1
|
Gusakov K, Kalinkovich A, Ashkenazi S, Livshits G. Nature of the Association between Rheumatoid Arthritis and Cervical Cancer and Its Potential Therapeutic Implications. Nutrients 2024; 16:2569. [PMID: 39125448 PMCID: PMC11314534 DOI: 10.3390/nu16152569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
It is now established that patients with rheumatoid arthritis (RA) have an increased risk of developing cervical cancer (CC) or its precursor, cervical intraepithelial neoplasia (CIN). However, the underlying mechanisms of this association have not been elucidated. RA is characterized by unresolved chronic inflammation. It is suggested that human papillomavirus (HPV) infection in RA patients exacerbates inflammation, increasing the risk of CC. The tumor microenvironment in RA patients with CC is also marked by chronic inflammation, which aggravates the manifestations of both conditions. Gut and vaginal dysbiosis are also considered potential mechanisms that contribute to the chronic inflammation and aggravation of RA and CC manifestations. Numerous clinical and pre-clinical studies have demonstrated the beneficial effects of various nutritional approaches to attenuate chronic inflammation, including polyunsaturated fatty acids and their derivatives, specialized pro-resolving mediators (SPMs), probiotics, prebiotics, and certain diets. We believe that successful resolution of chronic inflammation and correction of dysbiosis, in combination with current anti-RA and anti-CC therapies, is a promising therapeutic approach for RA and CC. This approach could also reduce the risk of CC development in HPV-infected RA patients.
Collapse
Affiliation(s)
- Kirill Gusakov
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; (K.G.); (S.A.)
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 6905126, Israel;
| | - Shai Ashkenazi
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; (K.G.); (S.A.)
| | - Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; (K.G.); (S.A.)
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 6905126, Israel;
| |
Collapse
|
2
|
Braga GDC, Simões JLB, Teixeira Dos Santos YJ, Filho JCM, Bagatini MD. The impacts of obesity in rheumatoid arthritis and insights into therapeutic purinergic modulation. Int Immunopharmacol 2024; 136:112357. [PMID: 38810303 DOI: 10.1016/j.intimp.2024.112357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
Rheumatoid Arthritis (RA) is an autoimmune condition responsible for the impairment of synovia and joints, endangering the functionality of individuals and contributing to mortality. Currently, obesity is increasing worldwide, and recent studies have suggested an association between such condition and RA. In this sense, obese individuals present a lower capacity for achieving remission and present more intense symptoms of the disease, demonstrating a link between both disorders. Different studies aim to understand the possible connection between the conditions; however, few is known in this sense. Therefore, knowing that obesity can alter the activity of multiple body systems, this work's objective is to evaluate the main modifications caused by obesity, which can be linked to the pathophysiology of RA, highlighting as relevant topics obesity's negative impact triggering systemic inflammation, intestinal dysbiosis, endocrine disbalances. Furthermore, the relationship between oxidative stress and obesity also deserves to be highlighted, considering the influence of reactive oxygen species (ROS) accumulation in RA exacerbation. Additionally, many of those characteristics influenced by obesity, along with the classic peculiarities of RA pathophysiology, can also be associated with purinergic signaling. Hence, this work suggests possible connections between the purinergic system and RA, proposing potential therapeutic targets against RA to be studied.
Collapse
|
3
|
Metabolic Profiling in Rheumatoid Arthritis, Psoriatic Arthritis, and Psoriasis: Elucidating Pathogenesis, Improving Diagnosis, and Monitoring Disease Activity. J Pers Med 2022; 12:jpm12060924. [PMID: 35743709 PMCID: PMC9225104 DOI: 10.3390/jpm12060924] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs), such as rheumatoid arthritis (RA), psoriatic arthritis (PsA), and psoriasis (Ps), represent autoinflammatory and autoimmune disorders, as well as conditions that have an overlap of both categories. Understanding the underlying pathogeneses, making diagnoses, and choosing individualized treatments remain challenging due to heterogeneous disease phenotypes and the lack of reliable biomarkers that drive the treatment choice. In this review, we provide an overview of the low-molecular-weight metabolites that might be employed as biomarkers for various applications, e.g., early diagnosis, disease activity monitoring, and treatment-response prediction, in RA, PsA, and Ps. The literature was evaluated, and putative biomarkers in different matrices were identified, categorized, and summarized. While some of these candidate biomarkers appeared to be disease-specific, others were shared across multiple IMIDs, indicating common underlying disease mechanisms. However, there is still a long way to go for their application in a routine clinical setting. We propose that studies integrating omics analyses of large patient cohorts from different IMIDs should be performed to further elucidate their pathomechanisms and treatment options. This could lead to the identification and validation of biomarkers that might be applied in the context of precision medicine to improve the clinical outcomes of these IMID patients.
Collapse
|
4
|
Zorgetto-Pinheiro VA, Machate DJ, Figueiredo PS, Marcelino G, Hiane PA, Pott A, Guimarães RDCA, Bogo D. Omega-3 Fatty Acids and Balanced Gut Microbiota on Chronic Inflammatory Diseases: A Close Look at Ulcerative Colitis and Rheumatoid Arthritis Pathogenesis. J Med Food 2022; 25:341-354. [PMID: 35438557 DOI: 10.1089/jmf.2021.0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this article was to review experimental and clinical studies regarding the use of omega-3 fatty acids on the prevention and control of chronic inflammatory diseases with autoimmune background through the gut microbiota modulation. For this, natural omega-3 sources are presented emphasizing the importance of a healthy diet for the body's homeostasis and the enzymatic processes that these fatty acids go through once inside the body. The pathogenesis of ulcerative colitis and rheumatoid arthritis are revisited under the light of the gut microbiota dysbiosis approach and how those fatty acids are able to prevent and control these two pathological conditions that are responsible for the global chronic burden and functional disability and life-threatening comorbidities if not treated properly. As a matter of reflection, as we are living a pandemic crisis owing to COVID-19 infection, we present the potential of omega-3 in preventing a poor prognosis once they contribute to balancing the immune system modulation the inflammatory process.
Collapse
Affiliation(s)
- Verônica Assalin Zorgetto-Pinheiro
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - David Johane Machate
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Graduate Program in Science of Materials, Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Brazil
| | - Priscila Silva Figueiredo
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Gabriela Marcelino
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Arnildo Pott
- Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Danielle Bogo
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| |
Collapse
|
5
|
Azpiroz MA, Orguilia L, Palacio MI, Malpartida A, Mayol S, Mor G, Gutiérrez G. Potential biomarkers of infertility associated with microbiome imbalances. Am J Reprod Immunol 2021; 86:e13438. [PMID: 33960055 PMCID: PMC8464490 DOI: 10.1111/aji.13438] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
PROBLEM The aim of this study was to investigate the possible relationship between vaginal/rectal microbiome disbalances and miRNA expression with infertility. METHOD OF STUDY Observational, exploratory, preliminary study. A total of 287 multiple IVF failure infertile patients were recruited. Twenty fertile women, not IVF failure, were recruited as the control group. Swab samples were collected from the vagina and rectum. Microbial composition by NGS and miRNA expression by real-time PCR of vaginal and rectal samples was measured. Immunometabolic markers from blood (insulin, vitamin D, LDL-cholesterol, ANA, TPO, Tg, and ASCA antibodies) and saliva (sIgA) were analyzed. RESULT(S) Infertile patients showed a lower bacterial richness and increased Firmicutes/Bacteroidetes ratio at rectal level and an increased Lactobacillus brevis/Lactobacillus iners ratio in vaginal samples regarding the fertile group. In the same rectal swab samples, we found that miR-21-5p, which is associated with tight junction disruption and yeast overgrowth, is upregulated and that miR-155-5p, which is associated with inflammation, is overexpressed in the unexplained infertile group (*p < .05). These deregulated miRNAs were also upregulated in the vaginal samples from the same patients (*p < .05). CONCLUSION miRNAs could be potential biomarkers of the inflammatory impact of microbiome disbalances in unexplained infertile women.
Collapse
Affiliation(s)
| | - Lucila Orguilia
- Inmunogenesis, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | | | | | | | - Gil Mor
- Wayne State University, Detroit, MI, USA
| | | |
Collapse
|
6
|
Ferro M, Charneca S, Dourado E, Guerreiro CS, Fonseca JE. Probiotic Supplementation for Rheumatoid Arthritis: A Promising Adjuvant Therapy in the Gut Microbiome Era. Front Pharmacol 2021; 12:711788. [PMID: 34366867 PMCID: PMC8346200 DOI: 10.3389/fphar.2021.711788] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic immune-mediated inflammatory disease that ultimately leads to joint destruction and functional disability. Although the exact etiology of RA is not fully understood, it is well established that gut microbiota (GM) plays a vital role in the pathogenesis of RA, with accumulating evidence suggesting that gut dysbiosis induces a chronic inflammatory response that may be linked to disease development. Of interest, patients with RA have significant changes in the intestinal microbiota compared to healthy controls, and several studies have suggested the use of probiotics as a possible adjuvant therapy for RA. Benefits of probiotic supplementation were reported in animal models of arthritis and human studies, but the current evidence regarding the effect of probiotic supplementation in the management of RA remains insufficient to make definite recommendations. Several different strains of Lactobacillus and Bifidobacteria, as single species or in mixed culture, have been investigated, and some have demonstrated beneficial effects on disease activity in RA human subjects. As of now, L.casei probiotic bacteria seems to be the strongest candidate for application as adjuvant therapy for RA patients. In this review, we highlight the role of GM in the development and progression of RA and summarize the current knowledge on the use of probiotics as a potential adjuvant therapy for RA. We also review the proposed mechanisms whereby probiotics regulate inflammation. Finally, the role of fermented foods is discussed as a possible alternative to probiotic supplements since they have also been reported to have health benefits.
Collapse
Affiliation(s)
- Margarida Ferro
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sofia Charneca
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Eduardo Dourado
- Serviço de Reumatologia e Doenças Ósseas Metabólicas, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa (CAML), Lisboa, Portugal.,Unidade de Investigação em Reumatologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, CAML, Lisboa, Portugal
| | - Catarina Sousa Guerreiro
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João Eurico Fonseca
- Serviço de Reumatologia e Doenças Ósseas Metabólicas, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa (CAML), Lisboa, Portugal.,Unidade de Investigação em Reumatologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, CAML, Lisboa, Portugal
| |
Collapse
|
7
|
Torres W, Chávez-Castillo M, Peréz-Vicuña JL, Carrasquero R, Díaz MP, Gomez Y, Ramírez P, Cano C, Rojas-Quintero J, Chacín M, Velasco M, de Sanctis JB, Bermudez V. Potential role of bioactive lipids in rheumatoid arthritis. Curr Pharm Des 2021; 27:4434-4451. [PMID: 34036919 DOI: 10.2174/1381612827666210525164734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/08/2021] [Indexed: 11/22/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease, which involves a pathological inflammatory response against articular cartilage in multiple joints throughout the body. It is a complex disorder associated with comorbidities such as depression, lymphoma, osteoporosis and cardiovascular disease (CVD), which significantly deteriorate patients' quality of life and prognosis. This has ignited a large initiative to elucidate the physiopathology of RA, aiming to identify new therapeutic targets and approaches in its multidisciplinary management. Recently, various lipid bioactive products have been proposed to have an essential role in this process; including eicosanoids, specialized pro-resolving mediators, phospholipids/sphingolipids, and endocannabinoids. Dietary interventions using omega-3 polyunsaturated fatty acids or treatment with synthetic endocannabinoids agonists have been shown to significantly ameliorate RA symptoms. Indeed, the modulation of lipid metabolism may be crucial in the pathophysiology and treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Wheeler Torres
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Mervin Chávez-Castillo
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - José L Peréz-Vicuña
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Rubén Carrasquero
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - María P Díaz
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Yosselin Gomez
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Paola Ramírez
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston. 0
| | - Maricarmen Chacín
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla. Colombia
| | - Manuel Velasco
- Universidad Central de Venezuela, Escuela de Medicina José María Vargas, Caracas. Venezuela
| | - Juan Bautista de Sanctis
- Institute of Molecular and Translational Medicine. Faculty of Medicine and Dentistry. Palacky University. Czech Republic
| | - Valmore Bermudez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla. Colombia
| |
Collapse
|
8
|
Yago T, Asano T, Fujita Y, Migita K. Familial Mediterranean fever phenotype progression into anti-cyclic citrullinated peptide antibody-positive rheumatoid arthritis:a case report. Fukushima J Med Sci 2020; 66:160-166. [PMID: 33162488 PMCID: PMC7790467 DOI: 10.5387/fms.2020-07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Familial Mediterranean fever (FMF) is caused by dysfunction of the MEFV gene product, pyrin. Here we report a case of FMF phenotype which developed into rheumatoid arthritis (RA), based on a positive result for anti-cyclic citrullinated peptide (CCP) antibody (Ab). A 42-year-old woman presented to our clinic with more than 6 months of intermittent arthralgia in the wrists, feet, and fingers associated with menstruation. No fever was reported and there was no family history of FMF or other autoimmune diseases. Laboratory tests revealed elevated C-reactive protein (CRP) and rheumatoid factor (RF). Tests for autoantibodies including anti-CCP Ab, antinuclear Ab, and anti-DNA Ab were all negative. Genetic analysis identified an R304R homozygous mutation in MEFV; however, the pathological significance is unclear because this mutation does not cause amino acid substitution. We diagnosed incomplete FMF phenotype despite the lack of fever due to periodic arthritis, lack of autoantibodies, and complete resolution of arthritis following colchicine treatment within a day. Several months later, increased stiffness and arthralgia persistently occurred in finger joints on both sides. Ultrasonography revealed synovitis at the metacarpophalangeal and metatarsophalangeal joints. Laboratory analysis revealed the patient to be positive for anti-CCP Ab. Therefore, we finally diagnosed RA. Her arthritis diminished following administration of methotrexate and salazosulfapyridine. We consider the possibility that pyrin dysfunction may have affected the acquired immunity, contributing to the onset of RA as an autoimmune disease. This is an interesting case of equivalent FMF progressing into RA and will be valuable to raise awareness of a continuum from autoinflammatory to autoimmune disease.
Collapse
Affiliation(s)
- Toru Yago
- Department of Rheumatology, Fukushima Medical University School of Medicine
| | - Tomoyuki Asano
- Department of Rheumatology, Fukushima Medical University School of Medicine
| | - Yuya Fujita
- Department of Rheumatology, Fukushima Medical University School of Medicine
| | - Kiyoshi Migita
- Department of Rheumatology, Fukushima Medical University School of Medicine
| |
Collapse
|
9
|
Dourado E, Ferro M, Sousa Guerreiro C, Fonseca JE. Diet as a Modulator of Intestinal Microbiota in Rheumatoid Arthritis. Nutrients 2020; 12:E3504. [PMID: 33202579 PMCID: PMC7696404 DOI: 10.3390/nu12113504] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 12/23/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic immune-driven inflammatory disease characterised by synovial inflammation, leading to progressive cartilage and bone destruction, impacting patients' functional capacity and quality of life. Patients with RA have significant differences in gut microbiota composition when compared to controls. Intestinal dysbiosis influences the intestinal barrier strength, integrity and function, and diet is considered the main environmental factor impacting gut microbiota. Over the last few years, researchers have focused on the influence of single components of the diet in the modulation of intestinal microbiota in RA rather than whole dietary patterns. In this review, we focus on how the Mediterranean diet (MD), a whole dietary pattern, could possibly act as an adjuvant therapeutic approach, modulating intestinal microbiota and intestinal barrier function in order to improve RA-related outcomes. We also review the potential effects of particular components of the MD, such as n-3 polyunsaturated fatty acids (PUFAs), polyphenols and fibre.
Collapse
Affiliation(s)
- Eduardo Dourado
- Serviço de Reumatologia e Doenças Ósseas Metabólicas, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa (CAML), 1649-028 Lisboa, Portugal;
- Unidade de Investigação em Reumatologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, CAML, 1649-028 Lisboa, Portugal
| | - Margarida Ferro
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (M.F.); (C.S.G.)
| | - Catarina Sousa Guerreiro
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (M.F.); (C.S.G.)
- Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - João Eurico Fonseca
- Serviço de Reumatologia e Doenças Ósseas Metabólicas, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa (CAML), 1649-028 Lisboa, Portugal;
- Unidade de Investigação em Reumatologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, CAML, 1649-028 Lisboa, Portugal
| |
Collapse
|
10
|
Troublesome friends within us: the role of gut microbiota on rheumatoid arthritis etiopathogenesis and its clinical and therapeutic relevance. Clin Exp Med 2020; 21:1-13. [PMID: 32712721 DOI: 10.1007/s10238-020-00647-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
The role of gut microbiota on immune regulation and the development of autoimmune diseases such as rheumatoid arthritis (RA) is an emerging research topic. Multiple studies have demonstrated alterations on gut microbiota composition and/or function (referred to as dysbiosis) both in early and established RA patients. Still, research delineating the molecular mechanisms by which gut microorganisms induce the loss of immune tolerance or contribute to disease progression is scarce. Available data indicate that gut microbiota alterations are involved in RA autoimmune response by several mechanisms including the post-translational modification of host proteins, molecular mimicry between bacterial and host epitopes, activation of immune system and polarization toward inflammatory phenotypes, as well as induction of intestinal permeability. Therefore, in this review we analyze recent clinical and molecular evidence linking gut microbiota with the etiopathogenesis of RA. The potential of the gut microbiota as a diagnostic or severity biomarker is discussed, as well as the opportunity areas for the development of complementary therapeutic strategies based on the modulation of gut microbiota in the rheumatic patient.
Collapse
|
11
|
Weyand CM, Goronzy JJ. Immunometabolism in the development of rheumatoid arthritis. Immunol Rev 2020; 294:177-187. [PMID: 31984519 PMCID: PMC7047523 DOI: 10.1111/imr.12838] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022]
Abstract
In rheumatoid arthritis (RA), breakdown of self-tolerance and onset of clinical disease are separated in time and space, supporting a multi-hit model in which emergence of autoreactive T cells is a pinnacle pathogenic event. Determining factors in T cell differentiation and survival include antigen recognition, but also the metabolic machinery that provides energy and biosynthetic molecules for cell building. Studies in patients with RA have yielded a disease-specific metabolic signature, which enables naive CD4 T cells to differentiate into pro-inflammatory helper T cells that are prone to invade into tissue and elicit inflammation through immunogenic cell death. A typifying property of RA CD4 T cells is the shunting of glucose away from glycolytic breakdown and mitochondrial processing toward the pentose phosphate pathway, favoring anabolic over catabolic reactions. Key defects have been localized to the mitochondria and the lysosome; including instability of mitochondrial DNA due to the lack of the DNA repair nuclease MRE11A and inefficient lysosomal tethering of AMPK due to deficiency of N-myristoyltransferase 1 (NMT1). The molecular taxonomy of the metabolically reprogrammed RA T cells includes glycolytic enzymes (glucose-6-phosphate dehydrogenase, phosphofructokinase), DNA repair molecules (MRE11A, ATM), regulators of protein trafficking (NMT1), and the membrane adapter protein TSK5. As the mechanisms determining abnormal T cell behavior in RA are unraveled, opportunities will emerge to interject autoimmune T cells by targeting their metabolic checkpoints.
Collapse
Affiliation(s)
- Cornelia M Weyand
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Jörg J Goronzy
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| |
Collapse
|
12
|
Defects of CTLA-4 Are Associated with Regulatory T Cells in Myasthenia Gravis Implicated by Intravenous Immunoglobulin Therapy. Mediators Inflamm 2020; 2020:3645157. [PMID: 32148437 PMCID: PMC7042523 DOI: 10.1155/2020/3645157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
Myasthenia gravis (MG) is a CD4+ T cell-dependent autoimmune disease resulting from aberrant immune response mediated by circulating autoantibodies at the neuromuscular junction. Intravenous immunoglobulin (IVIg) is an expensive and commonly used immunotherapeutic approach to treat patients with MG. The mechanisms of actions involved in IVIg treatment, however, remain to be investigated. In an effort to examine the roles of various subsets of CD4+ T cells in the periphery blood of MG and uncover the mechanisms that contribute to the therapeutical effects of IVIg, we first demonstrated that a subset of CD4+ T cells, CTLA-4-expressing regulatory T (Treg) cells, were underrepresented and functionally defective in MG patients. The dynamic profiling during the IVIg therapy course further revealed an inverse relationship between the frequency of CTLA-4+ Treg and the quantitative MG (QMG) score that represents disease severity. Our mechanistic studies indicated that IVIg expands CTLA-4-Treg cells via modulating antigen-presenting dendritic cells (DCs). To determine the molecular defects of CTLA-4 in abnormities of Treg in MG patients, we demonstrated hypermethylation at -658 and -793 CpGs of CTLA-4 promoter in MG Tregs. Interestingly, IVIg therapy significantly reduced the methylation level at these two sites in MG patients. Overall, our study may suggest a role of CTLA-4 in functionally defected Treg cells in MG and its actions involved in IVIg therapy.
Collapse
|
13
|
Du J, Wang X, Tan G, Liang Z, Zhang Z, Yu H. The association between genetic polymorphisms of interleukin 23 receptor gene and the risk of rheumatoid arthritis: An updated meta-analysis. Clin Immunol 2020; 210:108250. [DOI: 10.1016/j.clim.2019.108250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
|
14
|
Livshits G, Kalinkovich A. Inflammaging as a common ground for the development and maintenance of sarcopenia, obesity, cardiomyopathy and dysbiosis. Ageing Res Rev 2019; 56:100980. [PMID: 31726228 DOI: 10.1016/j.arr.2019.100980] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Sarcopenia, obesity and their coexistence, obese sarcopenia (OBSP) as well as atherosclerosis-related cardio-vascular diseases (ACVDs), including chronic heart failure (CHF), are among the greatest public health concerns in the ageing population. A clear age-dependent increased prevalence of sarcopenia and OBSP has been registered in CHF patients, suggesting mechanistic relationships. Development of OBSP could be mediated by a crosstalk between the visceral and subcutaneous adipose tissue (AT) and the skeletal muscle under conditions of low-grade local and systemic inflammation, inflammaging. The present review summarizes the emerging data supporting the idea that inflammaging may serve as a mutual mechanism governing the development of sarcopenia, OBSP and ACVDs. In support of this hypothesis, various immune cells release pro-inflammatory mediators in the skeletal muscle and myocardium. Subsequently, the endothelial structure is disrupted, and cellular processes, such as mitochondrial activity, mitophagy, and autophagy are impaired. Inflamed myocytes lose their contractile properties, which is characteristic of sarcopenia and CHF. Inflammation may increase the risk of ACVD events in a hyperlipidemia-independent manner. Significant reduction of ACVD event rates, without the lowering of plasma lipids, following a specific targeting of key pro-inflammatory cytokines confirms a key role of inflammation in ACVD pathogenesis. Gut dysbiosis, an imbalanced gut microbial community, is known to be deeply involved in the pathogenesis of age-associated sarcopenia and ACVDs by inducing and supporting inflammaging. Dysbiosis induces the production of trimethylamine-N-oxide (TMAO), which is implicated in atherosclerosis, thrombosis, metabolic syndrome, hypertension and poor CHF prognosis. In OBSP, AT dysfunction and inflammation induce, in concert with dysbiosis, lipotoxicity and other pathophysiological processes, thus exacerbating sarcopenia and CHF. Administration of specialized, inflammation pro-resolving mediators has been shown to ameliorate the inflammatory manifestations. Considering all these findings, we hypothesize that sarcopenia, OBSP, CHF and dysbiosis are inflammaging-oriented disorders, whereby inflammaging is common and most probably the causative mechanism driving their pathogenesis.
Collapse
Affiliation(s)
- Gregory Livshits
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel.; Adelson School of Medicine, Ariel University, Ariel, Israel..
| | - Alexander Kalinkovich
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
15
|
Mbarik M, Poirier SJ, Doiron J, Selka A, Barnett DA, Cormier M, Touaibia M, Surette ME. Phenolic acid phenethylesters and their corresponding ketones: Inhibition of 5-lipoxygenase and stability in human blood and HepaRG cells. Pharmacol Res Perspect 2019; 7:e00524. [PMID: 31523435 PMCID: PMC6743424 DOI: 10.1002/prp2.524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
5-lipoxygenase (5-LO) catalyzes the biosynthesis of leukotrienes, potent lipid mediators involved in inflammatory diseases, and both 5-LO and the leukotrienes are validated therapeutic targets. Caffeic acid phenethyl ester (CAPE) is an effective inhibitor of 5-LO and leukotriene biosynthesis but is susceptible to hydrolysis by esterases. In this study a number of CAPE analogues were synthesized with modifications to the caffeoyl moiety and the replacement of the ester linkage with a ketone. Several new molecules showed better inhibition of leukotriene biosynthesis than CAPE in isolated human neutrophils and in whole blood with IC50 values in the nanomolar (290-520 nmol/L) and low micromolar (1.0-2.3 µmol/L) ranges, respectively. Sinapic acid and 2,5-dihydroxy derivatives were more stable than CAPE in whole blood, and ketone analogues were degraded more slowly in HepaRG hepatocyte cultures than esters. All compounds underwent modification consistent with glucuronidation in HepaRG cultures as determined using LC-MS/MS analysis, though the modified sinapoyl ketone (10) retained 50% of its inhibitory activity after up to one hour of incubation. This study has identified at least one CAPE analogue, compound 10, that shows favorable properties that warrant further in vivo investigation as an antiinflammatory compound.
Collapse
Affiliation(s)
- Maroua Mbarik
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
| | - Samuel J. Poirier
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
| | - Jérémie Doiron
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
| | - Ayyoub Selka
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
| | | | - Marc Cormier
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
| | - Mohamed Touaibia
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
| | - Marc E. Surette
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNBCanada
| |
Collapse
|
16
|
Kalinkovich A, Livshits G. A cross talk between dysbiosis and gut-associated immune system governs the development of inflammatory arthropathies. Semin Arthritis Rheum 2019; 49:474-484. [PMID: 31208713 DOI: 10.1016/j.semarthrit.2019.05.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/09/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Emerging evidence suggests that dysbiosis, imbalanced gut microbial community, might be a key player in the development of various diseases, including inflammatory arthropathies, such as rheumatoid arthritis, spondyloarthritis (mainly, ankylosing spondylitis and psoriatic arthritis), and osteoarthritis. Yet, the underlying mechanisms and corresponding interactions remain poorly understood. METHODS We conducted a critical and extensive literature review to explore the association between dysbiosis and the development of inflammatory arthropathies. We also reviewed the literature to assess the perspectives that ameliorate inflammatory arthropathies by manipulating the microbiota with probiotics, prebiotics or fecal microbiota transplantation. RESULTS Some bacterial species (e.g. Prevotella, Citrobacter rodentium, Collinsella aerofaciens, Segmented filamentous bacteria) participate in the creation of the pro-inflammatory immune status, presumably via epitope mimicry, modification of self-antigens, enhanced cell apoptosis mechanisms, and destruction of tight junction proteins and intestinal barrier integrity, all leading to the development and maintainance of inflammatory arthropathies. Whether dysbiosis is an epiphenomenon or is an active driver of these disorders remains unclear, yet, recent observations clearly suggest that dysbiosis precedes and triggers their development implying a causative relationship between dysbiosis and inflammatory arthropathies. The underlying mechanisms include dysbiosis-mediated changes in the functional activity of the intestinal immune cell subsets, such as innate lymphoid cells, mucosa-associated invariant T cells, invariant natural killer T cells, T-follicular helper and T-regulatory cells. In turn, disturbed functionality of the gut-associated immune system is shown to promote the overgrowth of many bacteria, thus establishing a detrimental vicious circle of actively maintaining arthritis. CONCLUSIONS Analysis of the data described in the review supports the notion that a close, dynamic and tightly regulated cross talk between dysbiosis and the gut-associated immune system governs the development of inflammatory arthropathies.
Collapse
Affiliation(s)
- Alexander Kalinkovich
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gregory Livshits
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
17
|
Probiotics in Extraintestinal Diseases: Current Trends and New Directions. Nutrients 2019; 11:nu11040788. [PMID: 30959761 PMCID: PMC6521300 DOI: 10.3390/nu11040788] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/26/2019] [Accepted: 04/02/2019] [Indexed: 12/25/2022] Open
Abstract
Probiotics are defined as live microorganisms that when administered in adequate amounts confer a health benefit to the host. Their positive supplementation outcomes on several gastrointestinal disorders are well defined. Nevertheless, their actions are not limited to the gut, but may also impart their beneficial effects at distant sites and organs. In this regard, in this review article we: (i) comprehensively describe the main mechanisms of action of probiotics at distant sites, including bones, skin, and brain; (ii) critically present their therapeutic potential against bone, skin, and neuronal diseases (e.g., osteoporosis, non-healing wounds and autoimmune skin illnesses, mood, behavior, memory, and cognitive impairments); (iii) address the current gaps in the preclinical and clinical research; and (iv) indicate new research directions and suggest future investigations.
Collapse
|
18
|
Affiliation(s)
- Elias Toubi
- Division of Allergy and Clinical Immunology, Bnai-Zion Medical Center, Technion, Haifa, Israel.
| |
Collapse
|