhu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liang Hong
- Sichuan Animtech Feed Corporation Limited, Chengdu, China
| | - Yiren Gu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Zhiping He
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Xuan Tao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Xuemei Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Yan Liang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Linyuan Shen
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ya Tan
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.,Guizhou Academy of Agricultural Science, Institute of Animal Husbandry and Veterinary Medicine, Guiyang, China
| | - Kai Zeng
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Sancheng Ying
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Yuekui Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Yunfeng Lei
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Yan Wang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Jianjun Gong
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Xiaohui Chen
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Rui Zhou
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Zhu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xuebin Lv
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| |
Collapse
|
43
|
Liu X, Xia W, Zhang X, Xia X, Sun H. Fusion expression of the two soluble viral receptors of porcine reproductive and respiratory syndrome virus with a single adeno-associated virus vector. Res Vet Sci 2021; 135:78-84. [PMID: 33453552 DOI: 10.1016/j.rvsc.2020.12.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 01/14/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important pathogen affecting global swine industry. Our recent study has shown that the first four Ig-like domains of sialoadhesin (Sn4D) and the scavenger receptor cysteine-rich domains 5-9 (SRCR59) of CD163 can act as the soluble viral receptors (SVRs) of PRRSV. Co-injection with the two SVR-expressing recombinant adenovirus (rAd) vectors can protect pigs from the lethal challenge with three PRRSV strains. However, the in vivo expression of the two SVRs persists for only two weeks and thus their long-term anti-PRRSV effects remain to be improved. In this study, we fused the two SVRs with a flexible linker or self-cleaving peptide and expressed them with a single recombinant adeno-associated virus (rAAV) vector. The two rAAVs, namely rAAV-Sn4D-SRCR59-Fc and rAAV-SRCR59-Fc/Sn4D-Fc, were generated by using baculovirus-insect cell system. Western blotting analysis showed that the two SVR fusions were efficiently expressed in and secreted from the rAAV-transduced cells. Viral infection blocking assay showed that PRRSV titers in porcine alveolar macrophage (PAM) cells were reduced by 1.6-2.7 log10 after co-cultivation with rAAV-Sn4D-SRCR59-Fc-transduced cells or by 1.9-3.2 log10 after co-cultivation with rAAV-SRCR59-Fc/Sn4D-Fc-transduced cells. After single-dose injection of mice with the rAAV vectors, the expression of two SVR fusions persisted for at least 35 days, which was significantly longer than SRCR59-Fc expression in rAd-SRCR59-Fc-injected mice. Among the two SVR fusions expressed, both expression level and anti-PRRSV activity of SRCR59-Fc/Sn4D-Fc were higher than that of Sn4D-SRCR59-Fc. Therefore, rAAV-SRCR59-Fc/Sn4D-Fc generated can be developed as a novel anti-PRRSV reagent.
Collapse
Affiliation(s)
- Xiaoming Liu
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Wenlong Xia
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, PR China
| | - Xinyu Zhang
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaoli Xia
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Huaichang Sun
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, PR China.
| |
Collapse
|
44
|
Dai G, Huang M, Fung TS, Liu DX. Research progress in the development of porcine reproductive and respiratory syndrome virus as a viral vector for foreign gene expression and delivery. Expert Rev Vaccines 2020; 19:1041-1051. [PMID: 33251856 DOI: 10.1080/14760584.2020.1857737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Porcine reproductive and respiratory syndrome (PRRS) is an infectious disease of swine characterized by respiratory disorders in growing and finishing pigs and reproductive failure in pregnant sows. PRRSV has been recognized as one of the most economically significant pathogens affecting the global pig industry. AREAS COVERED Currently, commercially available vaccines, including traditional killed virus (KV) vaccines and modified live virus (MLV) vaccines, are the cardinal approaches to prevent and control porcine reproductive and respiratory syndrome virus (PRRSV) infection. However, the protective efficacy of these vaccines is not satisfactory, resulting in the continuous evolution and recurrent appearance of the virus as well as the emergence of new variants. A safe and effective vaccine against PRRSV is in dire need. Here, we review the research progress in recent years in the development and use of PRRSV as a viral vector to express foreign genes, and their potential application in gene delivery and vaccine development. EXPERT OPINION The potential of using PRRSV-based vectors to express multiple antigens would be particularly instrumental for the development of a new generation of multivalent vaccines against PRRSV and other porcine viruses.
Collapse
Affiliation(s)
- Guo Dai
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control and Integrative Microbiol , Guangzhou, Guangdong, People's Republic of China
| | - Mei Huang
- Zhaoqing Institute of Biotechnology Co., Ltd ., Zhaoqing, Guangdong, People's Republic of China
| | - To Sing Fung
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control and Integrative Microbiol , Guangzhou, Guangdong, People's Republic of China
| | - Ding Xiang Liu
- Guangdong Province Key Laboratory of Microbial Signals & Disease Control and Integrative Microbiol , Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
45
|
Seid U, Dawo F, Tesfaye A, Ahmednur M. Isolation and Characterization of Coronavirus and Rotavirus Associated with Calves in Central Part of Oromia, Ethiopia. Vet Med Int 2020; 2020:8869970. [PMID: 33335702 PMCID: PMC7723472 DOI: 10.1155/2020/8869970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/23/2020] [Accepted: 08/01/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Coronavirus and rotavirus are most commonly associated etiologies for calves' diarrhoea, resulting in loss of productivity and economy of farmers. However, various facets of diarrheal disease caused by coronavirus and rotavirus in calves in Ethiopia are inadequately understood. A cross-sectional study was conducted with the aim of isolation and molecular characterization of coronavirus and rotavirus from calves in the central part of Oromia (Bishoftu, Sebata, Holeta, and Addis Ababa), Ethiopia, from November 2018 to May 2019. The four study areas were purposively selected and faecal samples were collected by simple random sampling for diagnosis of coronavirus and rotavirus infection by using the antigen detection enzyme-linked immunosorbent assay (Ag-ELISA) kit. In addition, this study was carried out to have insight in prevalence and associated risk factors of coronavirus and rotavirus infection in calves. RESULT During the study, 83 diarrheic and 162 nondiarrheic faecal samples collected from calves less than 4 weeks of age were screened for coronavirus and rotavirus. Of the 83 diarrheic samples, 1 sample (1.2%) was positive for coronavirus antigen and 6 samples (7.2%) were found to be positive for rotavirus antigen by Ag-ELISA. All the nondiarrheic samples were negative for both coronavirus and rotavirus Ag. The overall prevalence of coronavirus and rotavirus infection in calves was estimated at 0.4% (1/245) and 2.45% (6/245), respectively. All samples (7) of ELISA test positive of both coronavirus and rotavirus were propagated in Madin-Darby bovine kidney (MDBK) cells. After 3 subsequent passages, progressive cytopathic effect (CPE), i.e., rounding, detachment, and the destruction of monolayer cell of five samples (1 sample of coronavirus and 4 samples of rotavirus) (71.4%) were observed. At the molecular stage, reverse transcriptase polymerase chain reaction (RT-PCR) technique was used to determine the presence of coronavirus and rotavirus nucleic acid by using specific primers. The 5 samples that were coronavirus and rotavirus antigen positive by ELISA and develop CPE on cell culture were also positive on RT-PCR technique. The prevalence of infection peaked at 1st and 2nd weeks of age in male calves. CONCLUSION Diarrheal disease caused by coronavirus and rotavirus has a great health problem in calves that interrupts production benefits with reduced weight gain and increased mortality and its potential for zoonotic spread. So, the present findings show coronavirus and rotavirus infection in calves in Ethiopia that needs to be addressed by practising early colostrum feeding in newborn calves, using vaccine, or improving livestock management.
Collapse
Affiliation(s)
- Umer Seid
- College of Agriculture, Oda Bultum University, P.O. Box 226, Chiro, Ethiopia
| | - Fufa Dawo
- College of Veterinary Medicine, Addis Ababa University, P.O. Box 34, Bishoftu, Ethiopia
| | - Asamino Tesfaye
- National Animal Health Diagnostics and Investigation Center, P.O. Box 04, Sebeta, Ethiopia
| | - Munera Ahmednur
- Oromia Bureau Livestock and Fishery Resources, West Hararghe Zone, Chiro Wereda, P.O. Box 226, Chiro, Ethiopia
| |
Collapse
|
46
|
Zhang M, Li Z, Li J, Huang T, Peng G, Tang W, Yi G, Zhang L, Song Y, Liu T, Hu X, Ren L, Liu H, Butler JE, Han H, Zhao Y. Revisiting the Pig IGHC Gene Locus in Different Breeds Uncovers Nine Distinct IGHG Genes. THE JOURNAL OF IMMUNOLOGY 2020; 205:2137-2145. [PMID: 32929042 DOI: 10.4049/jimmunol.1901483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/13/2020] [Indexed: 11/19/2022]
Abstract
IgG subclass diversification is common in placental mammals. It has been well documented in humans and mice that different IgG subclasses, with diversified functions, synergistically regulate humoral immunity. However, our knowledge on the genomic and functional diversification of IgG subclasses in the pig, a mammalian species with high agricultural and biomedical importance, is incomplete. Using bacterial artificial chromosome sequencing and newly assembled genomes generated by the PacBio sequencing approach, we characterized and mapped the IgH C region gene locus in three indigenous Chinese breeds (Erhualian, Xiang, and Luchuan) and compared them to that of Duroc. Our data revealed that IGHG genes in Chinese pigs differ from the Duroc, whereas the IGHM, IGHD, IGHA, and IGHE genes were all single copy and highly conserved in the pig breeds examined. Most striking were differences in numbers of IGHG genes: there are seven genes in Erhualian pigs, six in the Duroc, but only five in Xiang pigs. Phylogenetic analysis suggested that all reported porcine IGHG genes could be classified into nine subclasses: IGHG1, IGHG2a, IGHG2b, IGHG2c, IGHG3, IGHG4, IGHG5a, IGHG5b, and IGHG5c. Using sequence information, we developed a mouse mAb specific for IgG3. This study offers a starting point to investigate the structure-function relationship of IgG subclasses in pigs.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhenrong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jingying Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Tian Huang
- School of Life Sciences, Henan University, Kaifeng 475004, People's Republic of China
| | - Gaochuang Peng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Wenda Tang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Guoqiang Yi
- Research Centre for Animal Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, People's Republic of China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; and
| | - Yu Song
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Tianran Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xiaoxiang Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Liming Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; and
| | - John E Butler
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Haitang Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China;
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China;
| |
Collapse
|
47
|
Zhang Q, Song Z, Yu Y, Huang J, Jiang P, Shan H. Genetic analysis of a porcine reproductive and respiratory syndrome virus 1 strain in China with new patterns of amino acid deletions in nsp2, GP3 and GP4. Microb Pathog 2020; 149:104531. [PMID: 32980471 DOI: 10.1016/j.micpath.2020.104531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 11/19/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) 1 and PRRSV 2 have coexisted in China for a very long time. In this study, the complete genomic characterization of a PRRSV 1 strain named KZ2018 was conducted. The results showed that it shared 88.6% identity with Lelystad virus and 81.9-90.8% identities with other Chinese PRRSV 1 strains. Further study showed that its nsp2 protein had a unique discontinuous 6-amino acid (aa) deletion (aa357-360+aa411+aa449). Additionally, its GP3 and GP4 contained a long continuous 18-aa deletion in their overlapped region, which has never been described in other Chinese PRRSV 1 isolates. Amino acid analysis of cell epitopes revealed that GP3245-256 and GP457-68 were the most variable epitopes among different Chinese PRRSV 1 isolates. The results might enrich our knowledge of PRRSV 1 strains in China.
Collapse
Affiliation(s)
- Qiaoya Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong, China; Shandong Province New Veterinary Drug Creation Collaborative Innovation Center, Qingdao 266109, Shandong, China; Qingdao Veterinary Biotechnology Engineering Research Center, Qingdao 266109, Shandong, China.
| | - Zhongbao Song
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ying Yu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong, China; Shandong Province New Veterinary Drug Creation Collaborative Innovation Center, Qingdao 266109, Shandong, China; Qingdao Veterinary Biotechnology Engineering Research Center, Qingdao 266109, Shandong, China
| | - Juan Huang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong, China; Shandong Province New Veterinary Drug Creation Collaborative Innovation Center, Qingdao 266109, Shandong, China; Qingdao Veterinary Biotechnology Engineering Research Center, Qingdao 266109, Shandong, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong, China; Shandong Province New Veterinary Drug Creation Collaborative Innovation Center, Qingdao 266109, Shandong, China; Qingdao Veterinary Biotechnology Engineering Research Center, Qingdao 266109, Shandong, China.
| |
Collapse
|
48
|
Li Y, Li J, He S, Zhang W, Cao J, Pan X, Tang H, Zhou EM, Wu C, Nan Y. Interferon Inducing Porcine Reproductive and Respiratory Syndrome Virus Vaccine Candidate Protected Piglets from HP-PRRSV Challenge and Evoke a Higher Level of Neutralizing Antibodies Response. Vaccines (Basel) 2020; 8:vaccines8030490. [PMID: 32877992 PMCID: PMC7565719 DOI: 10.3390/vaccines8030490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 11/16/2022] Open
Abstract
Although widespread administration of attenuated porcine reproductive and respiratory syndrome virus (PRRSV) vaccines has been implemented since they first became commercially available two decades ago, PRRSV infection prevalence in swine herds remains high. The limited success of PRRSV vaccines is partly due to the well-established fact that a given vaccine strain confers only partial or no protection against heterologous strains. In our past work, A2MC2-P90, a novel PRRSV vaccine candidate that induced a type I IFNs response in vitro, conferred complete protection against challenge with genetically heterologous PRRSV strains. Here we assessed the ability of the PRRSV vaccine candidate A2MC2-P90 to protect piglets against the HP-PRRSV challenge and compared its efficacy to that of a licensed HP-PRRSV-specific vaccine (TJM-F92) assessed in parallel. A2MC2-P90 provided vaccinated piglets with 100% protection from a lethal challenge with extremely virulent HP-PRRSV-XJA1, while 100% mortality was observed for unvaccinated piglets by day 21 post-challenge. Notably, comparison of partial sequence (GP5) of XJA1 to A2MC2-P90 suggested there was only 88.7% homology. When comparing post-HP-PRRSV challenge responses between piglets administered A2AMC2-P90 versus those immunized with licensed vaccine TJM-F92, A2MC2-P90-vaccinated piglets rapidly developed a stronger protective humoral immune response, as evidenced by much higher titers of neutralizing antibodies, more rapid clearance of viremia and less nasal virus shedding. In conclusion, our data suggest that this novel vaccine candidate A2MC2-P90 has improved protection spectrum against heterologous HP-PRRSV strains.
Collapse
Affiliation(s)
- Yafei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.L.)
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling 712100, China
| | - Junhui Li
- Tecon Biology Co., Ltd., Urumqi 830000, Xinjiang, China; (J.L.); (S.H.); (W.Z.); (J.C.); (X.P.); (H.T.)
| | - Sun He
- Tecon Biology Co., Ltd., Urumqi 830000, Xinjiang, China; (J.L.); (S.H.); (W.Z.); (J.C.); (X.P.); (H.T.)
| | - Wei Zhang
- Tecon Biology Co., Ltd., Urumqi 830000, Xinjiang, China; (J.L.); (S.H.); (W.Z.); (J.C.); (X.P.); (H.T.)
| | - Jian Cao
- Tecon Biology Co., Ltd., Urumqi 830000, Xinjiang, China; (J.L.); (S.H.); (W.Z.); (J.C.); (X.P.); (H.T.)
| | - Xiaomei Pan
- Tecon Biology Co., Ltd., Urumqi 830000, Xinjiang, China; (J.L.); (S.H.); (W.Z.); (J.C.); (X.P.); (H.T.)
| | - Huifen Tang
- Tecon Biology Co., Ltd., Urumqi 830000, Xinjiang, China; (J.L.); (S.H.); (W.Z.); (J.C.); (X.P.); (H.T.)
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.L.)
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling 712100, China
- Correspondence: (E.-M.Z.); (C.W.); (Y.N.)
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.L.)
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling 712100, China
- Correspondence: (E.-M.Z.); (C.W.); (Y.N.)
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.L.)
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling 712100, China
- Correspondence: (E.-M.Z.); (C.W.); (Y.N.)
| |
Collapse
|
49
|
Hou FH, Chia MY, Liao JW, Chung HP, Lee WC. Efficacy of fungal immunomodulatory protein to promote swine immune responses against porcine reproductive and respiratory syndrome virus infection. Vet Immunol Immunopathol 2020; 224:110056. [PMID: 32380309 DOI: 10.1016/j.vetimm.2020.110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 11/27/2022]
Abstract
Fungal immunomodulatory protein (FIP) is one of the bioactive compounds of edible mushrooms, which has been shown to trigger type 1 T helper (Th1) pathway activation in research with mice. This study was designated to assess immunomodulatory effects of recombinant FIP-Flammulina velutipes (rFIP-fve) on swine and the protective efficacy against PRRSV infection. In the in vitro evaluations, rFIP-fve significantly triggered up-regulation of IL-2 and IFN-γ mRNA in porcine PBMCs and stimulated natural killer cytotoxicity. Porcine pulmonary alveolar macrophages (PAMs) treated with rFIP-fve showed prolonged life times, up-regulation of both MHC I and II molecules and enhanced abilities to present antigen. In the in vivo trial, two doses of 2 mg rFIP-fve significantly reduced drops in the CD4/CD8 ratio after PRRSV challenge, and the cytokine mRNA profile of PBMC revealed a tendency of IFN-γ up-regulation and a decrease in IL-10 in the rFIP-treated group. Moreover, administration of rFIP-fve also decreased the PRRSV viremia with 1 log10 in titer (p = 0.07) and alleviated the severity of clinical signs after PRRSV challenge. Conclusively, these results illustrate the in vitro and in vivo immunological changes of rFIP-fve administered to pigs and reveal its potential to be used as an immunomodulatory therapeutic against PRRSV infection.
Collapse
Affiliation(s)
- Fu-Hsiang Hou
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan, ROC
| | - Min-Yuan Chia
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan, ROC
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan, ROC
| | - Han-Ping Chung
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan, ROC
| | - Wei-Cheng Lee
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan, ROC.
| |
Collapse
|
50
|
Chase-Topping M, Xie J, Pooley C, Trus I, Bonckaert C, Rediger K, Bailey RI, Brown H, Bitsouni V, Barrio MB, Gueguen S, Nauwynck H, Doeschl-Wilson A. New insights about vaccine effectiveness: Impact of attenuated PRRS-strain vaccination on heterologous strain transmission. Vaccine 2020; 38:3050-3061. [PMID: 32122719 DOI: 10.1016/j.vaccine.2020.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 01/15/2023]
Abstract
Vaccination is the main tool for controlling infectious diseases in livestock. Yet current vaccines only provide partial protection raising concerns about vaccine effectiveness in the field. Two successive transmission trials were performed involving 52 pigs to evaluate the effectiveness of a Porcine Reproductive and Respiratory Syndrome (PRRS) vaccinal strain candidate against horizontal transmission of a virulent heterologous strain. PRRS virus, above the specified limit of detection, was observed in serum and nasal secretions for all but one pig (the exception only tested positive for serum), indicating that vaccination did not protect pigs from becoming infected and shedding the heterologous strain. However, vaccination delayed the onset of viraemia, reduced the duration of shedding and significantly decreased viral load throughout infection. Serum antibody profiles indicated that 4 out of 13 (31%) vaccinates in one trial had no serological response (NSR). A Bayesian epidemiological model was fitted to the data to assess the impact of vaccination and presence of NSRs on PRRS virus transmission dynamics. Despite little evidence for reduction in the transmission rate, vaccinated animals were on average slower to become infectious, experienced a shorter infectious period and recovered faster. The overall PRRSV transmission potential, represented by the reproductive ratio R0 was lower for the vaccinated animals, although there was substantial overlap in the credibility intervals for both groups. Model selection suggests that transmission parameters of vaccinated pigs with NSR were more similar to those of unvaccinated animals. The presence of NSRs in a population, however, seemed to only marginally affect the transmission dynamics. The results suggest that even when vaccination can't prevent infection, it can still have beneficial impacts on the transmission dynamics and contribute to reducing a herd's R0. However, biosecurity and other measures need to be considered to decrease contact rates and lower R0 below 1.
Collapse
Affiliation(s)
- Margo Chase-Topping
- Roslin Institute, Easter Bush, Midlothian, EH25 9RG Scotland, UK; Usher Institute, University of Edinburgh, Edinburgh, EH8 9AG Scotland, UK.
| | - Jiexiong Xie
- Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Christopher Pooley
- Roslin Institute, Easter Bush, Midlothian, EH25 9RG Scotland, UK; Biomathematics and Statistics Scotland (BIOSS), The King's Buildings, Edinburgh, EH9 3FD Scotland, UK
| | - Ivan Trus
- Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Caroline Bonckaert
- Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Kelly Rediger
- Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Richard I Bailey
- Roslin Institute, Easter Bush, Midlothian, EH25 9RG Scotland, UK
| | - Helen Brown
- Roslin Institute, Easter Bush, Midlothian, EH25 9RG Scotland, UK
| | | | - Maria Belén Barrio
- INRAE Département Santé Animale, UAR 0564 - ISP Bât 213, 37380 Nouzilly, France
| | - Sylvie Gueguen
- Biological Development Department, VIRBAC, 13ème rue, LID, BP27, 06511 Carros cedex, France
| | - Hans Nauwynck
- Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | | |
Collapse
|