1
|
Wang B, Qiang L, Zhang G, Chen W, Sheng Y, Wu G, Deng C, Zeng S, Zhang Q. APOC3 as a potential prognostic factor for hepatitis B virus-related acute-on-chronic liver failure. Medicine (Baltimore) 2025; 104:e41503. [PMID: 39928771 PMCID: PMC11813016 DOI: 10.1097/md.0000000000041503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/13/2024] [Accepted: 01/23/2025] [Indexed: 02/12/2025] Open
Abstract
Acute-on-chronic liver failure (ACLF) is the major cause of mortality in patients infected with the hepatitis B virus (HBV); however, early determination of the prognosis of patients with HBV-ACLF is insensitive or limited. This study aimed to analyze differentially expressed proteins in the plasma of patients with HBV-ACLF using data-independent acquisition mass spectrometry to provide a reference for short-term prognosis. Fifty HBV-ACLF patients and 15 healthy controls were enrolled in this study. Of these, 10 patients with HBV-ACLF and 5 healthy volunteers participated in data-independent acquisition-based proteomics and the potential core proteins were screened out via bioinformatics. Apolipoprotein C3 (APOC3) was selected and quantified by enzyme linked immunosorbent assays in all patients. And the area under the curve (AUC) was calculated to evaluate the value of APOC3 in the diagnosis and prognosis of patients with HBV-ACLF. A total of 247 differentially expressed proteins were identified in the serum of patients in the HBV-ACLF and normal control groups. A total of 148 proteins were upregulated and 99 proteins were downregulated in the HBV-ACLF group compared with those in the normal group. The expression level of APOC3 was 1.65 ± 0.44 mg/mL in patients with HBV-ACLF, which was obviously lower than the normal controls (2.04 ± 0.22 mg/mL) (P < .001) (AUC was 0.766, with a sensitivity of 62%, and specificity of 93.3%). The expression level of APOC3 was 1.38 ± 0.44 mg/mL in the non-survival group, which was obviously lower than the survival group (1.83 ± 0.35 mg/mL) (P < .0001) (AUC was 0.780, with a sensitivity of 50%, and specificity of 96.7%). APOC3 is associated with short-term prognosis of patients with HBV-ACLF and can be used as a potential prognostic biomarker in patients with HBV-ACLF.
Collapse
Affiliation(s)
- Bo Wang
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Li Qiang
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Geng Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wen Chen
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yunjian Sheng
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Gang Wu
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Cunliang Deng
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Shan Zeng
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qian Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Pu Z, Wang W, Xie H, Wang W. Apolipoprotein C3 (ApoC3) facilitates NLRP3 mediated pyroptosis of macrophages through mitochondrial damage by accelerating of the interaction between SCIMP and SYK pathway in acute lung injury. Int Immunopharmacol 2024; 128:111537. [PMID: 38232538 DOI: 10.1016/j.intimp.2024.111537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/25/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Respiratory failure caused by severe acute lung injury (ALI) is the main cause of mortality in patients with COVID-19.This study aimed to investigate the effects and underlying biological mechanism of Apolipoprotein C3 (ApoC3) in ALI. To establish an in vivo model, C57BL/6 mice were exposed by lipopolysaccharide (LPS). For the in vitro model, murine bone marrow-derived macrophages (BMDMs) or RAW264.7 cells were stimulated with LPS + adenosine triphosphate (ATP). Serum levels of ApoC3 were found to be upregulated in patients with COVID-19 or pneumonia-induced ALI. Inhibition of ApoC3 reduced lung injury in an ALI model, while overexpression of ApoC3 promoted lung injury. ApoC3 induced mitochondrial damage-mediated pyroptosis in ALI through the activation of the NOD-like receptorprotein 3 (NLRP3) inflammasome. ApoC3 recombinant protein significantly increased SCIMP expression in the lung tissue of mice models with ALI. ApoC3 also facilitated the interaction between the SLP adapter and CSK-interacting membrane protein (SCIMP) protein and Spleen tyrosine kinase (SYK) protein in the ALI model. Moreover, ApoC3 accelerated calcium-dependent reactive oxygen species (ROS) production in the ALI model. The effects of ApoC3 on pyroptosis were mitigated by the use of a pyroptosis inhibitor or an ROS inhibitor in the ALI model. Furthermore, ApoC3 activated the expression of SYK, which in turn induced NLRP3 inflammasome-regulated pyroptosis in the ALI model. METTL3 was found to mediate the m6A mRNA expression of ApoC3. Overall, our study highlights the crucial role of ApoC3 in promoting macrophage pyroptosis in ALI through calcium-dependent ROS production and NLRP3 inflammasome activation via the SCIMP-SYK pathway, providing a potential therapeutic strategy for ALI and other inflammatory diseases.
Collapse
Affiliation(s)
- Zhichen Pu
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, China; State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China
| | - Wenhui Wang
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Haitang Xie
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China.
| | - Wusan Wang
- Department of Pharmacology, Wannan Medical College, Wuhu, Anhui 241001, China.
| |
Collapse
|