1
|
Chen DY, Wu PF, Zhu XY, Zhao WB, Shao SF, Xie JR, Yuan DF, Zhang L, Li K, Wang SN, Zhao H. Risk factors and predictive model of cerebral edema after road traffic accidents-related traumatic brain injury. Chin J Traumatol 2024; 27:153-162. [PMID: 38458896 PMCID: PMC11138350 DOI: 10.1016/j.cjtee.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/06/2023] [Accepted: 01/29/2024] [Indexed: 03/10/2024] Open
Abstract
PURPOSE Cerebral edema (CE) is the main secondary injury following traumatic brain injury (TBI) caused by road traffic accidents (RTAs). It is challenging to be predicted timely. In this study, we aimed to develop a prediction model for CE by identifying its risk factors and comparing the timing of edema occurrence in TBI patients with varying levels of injuries. METHODS This case-control study included 218 patients with TBI caused by RTAs. The cohort was divided into CE and non-CE groups, according to CT results within 7 days. Demographic data, imaging data, and clinical data were collected and analyzed. Quantitative variables that follow normal distribution were presented as mean ± standard deviation, those that do not follow normal distribution were presented as median (Q1, Q3). Categorical variables were expressed as percentages. The Chi-square test and logistic regression analysis were used to identify risk factors for CE. Logistic curve fitting was performed to predict the time to secondary CE in TBI patients with different levels of injuries. The efficacy of the model was evaluated using the receiver operator characteristic curve. RESULTS According to the study, almost half (47.3%) of the patients were found to have CE. The risk factors associated with CE were bilateral frontal lobe contusion, unilateral frontal lobe contusion, cerebral contusion, subarachnoid hemorrhage, and abbreviated injury scale (AIS). The odds ratio values for these factors were 7.27 (95% confidence interval (CI): 2.08 - 25.42, p = 0.002), 2.85 (95% CI: 1.11 - 7.31, p = 0.030), 2.62 (95% CI: 1.12 - 6.13, p = 0.027), 2.44 (95% CI: 1.25 - 4.76, p = 0.009), and 1.5 (95% CI: 1.10 - 2.04, p = 0.009), respectively. We also observed that patients with mild/moderate TBI (AIS ≤ 3) had a 50% probability of developing CE 19.7 h after injury (χ2 = 13.82, adjusted R2 = 0.51), while patients with severe TBI (AIS > 3) developed CE after 12.5 h (χ2 = 18.48, adjusted R2 = 0.54). Finally, we conducted a receiver operator characteristic curve analysis of CE time, which showed an area under the curve of 0.744 and 0.672 for severe and mild/moderate TBI, respectively. CONCLUSION Our study found that the onset of CE in individuals with TBI resulting from RTAs was correlated with the severity of the injury. Specifically, those with more severe injuries experienced an earlier onset of CE. These findings suggest that there is a critical time window for clinical intervention in cases of CE secondary to TBI.
Collapse
Affiliation(s)
- Di-You Chen
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China; Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Peng-Fei Wu
- Chongqing Key Laboratory of Traffic Injury and Vehicle Ergonomics, Chongqing, 400042, China
| | - Xi-Yan Zhu
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Wen-Bing Zhao
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Shi-Feng Shao
- Wound Trauma Medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jing-Ru Xie
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Dan-Feng Yuan
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Liang Zhang
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Kui Li
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Shu-Nan Wang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Hui Zhao
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
2
|
Azad TD, Raj D, Ran KR, Vattipally VN, Warman A, Raad M, Williams JR, Lubelski D, Haut ER, Suarez JI, Bydon A, Witham TF, Witiw CD, Theodore N, Byrne JP. Concomitant Traumatic Brain Injury Delays Surgery in Patients With Traumatic Spinal Cord Injury. Neurosurgery 2024:00006123-990000000-01015. [PMID: 38197654 DOI: 10.1227/neu.0000000000002816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/17/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Growing evidence supports prompt surgical decompression for patients with traumatic spinal cord injury (tSCI). Rates of concomitant tSCI and traumatic brain injury (TBI) range from 10% to 30%. Concomitant TBI may delay tSCI diagnosis and surgical intervention. Little is known about real-world management of this common injury constellation that carries significant clinical consequences. This study aimed to quantify the impact of concomitant TBI on surgical timing in a national cohort of patients with tSCI. METHODS Patient data were obtained from the National Trauma Data Bank (2007-2016). Patients admitted for tSCI and who received surgical intervention were included. Delayed surgical intervention was defined as surgery after 24 hours of admission. Multivariable hierarchical regression models were constructed to measure the risk-adjusted association between concomitant TBI and delayed surgical intervention. Secondary outcome included favorable discharge status. RESULTS We identified 14 964 patients with surgically managed tSCI across 377 North American trauma centers, of whom 2444 (16.3%) had concomitant TBI and 4610 (30.8%) had central cord syndrome (CCS). The median time to surgery was 20.0 hours for patients without concomitant TBI and 24.8 hours for patients with concomitant TBI. Hierarchical regression modeling revealed that concomitant TBI was independently associated with delayed surgery in patients with tSCI (odds ratio [OR], 1.3; 95% CI, 1.1-1.6). Although CCS was associated with delayed surgery (OR, 1.5; 95% CI, 1.4-1.7), we did not observe a significant interaction between concomitant TBI and CCS. In the subset of patients with concomitant tSCI and TBI, patients with severe TBI were significantly more likely to experience a surgical delay than patients with mild TBI (OR, 1.4; 95% CI, 1.0-1.9). CONCLUSION Concomitant TBI delays surgical management for patients with tSCI. This effect is largest for patients with tSCI with severe TBI. These findings should serve to increase awareness of concomitant TBI and tSCI and the likelihood that this may delay time-sensitive surgery.
Collapse
Affiliation(s)
- Tej D Azad
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Divyaansh Raj
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Kathleen R Ran
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Vikas N Vattipally
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Anmol Warman
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Micheal Raad
- Department of Orthopedic Surgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - John R Williams
- Department of Neurosurgery, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Daniel Lubelski
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Elliott R Haut
- Division of Acute Care Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jose I Suarez
- Division of Neurosciences Critical Care, Departments of Anesthesiology and Critical Care Medicine, Neurology, and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ali Bydon
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Timothy F Witham
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Christopher D Witiw
- Division of Neurosurgery, Department of Surgery, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - James P Byrne
- Division of Acute Care Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Brasil S, Nogueira RC, Salinet ASM, Yoshikawa MH, Teixeira MJ, Paiva W, Malbouisson LMS, Bor-Seng-Shu E, Panerai RB. Contribution of intracranial pressure to human dynamic cerebral autoregulation after acute brain injury. Am J Physiol Regul Integr Comp Physiol 2023; 324:R216-R226. [PMID: 36572556 DOI: 10.1152/ajpregu.00252.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cerebral perfusion pressure (CPP) is normally expressed by the difference between mean arterial blood pressure (MAP) and intracranial pressure (ICP) but comparison of the separate contributions of MAP and ICP to human cerebral blood flow autoregulation has not been reported. In patients with acute brain injury (ABI), internal jugular vein compression (IJVC) was performed for 60 s. Dynamic cerebral autoregulation (dCA) was assessed in recordings of middle cerebral artery blood velocity (MCAv, transcranial Doppler), and invasive measurements of MAP and ICP. Patients were separated according to injury severity as having whole/undamaged skull, large fractures, or craniotomies, or following decompressive craniectomy. Glasgow coma score was not different for the three groups. IJVC induced changes in MCAv, MAP, ICP, and CPP in all three groups. The MCAv response to step changes in MAP and ICP expressed the dCA response to these two inputs and was quantified with the autoregulation index (ARI). In 85 patients, ARI was lower for the ICP input as compared with the MAP input (2.25 ± 2.46 vs. 3.39 ± 2.28; P < 0.0001), and particularly depressed in the decompressive craniectomy (DC) group (n = 24, 0.35 ± 0.62 vs. 2.21 ± 1.96; P < 0.0005). In patients with ABI, the dCA response to changes in ICP is less efficient than corresponding responses to MAP changes. These results should be taken into consideration in studies aimed to optimize dCA by manipulation of CPP in neurocritical patients.
Collapse
Affiliation(s)
- Sérgio Brasil
- Department of Neurology, School of Medicine University of São Paulo, Brazil
| | - Ricardo C Nogueira
- Department of Neurology, School of Medicine University of São Paulo, Brazil
| | - Angela S M Salinet
- Department of Neurology, School of Medicine University of São Paulo, Brazil
| | - Márcia H Yoshikawa
- Department of Neurology, School of Medicine University of São Paulo, Brazil
| | - Manoel J Teixeira
- Department of Neurology, School of Medicine University of São Paulo, Brazil
| | - Wellingson Paiva
- Department of Neurology, School of Medicine University of São Paulo, Brazil
| | - Luiz M S Malbouisson
- Department of Intensive Care, School of Medicine University of São Paulo, Brazil
| | | | - Ronney B Panerai
- Cardiovascular Sciences Department, University of Leicester, United Kingdom.,National Institute for Health and Care Research, Cardiovascular Research Centre, Glenfield Hospital, University of Leicester, United Kingdom
| |
Collapse
|
4
|
Robinson BD, Isbell CL, Melge AR, Lomas AM, Shaji CA, Mohan CG, Huang JH, Tharakan B. Doxycycline prevents blood-brain barrier dysfunction and microvascular hyperpermeability after traumatic brain injury. Sci Rep 2022; 12:5415. [PMID: 35354869 PMCID: PMC8967830 DOI: 10.1038/s41598-022-09394-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
The main objective of this study was to determine the cellular and molecular effects of doxycycline on the blood–brain barrier (BBB) and protection against secondary injuries following traumatic brain injury (TBI). Microvascular hyperpermeability and cerebral edema resulting from BBB dysfunction after TBI leads to elevation of intracranial pressure, secondary brain ischemia, herniation, and brain death. There are currently no effective therapies to modulate the underlying pathophysiology responsible for TBI-induced BBB dysfunction and hyperpermeability. The loss of BBB integrity by the proteolytic enzyme matrix metalloproteinase-9 (MMP-9) is critical to TBI-induced BBB hyperpermeability, and doxycycline possesses anti-MMP-9 effect. In this study, the effect of doxycycline on BBB hyperpermeability was studied utilizing molecular modeling (using Glide) in silico, cell culture-based models in vitro, and a mouse model of TBI in vivo. Brain microvascular endothelial cell assays of tight junction protein immunofluorescence and barrier permeability were performed. Adult C57BL/6 mice were subjected to sham versus TBI with or without doxycycline treatment and immediate intravital microscopic analysis for evaluating BBB integrity. Postmortem mouse brain tissue was collected to measure MMP-9 enzyme activity. It was found that doxycycline binding to the MMP-9 active sites have binding affinity of −7.07 kcal/mol. Doxycycline treated cell monolayers were protected from microvascular hyperpermeability and retained tight junction integrity (p < 0.05). Doxycycline treatment decreased BBB hyperpermeability following TBI in mice by 25% (p < 0.05). MMP-9 enzyme activity in brain tissue decreased with doxycycline treatment following TBI (p < 0.05). Doxycycline preserves BBB tight junction integrity following TBI via inhibiting MMP-9 activity. When established in human subjects, doxycycline, may provide readily accessible medical treatment after TBI to attenuate secondary injury.
Collapse
Affiliation(s)
- Bobby D Robinson
- Department of Surgery, Baylor Scott and White Medical Center, Baylor Scott and White Research Institute, Temple, TX, USA.,Texas A&M University Health Science Center College of Medicine, Temple, TX, USA
| | - Claire L Isbell
- Department of Surgery, Baylor Scott and White Medical Center, Baylor Scott and White Research Institute, Temple, TX, USA.,Texas A&M University Health Science Center College of Medicine, Temple, TX, USA
| | - Anu R Melge
- Amrita Center for Nanosciences and Molecular Medicine, Kochi, Kerala, India
| | - Angela M Lomas
- Department of Surgery, Baylor Scott and White Medical Center, Baylor Scott and White Research Institute, Temple, TX, USA.,Texas A&M University Health Science Center College of Medicine, Temple, TX, USA
| | - Chinchusha Anasooya Shaji
- Department of Surgery, Baylor Scott and White Medical Center, Baylor Scott and White Research Institute, Temple, TX, USA
| | - C Gopi Mohan
- Amrita Center for Nanosciences and Molecular Medicine, Kochi, Kerala, India
| | - Jason H Huang
- Department of Neurosurgery, Texas A&M University Health Science Center College of Medicine, Temple, TX, USA
| | - Binu Tharakan
- Department of Surgery, Baylor Scott and White Medical Center, Baylor Scott and White Research Institute, Temple, TX, USA. .,Texas A&M University Health Science Center College of Medicine, Temple, TX, USA. .,Department of Surgery, Morehouse School of Medicine, 720 Westview Dr, Atlanta, GA, 30310, USA.
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Traumatic brain injury (TBI) encompasses a group of heterogeneous manifestations of a disease process with high neurologic morbidity and, for severe TBI, high probability of mortality and poor neurologic outcomes. This article reviews TBI in neurocritical care, hence focusing on moderate and severe TBI, and includes an up-to-date review of the many variables to be considered in clinical care. RECENT FINDINGS With advances in medicine and biotechnology, understanding of the impact of TBI has substantially elucidated the distinction between primary and secondary brain injury. Consequently, care of TBI is evolving, with intervention-based modalities targeting multiple physiologic variables. Multimodality monitoring to assess intracranial pressure, cerebral oxygenation, cerebral metabolism, cerebral blood flow, and autoregulation is at the forefront of such advances. SUMMARY Understanding the anatomic and physiologic principles of acute brain injury is necessary in managing moderate to severe TBI. Management is based on the prevention of secondary brain injury from resultant trauma. Care of patients with TBI should occur in a dedicated critical care unit with subspecialty expertise. With the advent of multimodality monitoring and targeted biomarkers in TBI, patient outcomes have a higher probability of improving in the future.
Collapse
|
6
|
Mansour NO, Shama MA, Werida RH. The effect of doxycycline on neuron-specific enolase in patients with traumatic brain injury: a randomized controlled trial. Ther Adv Chronic Dis 2021; 12:20406223211024362. [PMID: 34262678 PMCID: PMC8246481 DOI: 10.1177/20406223211024362] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022] Open
Abstract
Objective: We aimed to examine the effect of doxycycline on serum levels of neuron-specific enolase (NSE), a marker of neuronal damage in traumatic brain injury (TBI) patients. Methods: Patients were randomly assigned into two groups (n = 25 each) to receive either placebo or doxycycline (200 mg daily), with their standard management for 7 days. Results: NSE serum levels in the doxycycline and control groups on day 3 were 14.66 ± 1.78 versus 18.09 ± 4.38 ng/mL, respectively (p = 0.008), and on day 7 were 12.3 ± 2.0 versus 16.43 ± 3.85 ng/mL, respectively (p = 0.003). Glasgow Coma Scale (GCS) on day 7 was 11.90 ± 2.83 versus 9.65 ± 3.44 in the doxycycline and control groups, respectively (p = 0.031). NSE serum levels and GCS scores were negatively correlated (r = −0.569, p < 0.001). Conclusion: Adjunctive early use of doxycycline might be a novel option that halts the ongoing secondary brain injury in patients with moderate to severe TBI. Future larger clinical trials are warranted to confirm these findings.
Collapse
Affiliation(s)
- Noha O Mansour
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Mansoura University, Mansoura, El-Dakahelia, Egypt
| | - Mohamed A Shama
- Emergency Medicine and Traumatology Department, Faculty of Medicine, Tanta University, Tanta, El-Gharbia, Egypt
| | - Rehab H Werida
- Clinical Pharmacy and Pharmacy Practice Department - Faculty of Pharmacy, Damanhour University, Elchorniash Street, Damanhour, Elbehairah 31527, Egypt
| |
Collapse
|
7
|
Jha RM, Mondello S, Bramlett HM, Dixon CE, Shear DA, Dietrich WD, Wang KKW, Yang Z, Hayes RL, Poloyac SM, Empey PE, Lafrenaye AD, Yan HQ, Carlson SW, Povlishock JT, Gilsdorf JS, Kochanek PM. Glibenclamide Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. J Neurotrauma 2020; 38:628-645. [PMID: 33203303 DOI: 10.1089/neu.2020.7421] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glibenclamide (GLY) is the sixth drug tested by the Operation Brain Trauma Therapy (OBTT) consortium based on substantial pre-clinical evidence of benefit in traumatic brain injury (TBI). Adult Sprague-Dawley rats underwent fluid percussion injury (FPI; n = 45), controlled cortical impact (CCI; n = 30), or penetrating ballistic-like brain injury (PBBI; n = 36). Efficacy of GLY treatment (10-μg/kg intraperitoneal loading dose at 10 min post-injury, followed by a continuous 7-day subcutaneous infusion [0.2 μg/h]) on motor, cognitive, neuropathological, and biomarker outcomes was assessed across models. GLY improved motor outcome versus vehicle in FPI (cylinder task, p < 0.05) and CCI (beam balance, p < 0.05; beam walk, p < 0.05). In FPI, GLY did not benefit any other outcome, whereas in CCI, it reduced 21-day lesion volume versus vehicle (p < 0.05). On Morris water maze testing in CCI, GLY worsened performance on hidden platform latency testing versus sham (p < 0.05), but not versus TBI vehicle. In PBBI, GLY did not improve any outcome. Blood levels of glial fibrillary acidic protein and ubiquitin carboxyl terminal hydrolase-1 at 24 h did not show significant treatment-induced changes. In summary, GLY showed the greatest benefit in CCI, with positive effects on motor and neuropathological outcomes. GLY is the second-highest-scoring agent overall tested by OBTT and the only drug to reduce lesion volume after CCI. Our findings suggest that leveraging the use of a TBI model-based phenotype to guide treatment (i.e., GLY in contusion) might represent a strategic choice to accelerate drug development in clinical trials and, ultimately, achieve precision medicine in TBI.
Collapse
Affiliation(s)
- Ruchira M Jha
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Neurology, Neurobiology, and Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | - Helen M Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, USA
| | - C Edward Dixon
- Department of Neurological Surgery, Brain Trauma Research Center, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Deborah A Shear
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - W Dalton Dietrich
- Department of Neurological Surgery, Brain Trauma Research Center, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Department of Emergency Medicine, McKnight Brin Institute of the University of Florida, Gainesville, Florida, USA
| | - Zhihui Yang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Department of Emergency Medicine, McKnight Brin Institute of the University of Florida, Gainesville, Florida, USA
| | - Ronald L Hayes
- Center for Innovative Research, Center for Proteomics and Biomarkers Research, Banyan Biomarkers, Inc., Alachua, Florida, USA
| | - Samuel M Poloyac
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Philip E Empey
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Audrey D Lafrenaye
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Hong Q Yan
- Department of Neurological Surgery, Brain Trauma Research Center, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shaun W Carlson
- Department of Neurological Surgery, Brain Trauma Research Center, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Janice S Gilsdorf
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Pediatrics, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Doxycycline improves traumatic brain injury outcomes in a murine survival model. J Trauma Acute Care Surg 2020; 89:435-440. [DOI: 10.1097/ta.0000000000002801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Jha RM, Bell J, Citerio G, Hemphill JC, Kimberly WT, Narayan RK, Sahuquillo J, Sheth KN, Simard JM. Role of Sulfonylurea Receptor 1 and Glibenclamide in Traumatic Brain Injury: A Review of the Evidence. Int J Mol Sci 2020; 21:E409. [PMID: 31936452 PMCID: PMC7013742 DOI: 10.3390/ijms21020409] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Cerebral edema and contusion expansion are major determinants of morbidity and mortality after TBI. Current treatment options are reactive, suboptimal and associated with significant side effects. First discovered in models of focal cerebral ischemia, there is increasing evidence that the sulfonylurea receptor 1 (SUR1)-Transient receptor potential melastatin 4 (TRPM4) channel plays a key role in these critical secondary injury processes after TBI. Targeted SUR1-TRPM4 channel inhibition with glibenclamide has been shown to reduce edema and progression of hemorrhage, particularly in preclinical models of contusional TBI. Results from small clinical trials evaluating glibenclamide in TBI have been encouraging. A Phase-2 study evaluating the safety and efficacy of intravenous glibenclamide (BIIB093) in brain contusion is actively enrolling subjects. In this comprehensive narrative review, we summarize the molecular basis of SUR1-TRPM4 related pathology and discuss TBI-specific expression patterns, biomarker potential, genetic variation, preclinical experiments, and clinical studies evaluating the utility of treatment with glibenclamide in this disease.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Departments of Critical Care Medicine, Neurology, Neurological Surgery, Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15201, USA
| | | | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan-Bicocca, 20121 Milan, Italy;
- Anaesthesia and Intensive Care, San Gerardo and Desio Hospitals, ASST-Monza, 20900 Monza, Italy
| | - J. Claude Hemphill
- Department of Neurology, University of California, San Francisco, CA 94110, USA;
| | - W. Taylor Kimberly
- Division of Neurocritical Care and Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Boston, MA 02108, USA;
| | - Raj K. Narayan
- Department of Neurosurgery, North Shore University Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA;
| | - Juan Sahuquillo
- Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d′Hebron Research Institute (VHIR), 08001 Barcelona, Spain;
- Department of Neurosurgery, Universitat Autònoma de Barcelona (UAB), 08001 Barcelona, Spain
- Department of Neurosurgery, Vall d′Hebron University Hospital, 08001 Barcelona, Spain
| | - Kevin N. Sheth
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale University School of Medicine, New Haven, CT 06501, USA;
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
10
|
Dehghanian F, Soltani Z, Khaksari M. Can Mesenchymal Stem Cells Act Multipotential in Traumatic Brain Injury? J Mol Neurosci 2020; 70:677-688. [PMID: 31897971 DOI: 10.1007/s12031-019-01475-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/26/2019] [Indexed: 12/22/2022]
Abstract
Traumatic brain injury (TBI), a leading cause of morbidity and mortality throughout the world, will probably become the third cause of death in the world by the year 2020. Lack of effective treatments approved for TBI is a major health problem. TBI is a heterogeneous disease due to the different mechanisms of injury. Therefore, it requires combination therapies or multipotential therapy that can affect multiple targets. In recent years, mesenchymal stem cells (MSCs) transplantation has considered one of the most promising therapeutic strategies to repair of brain injuries including TBI. In these studies, it has been shown that MSCs can migrate to the site of injury and differentiate into the cells secreting growth factors and anti-inflammatory cytokines. The reduction in brain edema, neuroinflammation, microglia accumulation, apoptosis, ischemia, the improvement of motor and cognitive function, and the enhancement in neurogenesis, angiogenesis, and neural stem cells survival, proliferation, and differentiation have been indicated in these studies. However, translation of MSCs research in TBI into a clinical setting will require additional preclinical trials.
Collapse
Affiliation(s)
- Fatemeh Dehghanian
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Bam University of Medical Sciences, Bam, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Khaksari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
11
|
Abstract
BACKGROUND The integrity of the blood-brain barrier (BBB) is paramount in limiting vasogenic edema following traumatic brain injury (TBI). The purpose of this study was to ascertain if quetiapine, an atypical antipsychotic commonly used in trauma/critical care for delirium, protects the BBB and attenuates hyperpermeability in TBI. METHODS The effect of quetiapine on hyperpermeability was examined through molecular modeling, cellular models in vitro and small animal models in vivo. Molecular docking was performed with AutoDock Vina to matrix metalloproteinase-9. Rat brain microvascular endothelial cells (BMECs) were pretreated with quetiapine (20 μM; 1 hour) followed by an inflammatory activator (20 μg/mL chitosan; 2 hours) and compared to controls. Immunofluorescence localization for tight junction proteins zonula occludens-1 and adherens junction protein β-catenin was performed. Human BMECs were grown as a monolayer and pretreated with quetiapine (20 μM; 1 hour) followed by chitosan (20 μg/mL; 2 hours), and transendothelial electrical resistance was measured. C57BL/6 mice (n = 5/group) underwent mild to moderate TBI (controlled cortical impactor) or sham craniotomy. The treatment group was given 10 mg/kg quetiapine intravenously 10 minutes after TBI. The difference in fluorescence intensity between intravascular and interstitium (ΔI) represented BBB hyperpermeability. A matrix metalloproteinase-9 activity assay was performed in brain tissue from animals in the experimental groups ex vivo. RESULTS In silico studies showed quetiapine thermodynamically favorable binding to MMP-9. Junctional localization of zonula occludens-1 and β-catenin showed retained integrity in quetiapine-treated cells as compared with the chitosan group in rat BMECs. Quetiapine attenuated monolayer permeability compared with chitosan group (p < 0.05) in human BMECs. In the animal studies, there was a significant decrease in BBB hyperpermeability and MMP-9 activity when compared between the TBI and TBI plus quetiapine groups (p < 0.05). CONCLUSION Quetiapine treatment may have novel anti-inflammatory properties to provide protection to the BBB by preserving tight junction integrity. LEVEL OF EVIDENCE level IV.
Collapse
|
12
|
Abstract
OBJECTIVES Pre-trauma center care is a critical component in severe pediatric traumatic brain injury (TBI). For geographically large trauma catchment areas, optimizing increased intracranial pressure (ICP) management may potentially improve outcomes. This retrospective study examined ICP management in nontrauma centers and during interfacility transport to the trauma center. METHODS Charts from a pediatric level I trauma center were reviewed for admissions between 2008 and 2013. Patients with a Glasgow Coma Scale score of 8 or less, head Abbreviated Injury Scale score of 3 or higher, and requiring intubation at a nontrauma center were included. Exclusion criteria included head injury secondary to drowning, stroke, obstetrical complications, asphyxia, and afflicted head trauma (younger than 5 years). Trauma center charts contained coalesced data from first responders, nontrauma centers, and transport. RESULTS Twenty-five patients (74%) had increased ICP upon admission at trauma center, 48% experienced ICPs greater than 20 cm H2O within 12 hours of admission, 12% required an urgent craniotomy, and 16% had herniation syndromes on neuroimaging. Pre-trauma center ICP management included osmotherapy and head-of-bed elevation. Sixty-four percent of patients with increased ICP at trauma center admission received pre-trauma center ICP management. CONCLUSIONS Early increased ICP is a common presentation of severe pediatric TBI during pre-trauma center management. However, what constitutes optimal care remains unknown. Given the difficulties of diagnosing early increased ICP in this setting, prophylactic raising ICP-lowering strategies may be considered.
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The care of critically ill brain-injured patients is complex and requires careful balancing of cerebral and systemic treatment priorities. A growing number of studies have reported improved outcomes when patients are admitted to dedicated neurocritical care units (NCCUs). The reasons for this observation have not been definitively clarified. RECENT FINDINGS When recently published articles are combined with older literature, there have been more than 40 000 patients assessed in observational studies that compare neurological and general ICUs. Although results are heterogeneous, admission to NCCUs is associated with lower mortality and a greater chance of favorable recovery. These findings are remarkable considering that there are few interventions in neurocritical care that have been demonstrated to be efficacious in randomized trials. Whether the relationship is causal is still being elucidated but potential explanations include higher patient volume and, in turn, greater clinician experience; more emphasis on and adherence to protocols to avoid secondary brain injury; practice differences related to prognostication and withdrawal of life-sustaining interventions; and differences in the use and interpretation of neuroimaging and neuromonitoring data. SUMMARY Neurocritical care is an evolving field that is associated with improvements in outcomes over the past decade. Further research is required to determine how monitoring and treatment protocols can be optimized.
Collapse
|
14
|
Abstract
The monitoring of intracranial pressure (ICP) is an important tool in medicine for its ability to portray the brain’s compliance status. The bedside monitor displays the ICP waveform and intermittent mean values to guide physicians in the management of patients, particularly those having sustained a traumatic brain injury. Researchers in the fields of engineering and physics have investigated various mathematical analysis techniques applicable to the waveform in order to extract additional diagnostic and prognostic information, although they largely remain limited to research applications. The purpose of this review is to present the current techniques used to monitor and interpret ICP and explore the potential of using advanced mathematical techniques to provide information about system perturbations from states of homeostasis. We discuss the limits of each proposed technique and we propose that nonlinear analysis could be a reliable approach to describe ICP signals over time, with the fractal dimension as a potential predictive clinically meaningful biomarker. Our goal is to stimulate translational research that can move modern analysis of ICP using these techniques into widespread practical use, and to investigate to the clinical utility of a tool capable of simplifying multiple variables obtained from various sensors.
Collapse
Affiliation(s)
- Antonio Di Ieva
- Department of Surgery, Division of Neurosurgery, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
- Injury Prevention Research Office, St. Michael’s Hospital, Toronto, ON, Canada
| | - Erika M. Schmitz
- Injury Prevention Research Office, St. Michael’s Hospital, Toronto, ON, Canada
| | - Michael D. Cusimano
- Department of Surgery, Division of Neurosurgery, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
- Injury Prevention Research Office, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
15
|
Sheth KN, Stein DM, Aarabi B, Hu P, Kufera JA, Scalea TM, Hanley DF. Intracranial Pressure Dose and Outcome in Traumatic Brain Injury. Neurocrit Care 2012; 18:26-32. [DOI: 10.1007/s12028-012-9780-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Kouvarellis AJ, Rohlwink UK, Sood V, Van Breda D, Gowen MJ, Figaji AA. The relationship between basal cisterns on CT and time-linked intracranial pressure in paediatric head injury. Childs Nerv Syst 2011; 27:1139-44. [PMID: 21538131 DOI: 10.1007/s00381-011-1464-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/11/2011] [Indexed: 02/02/2023]
Abstract
PURPOSE Although intracranial pressure (ICP) monitoring is a cornerstone of care for severe traumatic brain injury (TBI), the indications for ICP monitoring in children are unclear. Often, decisions are based on head computed tomography (CT) scan characteristics. Arguably, the patency of the basal cisterns is the most commonly used of these signs. Although raised ICP is more likely with obliterated basal cisterns, the implications of open cisterns are less clear. We examined the association between the status of perimesencephalic cisterns and time-linked ICP values in paediatric severe TBI. METHODS ICP data linked to individual head CT scans were reviewed. Basal cisterns were classified as open or closed by blinded reviewers. For the initial CT scan, we examined ICP values for the first 6 h after monitor insertion. For follow-up scans, we examined ICP values 3 h before and after scanning. Mean ICP and any episode of ICP ≥ 20 mmHg during this period were recorded. RESULTS Data from 104 patients were examined. Basal cisterns were patent in 51.72% of scans, effaced in 34.48% and obliterated in 13.79%. Even when cisterns were open, more than 40% of scans had at least one episode of ICP ≥ 20 mmHg, and 14% of scans had a mean ICP ≥ 20 mmHg. The specificity of open cisterns in predicting ICP < 20 mmHg was poor (57.9%). Age-related data were worse. CONCLUSION Children with severe TBI frequently may have open basal cisterns on head CT despite increased ICP. Open cisterns should not discourage ICP monitoring.
Collapse
Affiliation(s)
- Alison J Kouvarellis
- Division of Neurosurgery, School of Child and Adolescent Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | | | | | | | | | | |
Collapse
|
17
|
Llompart-Pou JA, Abadal JM, Pérez-bárcena J, Molina M, Brell M, IbáÑEz J, Raurich JM, IbáÑEz J, Homar J. Long-Term Follow-up of Patients with Post-Traumatic Refractory High Intracranial Pressure Treated with Lumbar Drainage. Anaesth Intensive Care 2011; 39:79-83. [DOI: 10.1177/0310057x1103900113] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Drainage of cerebrospinal fluid by means of external lumbar drainage (ELD) is controversial in the adult population with traumatic brain injury. We report our experience with ELD in the treatment of post-traumatic high intracranial pressure (ICP) and the results of the long-term follow-up in these patients. We undertook clinical evaluation of 30 patients with traumatic brain injury and high ICP treated with second-tier measures or with first-tier measures if second-tier measures were contraindicated. The study involved a retrospective review of collected data. Outcome at intensive care unit discharge and three to five years after injury were evaluated with the Glasgow Outcome Scale. The mean age of patients was 34.9±12.5 years and 25 (83%) were male. The median (interquartile range) Glasgow Coma score was 8 (7 to 10). ICP before and one hour after ELD placement was 33.7±9.0 and 12.5±4.8 mmHg respectively, a decrease in 21.2±8.3 mmHg (P <0.0001). ELD was placed after a mean of 8.6±3.9 days. Cerebrospinal fluid drainage was maintained for a mean of 6.6±3.5 days. Four patients (13%) required ELD replacement and one patient developed a cerebrospinal fluid infection (3%). No pupillary changes were noted within 48 hours of ELD placement. Long-term outcome was favourable (good recovery or moderate disability) in 62% of the patients studied. The use of ELD resulted in a marked decrease in ICP. These patients presented a good outcome in 62% of the cases in the long-term evaluation. Few complications related with ELD use were noted.
Collapse
Affiliation(s)
- J. A. Llompart-Pou
- Intensive Care Unit, Son Dureta University Hospital, Palma de Mallorca, Illes Balears, Spain
- Neurosurgeon, Department of Neurosurgery
| | - J. M. Abadal
- Intensive Care Unit, Son Dureta University Hospital, Palma de Mallorca, Illes Balears, Spain
- Neurosurgeon, Department of Neurosurgery
| | - J. Pérez-bárcena
- Intensive Care Unit, Son Dureta University Hospital, Palma de Mallorca, Illes Balears, Spain
- Neurosurgeon, Department of Neurosurgery
| | - M. Molina
- Intensive Care Unit, Son Dureta University Hospital, Palma de Mallorca, Illes Balears, Spain
- Neurosurgeon, Department of Neurosurgery
| | - M. Brell
- Intensive Care Unit, Son Dureta University Hospital, Palma de Mallorca, Illes Balears, Spain
- Neurosurgeon, Department of Neurosurgery
| | - J. IbáÑEz
- Intensive Care Unit, Son Dureta University Hospital, Palma de Mallorca, Illes Balears, Spain
- Neurosurgeon, Department of Neurosurgery
| | - J.-M. Raurich
- Intensive Care Unit, Son Dureta University Hospital, Palma de Mallorca, Illes Balears, Spain
- Neurosurgeon, Department of Neurosurgery
| | - J. IbáÑEz
- Intensive Care Unit, Son Dureta University Hospital, Palma de Mallorca, Illes Balears, Spain
- Neurosurgeon, Department of Neurosurgery
| | - J. Homar
- Intensive Care Unit, Son Dureta University Hospital, Palma de Mallorca, Illes Balears, Spain
- Neurosurgeon, Department of Neurosurgery
| |
Collapse
|
18
|
Gatson JW, Simpkins JW, Yi KD, Idris AH, Minei JP, Wigginton JG. Aromatase is increased in astrocytes in the presence of elevated pressure. Endocrinology 2011; 152:207-13. [PMID: 21047944 PMCID: PMC3033056 DOI: 10.1210/en.2010-0724] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 10/01/2010] [Indexed: 11/19/2022]
Abstract
After traumatic brain injury (TBI), a progressive injury and death of neurons and glia leads to decreased brain function. Endogenous and exogenous estrogens may protect these vulnerable cells. In this study, we hypothesized that increased pressure leads to an increase in aromatase expression and estrogen production in astrocytes. In this study, we subjected rat glioma (C6) cells and primary cortical astrocytes to increased pressure (25 mm Hg) for 1, 3, 6, 12, 24, 48, and 72 h. Total aromatase protein and RNA levels were measured using Western analysis and RT-PCR, respectively. In addition, we measured aromatase activity by assaying estrone levels after administration of its precursor, androstenedione. We found that increased pressure applied to the C6 cells and primary cortical astrocytes resulted in a significant increase in both aromatase RNA and protein. To extend these findings, we also analyzed aromatase activity in the primary astrocytes during increased pressure. We found that increased pressure resulted in a significant (P < 0.01) increase in the conversion of androstenedione to estrone. In conclusion, we propose that after TBI, astrocytes sense increased pressure, leading to an increase in aromatase production and activity in the brain. These results may suggest mechanisms of brain estrogen production after increases in pressure as seen in TBI patients.
Collapse
Affiliation(s)
- J W Gatson
- Department of Surgery, University of Texas Southern Medical Center Dallas, Texas 75390-8579, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Brain herniation in a patient with apparently normal intracranial pressure: a case report. J Med Case Rep 2010; 4:297. [PMID: 20807427 PMCID: PMC2936928 DOI: 10.1186/1752-1947-4-297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 08/31/2010] [Indexed: 11/10/2022] Open
Abstract
Introduction Intracranial pressure monitoring is commonly implemented in patients with neurologic injury and at high risk of developing intracranial hypertension, to detect changes in intracranial pressure in a timely manner. This enables early and potentially life-saving treatment of intracranial hypertension. Case presentation An intraparenchymal pressure probe was placed in the hemisphere contralateral to a large basal ganglia hemorrhage in a 75-year-old Caucasian man who was mechanically ventilated and sedated because of depressed consciousness. Intracranial pressures were continuously recorded and never exceeded 17 mmHg. After sedation had been stopped, our patient showed clinical signs of transtentorial brain herniation, despite apparently normal intracranial pressures (less than 10 mmHg). Computed tomography revealed that the size of the intracerebral hematoma had increased together with significant unilateral brain edema and transtentorial herniation. The contralateral hemisphere where the intraparenchymal pressure probe was placed appeared normal. Our patient underwent emergency decompressive craniotomy and was tracheotomized early, but did not completely recover. Conclusions Intraparenchymal pressure probes placed in the hemisphere contralateral to an intracerebral hematoma may dramatically underestimate intracranial pressure despite apparently normal values, even in the case of transtentorial brain herniation.
Collapse
|
20
|
Padayachy LC, Figaji AA, Bullock MR. Intracranial pressure monitoring for traumatic brain injury in the modern era. Childs Nerv Syst 2010; 26:441-52. [PMID: 19937249 DOI: 10.1007/s00381-009-1034-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Intracranial pressure (ICP) has become a cornerstone of care in adult and pediatric patients with traumatic brain injury (TBI). DISCUSSION Despite the fact that continuous monitoring of ICP in TBI was described almost 60 years ago, there are no randomized trials confirming the benefit of ICP monitoring and treatment in TBI. There is, however, a large body of clinical evidence showing that ICP monitoring influences treatment and leads to better outcomes if part of protocol-driven therapy. However, treatment of ICP has adverse effects, and there are several questions about ICP management that have yet to be definitively answered, particularly in pediatric TBI. This review examines the history and evolution of ICP monitoring, pathophysiological concepts that influence ICP interpretation, ongoing controversies, and the place of ICP monitoring in modern neurocritical care.
Collapse
Affiliation(s)
- Llewellyn C Padayachy
- Division of Neurosurgery, School of Child and Adolescent Health, Red Cross Children's Hospital, University of Cape Town, Cape Town, South Africa
| | | | | |
Collapse
|
21
|
The Course of Intracranial Pressure in Traumatic Brain Injury: Relation with Outcome and CT-characteristics. Neurocrit Care 2010; 12:362-8. [DOI: 10.1007/s12028-009-9329-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Abstract
Although intracranial hypertension may arise from diverse pathology, several basic principles remain paramount to understanding its dynamics; however, the management of elevated intracranial pressure (ICP) may be very complex. Initial management of common ICP exacerbants is important, such as addressing venous outflow obstruction with upright midline head positioning and treating agitation and pain with sedation and analgesia. Surgical decompression of mass effect may rapidly improve ICP elevation, but the impact on outcome is unclear. Considerable effort has been put forth to understand the roles of multimodal intensive care monitoring, osmolar therapy, cerebral metabolic suppression, and temperature augmentation in the advanced management of elevated ICP. Establishing a protocol-driven approach to the management of ICP enables the rapid bedside assessment of multiple physiologic variables to implement appropriate treatments, which limit the risk of developing secondary brain injury.
Collapse
Affiliation(s)
- Thomas J Wolfe
- Department of Neurology, Medical College of Wisconsin and Froedtert Hospital, Milwaukee, WI 53226, USA.
| | | |
Collapse
|