1
|
Hsing V, Zhao HQ, Post M, Devine D, McVey MJ. Preservation of recipient plasma sphingosine-1-phosphate levels reduces transfusion-related acute lung injury. Am J Physiol Lung Cell Mol Physiol 2024; 326:L589-L595. [PMID: 38375568 DOI: 10.1152/ajplung.00388.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024] Open
Abstract
Cold-stored (CS) platelets are once again being reintroduced for clinical use. Transfused CS platelets offer benefits over room temperature-stored (RTS) platelets such as increased hemostatic effects and prolongation of shelf-life. Despite these advantages little is known about their association with transfusion-related acute lung injury (TRALI). TRALI is associated with prolonged storage of RTS platelets and has a mortality of >15%. Determining the safety of CS platelets is important considering their proposed use in TRALI-vulnerable populations with inflammation such as surgical patients or patients with trauma. Donor platelet-derived ceramide causes TRALI, whereas donor platelet sphingosine-1-phosphate (S1P) is barrier protective. Females have higher plasma levels of S1P than males. Cold temperatures increase S1P levels in cells. Therefore, we hypothesized that female (donors or recipients) and/or CS platelets would decrease TRALI. To test this, we compared how male and female donor and recipient allogeneic platelet transfusions of CS (4°C) versus RTS (23°C) platelets stored for 5 days influence murine TRALI. Transfusion of CS platelets significantly reduced recipient lung tissue wet-to-dry ratios, bronchoalveolar lavage total protein, lung tissue myeloperoxidase enzyme activity, histological lung injury scores, and increased plasma sphingosine-1-phosphate (S1P) levels compared with RTS platelet transfusions. Female as opposed to male recipients had less TRALI and higher plasma S1P levels. Female donor mouse platelets had higher S1P levels than males. Mouse and human CS platelets had increased S1P levels compared with RTS platelets. Higher recipient plasma S1P levels appear protective considering females, and males receiving platelets from females or male CS platelets had less TRALI.NEW & NOTEWORTHY Transfusion-related acute lung injury (TRALI) though relatively rare represents a severe lung injury. The sphingolipid sphingosine-1-phosphate (S1P) regulates the severity of platelet-mediated TRALI. Female platelet transfusion recipient plasmas or stored platelets from female donors have higher S1P levels than males, which reduces TRALI. Cold storage of murine platelets preserves platelet-S1P, which reduces TRALI in platelet-transfused recipients.
Collapse
Affiliation(s)
- Vanessa Hsing
- Translational Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Han Qi Zhao
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Innovation, Canadian Blood Services, Vancouver, British Columbia, Canada
| | - Martin Post
- Translational Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Dana Devine
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Innovation, Canadian Blood Services, Vancouver, British Columbia, Canada
| | - Mark J McVey
- Translational Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Sohn SH, Chae S, Choi JW, Nam K, Cho YJ, Cho JY, Hwang HY. Differences in Brain Metabolite Profiles Between Normothermia and Hypothermia. J Korean Med Sci 2024; 39:e79. [PMID: 38412613 PMCID: PMC10896702 DOI: 10.3346/jkms.2024.39.e79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/14/2023] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND This study evaluated the difference in brain metabolite profiles between normothermia and hypothermia reaching 25°C in humans in vivo. METHODS Thirteen patients who underwent thoracic aorta surgery under moderate hypothermia were prospectively enrolled. Plasma samples were collected simultaneously from the arteries and veins to estimate metabolite uptake or release. Targeted metabolomics based on liquid chromatographic mass spectrometry and direct flow injection were performed, and changes in the profiles of respective metabolites from normothermia to hypothermia were compared. The ratios of metabolite concentrations in venous blood samples to those in arterial blood samples (V/A ratios) were calculated, and log2 transformation of the ratios [log2(V/A)] was performed for comparison between the temperature groups. RESULTS Targeted metabolomics were performed for 140 metabolites, including 20 amino acids, 13 biogenic amines, 10 acylcarnitines, 82 glycerophospholipids, 14 sphingomyelins, and 1 hexose. Of the 140 metabolites analyzed, 137 metabolites were released from the brain in normothermia, and the release of 132 of these 137 metabolites was decreased in hypothermia. Two metabolites (dopamine and hexose) showed constant release from the brain in hypothermia, and 3 metabolites (2 glycophospholipids and 1 sphingomyelin) showed conversion from release to uptake in hypothermia. Glutamic acid demonstrated a distinct brain metabolism in that it was taken up by the brain in normothermia, and the uptake was increased in hypothermia. CONCLUSION Targeted metabolomics demonstrated various degrees of changes in the release of metabolites by the hypothermic brain. The release of most metabolites was decreased in hypothermia, whereas glutamic acid showed a distinct brain metabolism.
Collapse
Affiliation(s)
- Suk Ho Sohn
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sihyun Chae
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Woong Choi
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Karam Nam
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Youn Joung Cho
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
| | - Ho Young Hwang
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
3
|
Zeng K, Zhou X, Liu W, Nie C, Zhang Y. Determination of endogenous sphingolipid content in stroke rats and HT22 cells subjected to oxygen-glucose deprivation by LC‒MS/MS. Lipids Health Dis 2023; 22:13. [PMID: 36698123 PMCID: PMC9878918 DOI: 10.1186/s12944-022-01762-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Stroke is the leading cause of death in humans worldwide, and its incidence increases every year. It is well documented that lipids are closely related to stroke. Analyzing the changes in lipid content in the stroke model after absolute quantification and investigating whether changes in lipid content can predict stroke severity provides a basis for the combination of clinical stroke and quantitative lipid indicators. METHODS This paper establishes a rapid, sensitive, and reliable LC‒MS/MS analytical method for the detection of endogenous sphingolipids in rat serum and brain tissue and HT22 cells and quantifies the changes in sphingolipid content in the serum and brain tissue of rats from the normal and pMCAO groups and in cells from the normal and OGD/R groups. Using sphingosine (d17:1) as the internal standard, a chloroform: methanol (9:1) mixed system was used for protein precipitation and lipid extraction, followed by analysis by reversed-phase liquid chromatography coupled to triple quadrupole mass spectrometry. RESULTS Based on absolute quantitative analysis of lipids in multiple biological samples, our results show that compared with those in the normal group, the contents of sphinganine (d16:0), sphinganine (d18:0), and phytosphingosine were significantly increased in the model group, except sphingosine-1-phosphate, which was decreased in various biological samples. The levels of each sphingolipid component in serum fluctuate with time. CONCLUSION This isotope-free and derivatization-free LC‒MS/MS method can achieve absolute quantification of sphingolipids in biological samples, which may also help identify lipid biomarkers of cerebral ischemia.
Collapse
Affiliation(s)
- Keqi Zeng
- grid.411866.c0000 0000 8848 7685Department of Pharmaceutics, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong 51006 Guangzhou, China
| | - Xin Zhou
- grid.411866.c0000 0000 8848 7685Department of Pharmaceutics, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong 51006 Guangzhou, China
| | - Wanyi Liu
- grid.411866.c0000 0000 8848 7685Department of Pharmaceutics, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong 51006 Guangzhou, China
| | - Cong Nie
- grid.411866.c0000 0000 8848 7685Department of Pharmaceutics, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong 51006 Guangzhou, China
| | - Yingfeng Zhang
- grid.411866.c0000 0000 8848 7685Department of Pharmaceutics, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong 51006 Guangzhou, China
| |
Collapse
|
4
|
Sheng J, Chen W, Zhuang D, Li T, Yang J, Cai S, Chen X, Liu X, Tian F, Huang M, Li L, Li K. A Clinical Predictive Nomogram for Traumatic Brain Parenchyma Hematoma Progression. Neurol Ther 2022; 11:185-203. [PMID: 34855160 PMCID: PMC8857351 DOI: 10.1007/s40120-021-00306-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Acute traumatic intraparenchymal hematoma (tICH) expansion is a major cause of clinical deterioration after brain contusion. Here, an accurate prediction tool for acute tICH expansion is proposed. METHODS A multicenter hospital-based study for multivariable prediction model was conducted among patients (889 patients in a development dataset and 264 individuals in an external validation dataset) with initial and follow-up computed tomography (CT) imaging for tICH volume evaluation. Semi-automated software was employed to assess tICH expansion. Two multivariate predictive models for acute tICH expansion were developed and externally validated. RESULTS A total of 198 (22.27%) individuals had remarkable acute tICH expansion. The novel Traumatic Parenchymatous Hematoma Expansion Aid (TPHEA) model retained several variables, including age, coagulopathy, baseline tICH volume, time to baseline CT time, subdural hemorrhage, a novel imaging marker of multihematoma fuzzy sign, and an inflammatory index of monocyte-to-lymphocyte ratio. Compared with multihematoma fuzzy sign, monocyte-to-lymphocyte ratio, and the basic model, the TPHEA model exhibited optimal discrimination, calibration, and clinical net benefits for patients with acute tICH expansion. A TPHEA nomogram was subsequently introduced from this model to facilitate clinical application. In an external dataset, this device showed good predicting performance for acute tICH expansion. CONCLUSIONS The main predictive factors in the TPHEA nomogram are the monocyte-to-lymphocyte ratio, baseline tICH volume, and multihematoma fuzzy sign. This user-friendly tool can estimate acute tICH expansion and optimize personalized treatments for individuals with brain contusion.
Collapse
Affiliation(s)
- Jiangtao Sheng
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, Chin
| | - Weiqiang Chen
- Department of Neurosurgery, First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Dongzhou Zhuang
- Department of Neurosurgery, First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Tian Li
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, China
| | - Jinhua Yang
- Department of Neurosurgery, First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Shirong Cai
- Department of Neurosurgery, First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Xiaoxuan Chen
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, China
| | - Xueer Liu
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, China
| | - Fei Tian
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Mindong Huang
- Department of Neurosurgery, Affiliated Jieyang Hospital of Sun Yat-Sen University, Jieyang, Guangdong, China
| | - Lianjie Li
- Department of Neurosurgery, Affiliated East Hospital of Xiamen University Medical College, Fuzhou, Fujian, China
| | - Kangsheng Li
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, China
| |
Collapse
|