1
|
Wang M, Dufort C, Du Z, Shi R, Xu F, Huang Z, Sigler AR, Leak RK, Hu X. IL-33/ST2 signaling in monocyte-derived macrophages maintains blood-brain barrier integrity and restricts infarctions early after ischemic stroke. J Neuroinflammation 2024; 21:274. [PMID: 39449077 PMCID: PMC11515348 DOI: 10.1186/s12974-024-03264-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Brain microglia and infiltrating monocyte-derived macrophages are vital in preserving blood vessel integrity after stroke. Understanding mechanisms that induce immune cells to adopt vascular-protective phenotypes may hasten the development of stroke treatments. IL-33 is a potent chemokine released from damaged cells, such as CNS glia after stroke. The activation of IL-33/ST2 signaling has been shown to promote neuronal viability and white matter integrity after ischemic stroke. The impact of IL-33/ST2 on blood-brain barrier (BBB) integrity, however, remains unknown. The current study fills this gap and reveals a critical role of IL-33/ST2 signaling in macrophage-mediated BBB protection after stroke. METHODS Transient middle cerebral artery occlusion (tMCAO) was performed to induce ischemic stroke in wildtype (WT) versus ST2 knockout (KO) male mice. IL-33 was applied intranasally to tMCAO mice with or without dietary PLX5622 to deplete microglia/macrophages. ST2 KO versus WT bone marrow or macrophage cell transplantations were used to test the involvement of ST2+ macrophages in BBB integrity. Macrophages were cocultured in transwells with brain endothelial cells (ECs) after oxygen-glucose deprivation (OGD) to test potential direct effects of IL33-treated macrophages on the BBB in vitro. RESULTS The ST2 receptor was expressed in brain ECs, microglia, and infiltrating macrophages. Global KO of ST2 led to more IgG extravasation and loss of ZO-1 in cerebral microvessels 3 days post-tMCAO. Intranasal IL-33 administration reduced BBB leakage and infarct severity in microglia/macrophage competent mice, but not in microglia/macrophage depleted mice. Worse BBB injury was observed after tMCAO in chimeric WT mice reconstituted with ST2 KO bone marrow, and in WT mice whose monocytes were replaced by ST2 KO monocytes. Macrophages treated with IL-33 reduced in vitro barrier leakage and maintained tight junction integrity after OGD. In contrast, IL-33 exerted minimal direct effects on the endothelial barrier in the absence of macrophages. IL-33-treated macrophages demonstrated transcriptional upregulation of an array of protective factors, suggesting a shift towards favorable phenotypes. CONCLUSION Our results demonstrate that early-stage IL-33/ST2 signaling in infiltrating macrophages reduces the extent of acute BBB disruption after stroke. Intranasal IL-33 administration may represent a new strategy to reduce BBB leakage and infarct severity.
Collapse
Affiliation(s)
- Miao Wang
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Connor Dufort
- Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Zhihong Du
- Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Ruyu Shi
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Fei Xu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Zhentai Huang
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Ana Rios Sigler
- Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Xiaoming Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.
- Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
2
|
Colombo E, Bacigaluppi M, Bartoccetti M, Triolo D, Bassani C, Bergamaschi A, Descamps HC, Gullotta GS, Henley M, Piccoli M, Anastasia L, Pitt D, Newcombe J, Martino G, Farina C. Astrocyte TrkB promotes brain injury and edema formation in ischemic stroke. Neurobiol Dis 2024; 201:106670. [PMID: 39303814 DOI: 10.1016/j.nbd.2024.106670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024] Open
Abstract
Following ischemic stroke astrocytes undergo rapid molecular and functional changes that may accentuate tissue damage. In this study we identified the neurotrophin receptor TrkB in astrocytes as a key promoter of acute CNS injury in ischemic stroke. In fact, TrkB protein was strongly upregulated in astrocytes after human and experimental stroke, and transgenic mice lacking astrocyte TrkB displayed significantly smaller lesion volume, lower brain atrophy and better motor performance than control animals after transient middle cerebral artery occlusion. Neuropathological studies evidenced that edema directly correlated with astrogliosis and was limited in transgenic mice. Importantly, adaptive levels of the water channel AQP4 was astrocyte TrkB-dependent as AQP4 upregulation after stroke did not occur in mice lacking astrocyte TrkB. In vitro experiments with wild-type and/or TrkB-deficient astrocytes highlighted TrkB-dependent upregulation of AQP4 via activation of HIF1-alpha under hypoxia. Collectively, our observations indicate that TrkB signaling in astrocytes contributes to the development of edema and worsens cerebral ischemia.
Collapse
Affiliation(s)
- Emanuela Colombo
- Immunobiology of Neurological Disorders Unit, Institute of Experimental Neurology (INSpe), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Bacigaluppi
- Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| | - Michela Bartoccetti
- Immunobiology of Neurological Disorders Unit, Institute of Experimental Neurology (INSpe), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Triolo
- Immunobiology of Neurological Disorders Unit, Institute of Experimental Neurology (INSpe), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Bassani
- Immunobiology of Neurological Disorders Unit, Institute of Experimental Neurology (INSpe), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Bergamaschi
- Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Hélène C Descamps
- Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giorgia Serena Gullotta
- Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Henley
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Marco Piccoli
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Milan, Italy
| | - Luigi Anastasia
- University Vita-Salute San Raffaele, Milan, Italy; Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Milan, Italy
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jia Newcombe
- NeuroResource, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Gianvito Martino
- Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| | - Cinthia Farina
- Immunobiology of Neurological Disorders Unit, Institute of Experimental Neurology (INSpe), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
3
|
Ong CJ, Huang Q, Kim ISY, Pohlmann J, Chatzidakis S, Brush B, Zhang Y, Du Y, Malinger LA, Benjamin EJ, Dupuis J, Greer DM, Smirnakis SM, Trinquart L. Association of Dynamic Trajectories of Time-Series Data and Life-Threatening Mass Effect in Large Middle Cerebral Artery Stroke. Neurocrit Care 2024:10.1007/s12028-024-02036-9. [PMID: 38955931 DOI: 10.1007/s12028-024-02036-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Life-threatening, space-occupying mass effect due to cerebral edema and/or hemorrhagic transformation is an early complication of patients with middle cerebral artery stroke. Little is known about longitudinal trajectories of laboratory and vital signs leading up to radiographic and clinical deterioration related to this mass effect. METHODS We curated a retrospective data set of 635 patients with large middle cerebral artery stroke totaling 95,463 data points for 10 longitudinal covariates and 40 time-independent covariates. We assessed trajectories of the 10 longitudinal variables during the 72 h preceding three outcomes representative of life-threatening mass effect: midline shift ≥ 5 mm, pineal gland shift (PGS) > 4 mm, and decompressive hemicraniectomy (DHC). We used a "backward-looking" trajectory approach. Patients were aligned based on outcome occurrence time and the trajectory of each variable was assessed before that outcome by accounting for cases and noncases, adjusting for confounders. We evaluated longitudinal trajectories with Cox proportional time-dependent regression. RESULTS Of 635 patients, 49.0% were female, and the mean age was 69 years. Thirty five percent of patients had midline shift ≥ 5 mm, 24.3% of patients had PGS > 4 mm, and 10.7% of patients underwent DHC. Backward-looking trajectories showed mild increases in white blood cell count (10-11 K/UL within 72 h), temperature (up to half a degree within 24 h), and sodium levels (1-3 mEq/L within 24 h) before the three outcomes of interest. We also observed a decrease in heart rate (75-65 beats per minute) 24 h before DHC. We found a significant association between increased white blood cell count with PGS > 4 mm (hazard ratio 1.05, p value 0.007). CONCLUSIONS Longitudinal profiling adjusted for confounders demonstrated that white blood cell count, temperature, and sodium levels appear to increase before radiographic and clinical indicators of space-occupying mass effect. These findings will inform the development of multivariable dynamic risk models to aid prediction of life-threatening, space-occupying mass effect.
Collapse
Affiliation(s)
- Charlene J Ong
- Department of Neurology, Boston Medical Center, 1 Boston Medical Center PI, Boston, MA, 02118, USA.
- Chobanian and Avedisian School of Medicine, Boston University School of Medicine, 85 E Concord St, Boston, MA, 02118, USA.
- Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA, 02115, USA.
| | - Qiuxi Huang
- Department of Epidemiology, Boston University School of Public Health, 715 Albany St, Boston, MA, 02118, USA
| | - Ivy So Yeon Kim
- Department of Neurology, Boston Medical Center, 1 Boston Medical Center PI, Boston, MA, 02118, USA
| | - Jack Pohlmann
- Department of Neurology, Boston Medical Center, 1 Boston Medical Center PI, Boston, MA, 02118, USA
| | - Stefanos Chatzidakis
- Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA, 02115, USA
| | - Benjamin Brush
- New York University Langone Hospital and NYU Grossman School of Medicine, 550 1St Ave, New York, NY, 10016, USA
| | - Yihan Zhang
- Department of Neurology, Boston Medical Center, 1 Boston Medical Center PI, Boston, MA, 02118, USA
| | - Yili Du
- Chobanian and Avedisian School of Medicine, Boston University School of Medicine, 85 E Concord St, Boston, MA, 02118, USA
| | - Leigh Ann Malinger
- Chobanian and Avedisian School of Medicine, Boston University School of Medicine, 85 E Concord St, Boston, MA, 02118, USA
| | - Emelia J Benjamin
- Department of Epidemiology, Boston University School of Public Health, 715 Albany St, Boston, MA, 02118, USA
- Department of Cardiology, Boston Medical Center and Boston University Chobanian and Avedisian School of Medicine, 85 E Concord St, Boston, MA, 02118, USA
| | - Josée Dupuis
- Department of Epidemiology, Boston University School of Public Health, 715 Albany St, Boston, MA, 02118, USA
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 2001 McGill College, Montreal, QC, Canada
| | - David M Greer
- Department of Neurology, Boston Medical Center, 1 Boston Medical Center PI, Boston, MA, 02118, USA
- Chobanian and Avedisian School of Medicine, Boston University School of Medicine, 85 E Concord St, Boston, MA, 02118, USA
| | - Stelios M Smirnakis
- Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA, 02115, USA
- Department of Neurology, Jamaica Plain Veterans Administration Medical Center, 150 S Huntington Ave, Boston, MA, 02130, USA
| | - Ludovic Trinquart
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
- Tufts Clinical and Translational Science Institute, Tufts University, 419 Boston Ave, Medford, MA, 02155, USA
| |
Collapse
|
4
|
Li W, Shi J, Yu Z, Garcia-Gabilondo M, Held A, Huang L, Deng W, Ning M, Ji X, Rosell A, Wainger BJ, Lo EH. SLC22A17 as a Cell Death-Linked Regulator of Tight Junctions in Cerebral Ischemia. Stroke 2024; 55:1650-1659. [PMID: 38738428 DOI: 10.1161/strokeaha.124.046736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Beyond neuronal injury, cell death pathways may also contribute to vascular injury after stroke. We examined protein networks linked to major cell death pathways and identified SLC22A17 (solute carrier family 22 member 17) as a novel mediator that regulates endothelial tight junctions after ischemia and inflammatory stress. METHODS Protein-protein interactions and brain enrichment analyses were performed using STRING, Cytoscape, and a human tissue-specific expression RNA-seq database. In vivo experiments were performed using mouse models of transient focal cerebral ischemia. Human stroke brain tissues were used to detect SLC22A17 by immunostaining. In vitro experiments were performed using human brain endothelial cultures subjected to inflammatory stress. Immunostaining and Western blot were used to assess responses in SLC22A17 and endothelial tight junctional proteins. Water content, dextran permeability, and electrical resistance assays were used to assess edema and blood-brain barrier (BBB) integrity. Gain and loss-of-function studies were performed using lentiviral overexpression of SLC22A17 or short interfering RNA against SLC22A17, respectively. RESULTS Protein-protein interaction analysis showed that core proteins from apoptosis, necroptosis, ferroptosis, and autophagy cell death pathways were closely linked. Among the 20 proteins identified in the network, the iron-handling solute carrier SLC22A17 emerged as the mediator enriched in the brain. After cerebral ischemia in vivo, endothelial expression of SLC22A17 increases in both human and mouse brains along with BBB leakage. In human brain endothelial cultures, short interfering RNA against SLC22A17 prevents TNF-α (tumor necrosis factor alpha)-induced ferroptosis and downregulation in tight junction proteins and disruption in transcellular permeability. Notably, SLC22A17 could repress the transcription of tight junctional genes. Finally, short interfering RNA against SLC22A17 ameliorates BBB leakage in a mouse model of focal cerebral ischemia. CONCLUSIONS Using a combination of cell culture, human stroke samples, and mouse models, our data suggest that SLC22A17 may play a role in the control of BBB function after cerebral ischemia. These findings may offer a novel mechanism and target for ameliorating BBB injury and edema after stroke.
Collapse
Affiliation(s)
- Wenlu Li
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jingfei Shi
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
- Cerebrovascular Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China (J.S., X.J.)
| | - Zhanyang Yu
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Miguel Garcia-Gabilondo
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autónoma de Barcelona, Spain (M.G.-G., A.R.)
| | - Aaron Held
- Department of Neurology, Sean M. Healey and AMG Center for ALS (A.H., B.J.W.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Lena Huang
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Wenjun Deng
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Neurology, Clinical Proteomics Research Center (W.D., M.N.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Mingming Ning
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Neurology, Clinical Proteomics Research Center (W.D., M.N.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Xunming Ji
- Cerebrovascular Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China (J.S., X.J.)
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autónoma de Barcelona, Spain (M.G.-G., A.R.)
| | - Brian J Wainger
- Department of Neurology, Sean M. Healey and AMG Center for ALS (A.H., B.J.W.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Eng H Lo
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
5
|
Ong CJ, Chatzidakis S, Ong JJ, Feske S. Updates in Management of Large Hemispheric Infarct. Semin Neurol 2024; 44:281-297. [PMID: 38759959 PMCID: PMC11210577 DOI: 10.1055/s-0044-1787046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
This review delves into updates in management of large hemispheric infarction (LHI), a condition affecting up to 10% of patients with supratentorial strokes. While traditional management paradigms have endured, recent strides in research have revolutionized the approach to acute therapies, monitoring, and treatment. Notably, advancements in triage methodologies and the application of both pharmacological and mechanical abortive procedures have reshaped the acute care trajectory for patients with LHI. Moreover, ongoing endeavors have sought to refine strategies for the optimal surveillance and mitigation of complications, notably space-occupying mass effect, which can ensue in the aftermath of LHI. By amalgamating contemporary guidelines with cutting-edge clinical trial findings, this review offers a comprehensive exploration of the current landscape of acute and ongoing patient care for LHI, illuminating the evolving strategies that underpin effective management in this critical clinical domain.
Collapse
Affiliation(s)
- Charlene J. Ong
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston Medical Center, 1 Boston Medical Center PI, Boston, Massachusetts
| | - Stefanos Chatzidakis
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jimmy J. Ong
- Department of Neurology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
- Department of Neurology, Jefferson Einstein Hospital, Philadelphia, Pennsylvania
| | - Steven Feske
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston Medical Center, 1 Boston Medical Center PI, Boston, Massachusetts
| |
Collapse
|
6
|
Simard JM, Wilhelmy B, Tsymbalyuk N, Shim B, Stokum JA, Evans M, Gaur A, Tosun C, Keledjian K, Ciryam P, Serra R, Gerzanich V. Brain Swelling versus Infarct Size: A Problematizing Review. Brain Sci 2024; 14:229. [PMID: 38539619 PMCID: PMC10968884 DOI: 10.3390/brainsci14030229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 05/16/2024] Open
Abstract
In human stroke, brain swelling is an important predictor of neurological outcome and mortality, yet treatments to reduce or prevent brain swelling are extremely limited, due in part to an inadequate understanding of mechanisms. In preclinical studies on cerebroprotection in animal models of stroke, historically, the focus has been on reducing infarct size, and in most studies, a reduction in infarct size has been associated with a corresponding reduction in brain swelling. Unfortunately, such findings on brain swelling have little translational value for treating brain swelling in patients with stroke. This is because, in humans, brain swelling usually becomes evident, either symptomatically or radiologically, days after the infarct size has stabilized, requiring that the prevention or treatment of brain swelling target mechanism(s) that are independent of a reduction in infarct size. In this problematizing review, we highlight the often-neglected concept that brain edema and brain swelling are not simply secondary, correlative phenomena of stroke but distinct pathological entities with unique molecular and cellular mechanisms that are worthy of direct targeting. We outline the advances in approaches for the study of brain swelling that are independent of a reduction in infarct size. Although straightforward, the approaches reviewed in this study have important translational relevance for identifying novel treatment targets for post-ischemic brain swelling.
Collapse
Affiliation(s)
- J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.W.); (N.T.); (B.S.); (J.A.S.); (M.E.); (A.G.); (C.T.); (K.K.); (R.S.); (V.G.)
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bradley Wilhelmy
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.W.); (N.T.); (B.S.); (J.A.S.); (M.E.); (A.G.); (C.T.); (K.K.); (R.S.); (V.G.)
| | - Natalya Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.W.); (N.T.); (B.S.); (J.A.S.); (M.E.); (A.G.); (C.T.); (K.K.); (R.S.); (V.G.)
| | - Bosung Shim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.W.); (N.T.); (B.S.); (J.A.S.); (M.E.); (A.G.); (C.T.); (K.K.); (R.S.); (V.G.)
| | - Jesse A. Stokum
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.W.); (N.T.); (B.S.); (J.A.S.); (M.E.); (A.G.); (C.T.); (K.K.); (R.S.); (V.G.)
| | - Madison Evans
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.W.); (N.T.); (B.S.); (J.A.S.); (M.E.); (A.G.); (C.T.); (K.K.); (R.S.); (V.G.)
| | - Anandita Gaur
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.W.); (N.T.); (B.S.); (J.A.S.); (M.E.); (A.G.); (C.T.); (K.K.); (R.S.); (V.G.)
| | - Cigdem Tosun
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.W.); (N.T.); (B.S.); (J.A.S.); (M.E.); (A.G.); (C.T.); (K.K.); (R.S.); (V.G.)
| | - Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.W.); (N.T.); (B.S.); (J.A.S.); (M.E.); (A.G.); (C.T.); (K.K.); (R.S.); (V.G.)
| | - Prajwal Ciryam
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Riccardo Serra
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.W.); (N.T.); (B.S.); (J.A.S.); (M.E.); (A.G.); (C.T.); (K.K.); (R.S.); (V.G.)
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.W.); (N.T.); (B.S.); (J.A.S.); (M.E.); (A.G.); (C.T.); (K.K.); (R.S.); (V.G.)
| |
Collapse
|
7
|
Qu Y, Yang Y, Sun X, Ma HY, Zhang P, Abuduxukuer R, Zhu HJ, Liu J, Zhang PD, Guo ZN. Heart Rate Variability in Patients with Spontaneous Intracerebral Hemorrhage and its Relationship with Clinical Outcomes. Neurocrit Care 2024; 40:282-291. [PMID: 36991176 DOI: 10.1007/s12028-023-01704-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/22/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Although abnormal heart rate variability (HRV) is frequently observed in patients with spontaneous intracerebral hemorrhage (ICH), its time course and presentation of different indices remain unclear, and few studies have focused on its association with clinical outcomes. METHODS We prospectively recruited consecutive patients with spontaneous ICH between June 2014 and June 2021. HRV was evaluated twice during hospitalization (within 7 days and 10-14 days after stroke). Time and frequency domain indices were calculated. A modified Rankin Scale score ≥ 3 at 3 months was defined as a poor outcome. RESULTS Finally, 122 patients with ICH and 122 age- and sex-matched volunteers were included. Compared with controls, time domain and absolute frequency domain HRV parameters (total power, low frequency [LF], and high frequency [HF]) in the ICH group were significantly decreased within 7 days and 10-14 days. For relative values, normalized LF (LF%) and LF/HF were significantly higher, whereas normalized HF (HF%) was significantly lower, in the patient group than in the control group. Furthermore, LF% and HF% measured at 10-14 days were independently associated with 3-month outcomes. CONCLUSIONS HRV values were impaired significantly within 14 days after ICH. Furthermore, HRV indices measured 10-14 days after ICH were independently associated with 3-month outcomes.
Collapse
Affiliation(s)
- Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xin Sun
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Hong-Yin Ma
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Peng Zhang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Reziya Abuduxukuer
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hong-Jing Zhu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pan-Deng Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China.
- Neuroscience Research Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
8
|
Sodero A, Conti E, Piccardi B, Sarti C, Palumbo V, Kennedy J, Gori AM, Giusti B, Fainardi E, Nencini P, Allegra Mascaro AL, Pavone FS, Baldereschi M. Acute ischemic STROKE - from laboratory to the Patient's BED (STROKELABED): A translational approach to reperfusion injury. Study Protocol. Transl Neurosci 2024; 15:20220344. [PMID: 39005711 PMCID: PMC11245877 DOI: 10.1515/tnsci-2022-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Cerebral edema (CE) and hemorrhagic transformation (HT) are frequent and unpredictable events in patients with acute ischemic stroke (AIS), even when an effective vessel recanalization has been achieved. These complications, related to blood-brain barrier (BBB) disruption, remain difficult to prevent or treat and may offset the beneficial effect of recanalization, and lead to poor outcomes. The aim of this translational study is to evaluate the association of circulating and imaging biomarkers with subsequent CE and HT in stroke patients with the dual purpose of investigating possible predictors as well as molecular dynamics underpinning those events and functional outcomes. Concurrently, the preclinical study will develop a new mouse model of middle cerebral artery (MCA) occlusion and recanalization to explore BBB alterations and their potentially harmful effects on tissue. The clinical section of the study is based on a single-center observational design enrolling consecutive patients with AIS in the anterior circulation territory, treated with recanalization therapies from October 1, 2015 to May 31, 2020. The study will employ an innovative evaluation of routine CT scans: in fact, we will assess and quantify the presence of CE and HT after stroke in CT scans at 24 h, through the quantification of anatomical distortion (AD), a measure of CE and HT. We will investigate the relationship of AD and several blood biomarkers of inflammation and extracellular matrix, with functional outcomes at 3 months. In parallel, we will employ a newly developed mouse model of stroke and recanalization, to investigate the emergence of BBB changes 24 h after the stroke onset. The close interaction between clinical and preclinical research can enhance our understanding of findings from each branch of research, enabling a deeper interpretation of the underlying mechanisms of reperfusion injury following recanalization treatment for AIS.
Collapse
Affiliation(s)
- Alessandro Sodero
- Neurofarba Department, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Emilia Conti
- Neuroscience Institute, National Research Council, Via G. Moruzzi 1, 56124, Pisa, Italy
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
| | - Benedetta Piccardi
- Stroke Unit, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Cristina Sarti
- Neurofarba Department, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
- Stroke Unit, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Vanessa Palumbo
- Stroke Unit, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - James Kennedy
- Acute Multidisciplinary Imaging & Interventional Centre, John Radcliffe Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anna Maria Gori
- Atherothrombotic Diseases Center, Department of Experimental and Clinical Medicine, University of Florence - Azienda Ospedaliero Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - Betti Giusti
- Atherothrombotic Diseases Center, Department of Experimental and Clinical Medicine, University of Florence - Azienda Ospedaliero Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - Enrico Fainardi
- Neuroradiology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio,”, University of Florence, 50121 Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Patrizia Nencini
- Stroke Unit, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Anna Letizia Allegra Mascaro
- Neurofarba Department, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
- Neuroscience Institute, National Research Council, Via G. Moruzzi 1, 56124, Pisa, Italy
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, 50019, Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council, 50019, Sesto Fiorentino, Italy
| | - Marzia Baldereschi
- Neuroscience Institute, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
9
|
Schleicher RL, Vorasayan P, McCabe ME, Bevers MB, Davis TP, Griffin JH, Hinduja A, Jadhav AP, Lee JM, Sawyer RN, Zlokovic BV, Sheth KN, Fedler JK, Lyden P, Kimberly WT. Analysis of brain edema in RHAPSODY. Int J Stroke 2024; 19:68-75. [PMID: 37382409 PMCID: PMC10789908 DOI: 10.1177/17474930231187268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
BACKGROUND Cerebral edema is a secondary complication of acute ischemic stroke, but its time course and imaging markers are not fully understood. Recently, net water uptake (NWU) has been proposed as a novel marker of edema. AIMS Studying the RHAPSODY trial cohort, we sought to characterize the time course of edema and test the hypothesis that NWU provides distinct information when added to traditional markers of cerebral edema after stroke by examining its association with other markers. METHODS A total of 65 patients had measurable supratentorial ischemic lesions. Patients underwent head computed tomography (CT), brain magnetic resonance imaging (MRI) scans, or both at the baseline visit and after 2, 7, 30, and 90 days following enrollment. CT and MRI scans were used to measure four imaging markers of edema: midline shift (MLS), hemisphere volume ratio (HVR), cerebrospinal fluid (CSF) volume, and NWU using semi-quantitative threshold analysis. Trajectories of the markers were summarized, as available. Correlations of the markers of edema were computed and the markers compared by clinical outcome. Regression models were used to examine the effect of 3K3A-activated protein C (APC) treatment. RESULTS Two measures of mass effect, MLS and HVR, could be measured on all imaging modalities, and had values available across all time points. Accordingly, mass effect reached a maximum level by day 7, normalized by day 30, and then reversed by day 90 for both measures. In the first 2 days after stroke, the change in CSF volume was associated with MLS (ρ = -0.57, p = 0.0001) and HVR (ρ = -0.66, p < 0.0001). In contrast, the change in NWU was not associated with the other imaging markers (all p ⩾ 0.49). While being directionally consistent, we did not observe a difference in the edema markers by clinical outcome. In addition, baseline stroke volume was associated with all markers (MLS (p < 0.001), HVR (p < 0.001), change in CSF volume (p = 0.003)) with the exception of NWU (p = 0.5). Exploratory analysis did not reveal a difference in cerebral edema markers by treatment arm. CONCLUSIONS Existing cerebral edema imaging markers potentially describe two distinct processes, including lesional water concentration (i.e. NWU) and mass effect (MLS, HVR, and CSF volume). These two types of imaging markers may represent distinct aspects of cerebral edema, which could be useful for future trials targeting this process.
Collapse
Affiliation(s)
- Riana L. Schleicher
- Division of Neurocritical Care and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Pongpat Vorasayan
- Division of Neurocritical Care and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Neurology, Department of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Megan E. McCabe
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Matthew B. Bevers
- Divisions of Stroke, Cerebrovascular and Critical Care Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Thomas P. Davis
- Department of Pharmacology, University of Arizona Health Sciences, Tucson, AZ, USA
| | - John H. Griffin
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Archana Hinduja
- Department of Neurology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert N. Sawyer
- Department of Neurology, University of Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Berislav V. Zlokovic
- Department of Physiology & Neuroscience, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Kevin N. Sheth
- Division of Neurocritical Care, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Janel K. Fedler
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Patrick Lyden
- Department of Physiology & Neuroscience, Keck School of Medicine of USC, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - W. Taylor Kimberly
- Division of Neurocritical Care and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
10
|
Ong C, Huang Q, Kim I, Pohlmann J, Chatzidakis S, Brush B, Zhang Y, Du Y, Mallinger LA, Benjamin EJ, Dupuis J, Greer D, Smirnakis S, Trinquart L. Dynamic trajectories of life-threatening mass effect in patients with large middle cerebral artery stroke. RESEARCH SQUARE 2023:rs.3.rs-3594179. [PMID: 38045289 PMCID: PMC10690305 DOI: 10.21203/rs.3.rs-3594179/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background Life-threatening, space-occupying mass effect due to cerebral edema and/or hemorrhagic transformation is an early complication of patients with middle cerebral artery (MCA) stroke. Little is known about longitudinal trajectories of laboratory and vital signs leading up to radiographic and clinical deterioration related to this mass effect. Methods We curated a granular retrospective dataset of 635 patients with large middle cerebral artery (MCA) stroke totaling 108,547 data points for repeated measurements of 10 covariates, and 40 time-independent covariates. We assessed longitudinal trajectories of the 10 longitudinal variables during the 72 hours preceding three outcomes representative of life-threatening mass effect: midline shift (MLS) ≥5mm, pineal gland shift (PGS) >4mm, and decompressive hemicraniectomy (DHC). We used a "backward looking" trajectory approach. Patients were aligned according to the time of outcome occurrence and the trajectory of each variable was assessed prior to that outcome by accounting for both cases and non-cases. Results Of 635 patients, 49% were female, and mean age was 69 years. Thirty five percent of patients had MLS ≥ 5mm, 24.1% had PGS >4mm, and DHC occurred in 10.7%. For the three outcomes of interest, backward-looking trajectories showed mild increases in white blood cell count (10 up to 11 K/UL within 72 hours), temperature (up to half a degree within 24 hours), and sodium (1-3 mEq/L within 24 hours) leading up to outcomes. We also observed a decrease in heart rate (75 - 65 beats per minute) 24 hours prior to DHC. Conclusions Univariable longitudinal profiling showed that temperature, white blood cell count, and sodium increase prior to radiographic and clinical indicators of space-occupying mass effect. These findings will inform development of multivariable dynamic risk models to aid prediction of life-threatening space-occupying mass effect.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yili Du
- Boston University School of Medicine: Boston University Chobanian & Avedisian School of Medicine
| | - Leigh Ann Mallinger
- Boston University School of Medicine: Boston University Chobanian & Avedisian School of Medicine
| | - Emelia J Benjamin
- Boston University School of Medicine: Boston University Chobanian & Avedisian School of Medicine
| | | | - David Greer
- Boston University School of Medicine: Boston University Chobanian & Avedisian School of Medicine
| | | | | |
Collapse
|
11
|
Chen C, Yang J, Han Q, Wu Y, Li J, Xu T, Sun J, Gao X, Huang Y, Parsons MW, Lin L. Net water uptake within the ischemic penumbra predicts the presence of the midline shift in patients with acute ischemic stroke. Front Neurol 2023; 14:1246775. [PMID: 37840922 PMCID: PMC10570612 DOI: 10.3389/fneur.2023.1246775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/25/2023] [Indexed: 10/17/2023] Open
Abstract
Objective The study aimed to explore the association between midline shift (MLS) and net water uptake (NWU) within the ischemic penumbra in acute ischemic stroke patients. Methods This was a retrospective cohort study that examined patients with anterior circulation stroke. Net water uptake within the acute ischemic core and penumbra was calculated using data from admission multimodal CT scans. The primary outcome was severe cerebral edema measured by the presence of MLS on 24 to 48 h follow-up CT scans. The presence of a significant MLS was defined by a deviation of the septum pellucidum from the midline on follow-up CT scans of at least 3 mm or greater due to the mass effect of ischemic edema. The net water uptake was compared between patients with and without MLS, followed by logistic regression analyses and receiver operating characteristics (ROCs) to assess the predictive power of net water uptake in MLS. Results A total of 133 patients were analyzed: 50 patients (37.6%) with MLS and 83 patients (62.4%) without. Compared to patients without MLS, patients with MLS had higher net water uptake within the core [6.8 (3.2-10.4) vs. 4.9 (2.2-8.1), P = 0.048] and higher net water uptake within the ischemic penumbra [2.9 (1.8-4.3) vs. 0.2 (-2.5-2.7), P < 0.001]. Penumbral net water uptake had higher predictive performance than net water uptake of the core in MLS [area under the curve: 0.708 vs. 0.603, p < 0.001]. Moreover, the penumbral net water uptake predicted MLS in the multivariate regression model, adjusting for age, sex, admission National Institutes of Health Stroke Scale (NIHSS), diabetes mellitus, atrial fibrillation, ischemic core volume, and poor collateral vessel status (OR = 1.165; 95% CI = 1.002-1.356; P = 0.047). No significant prediction was found for the net water uptake of the core in the multivariate regression model. Conclusion Net water uptake measured acutely within the ischemic penumbra could predict severe cerebral edema at 24-48 h.
Collapse
Affiliation(s)
- Cuiping Chen
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jianhong Yang
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qing Han
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yuefei Wu
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jichuan Li
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Tianqi Xu
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jie Sun
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiang Gao
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Mark W. Parsons
- Department of Neurology, Liverpool Hospital, Sydney, NSW, Australia
- Sydney Brain Center, University of New South Wales, Sydney, NSW, Australia
| | - Longting Lin
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Sydney Brain Center, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
12
|
Collyer E, Blanco-Suarez E. Astrocytes in stroke-induced neurodegeneration: a timeline. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1240862. [PMID: 39086680 PMCID: PMC11285566 DOI: 10.3389/fmmed.2023.1240862] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/22/2023] [Indexed: 08/02/2024]
Abstract
Stroke is a condition characterized by sudden deprivation of blood flow to a brain region and defined by different post-injury phases, which involve various molecular and cellular cascades. At an early stage during the acute phase, fast initial cell death occurs, followed by inflammation and scarring. This is followed by a sub-acute or recovery phase when endogenous plasticity mechanisms may promote spontaneous recovery, depending on various factors that are yet to be completely understood. At later time points, stroke leads to greater neurodegeneration compared to healthy controls in both clinical and preclinical studies, this is evident during the chronic phase when recovery slows down and neurodegenerative signatures appear. Astrocytes have been studied in the context of ischemic stroke due to their role in glutamate re-uptake, as components of the neurovascular unit, as building blocks of the glial scar, and synaptic plasticity regulators. All these roles render astrocytes interesting, yet understudied players in the context of stroke-induced neurodegeneration. With this review, we provide a summary of previous research, highlight astrocytes as potential therapeutic targets, and formulate questions about the role of astrocytes in the mechanisms during the acute, sub-acute, and chronic post-stroke phases that may lead to neurorestoration or neurodegeneration.
Collapse
Affiliation(s)
| | - Elena Blanco-Suarez
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
13
|
Dhar R, Kumar A, Chen Y, Begunova Y, Olexa M, Prasad A, Carey G, Gonzalez I, Bhatia K, Hamed M, Heitsch L, Mainali S, Petersen N, Lee JM. Imaging biomarkers of cerebral edema automatically extracted from routine CT scans of large vessel occlusion strokes. J Neuroimaging 2023; 33:606-616. [PMID: 37095592 PMCID: PMC10524672 DOI: 10.1111/jon.13109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND AND PURPOSE Volumetric and densitometric biomarkers have been proposed to better quantify cerebral edema after stroke, but their relative performance has not been rigorously evaluated. METHODS Patients with large vessel occlusion stroke from three institutions were analyzed. An automated pipeline extracted brain, cerebrospinal fluid (CSF), and infarct volumes from serial CTs. Several biomarkers were measured: change in global CSF volume from baseline (ΔCSF); ratio of CSF volumes between hemispheres (CSF ratio); and relative density of infarct region compared with mirrored contralateral region (net water uptake [NWU]). These were compared to radiographic standards, midline shift and relative hemispheric volume (RHV) and malignant edema, defined as deterioration resulting in need for osmotic therapy, decompressive surgery, or death. RESULTS We analyzed 255 patients with 210 baseline CTs, 255 24-hour CTs, and 81 72-hour CTs. Of these, 35 (14%) developed malignant edema and 63 (27%) midline shift. CSF metrics could be calculated for 310 (92%), while NWU could only be obtained from 193 (57%). Peak midline shift was correlated with baseline CSF ratio (ρ = -.22) and with CSF ratio and ΔCSF at 24 hours (ρ = -.55/.63) and 72 hours (ρ = -.66/.69), but not with NWU (ρ = .15/.25). Similarly, CSF ratio was correlated with RHV (ρ = -.69/-.78), while NWU was not. Adjusting for age, National Institutes of Health Stroke Scale, tissue plasminogen activator treatment, and Alberta Stroke Program Early CT Score, CSF ratio (odds ratio [OR]: 1.95 per 0.1, 95% confidence interval [CI]: 1.52-2.59) and ΔCSF at 24 hours (OR: 1.87 per 10%, 95% CI: 1.47-2.49) were associated with malignant edema. CONCLUSION CSF volumetric biomarkers can be automatically measured from almost all routine CTs and correlate better with standard edema endpoints than net water uptake.
Collapse
Affiliation(s)
- Rajat Dhar
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO
| | - Atul Kumar
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO
| | - Yasheng Chen
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO
| | | | - Madelynne Olexa
- Department of Neurology, Yale School of Medicine, New Haven, CT
| | - Ayush Prasad
- Department of Neurology, Yale School of Medicine, New Haven, CT
| | - Grace Carey
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO
| | - Isabella Gonzalez
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO
| | - Kunal Bhatia
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO
| | - Mohammad Hamed
- Department of Neurology, The Ohio State University, Columbus, OH
| | - Laura Heitsch
- Department of Emergency Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Shraddha Mainali
- Department of Neurology, Virginia Commonwealth University, Richmond, VA
| | - Nils Petersen
- Department of Neurology, Yale School of Medicine, New Haven, CT
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
14
|
Yi TY, Wu YM, Lin DL, Lang FL, Yang YY, Pan ZN, Zheng XF, Hong GJ, Wu MH, Lin XH, Chen RC, Zeng L, Chen WH, Sui Y. Association of baseline core volume and early midline shift in acute stroke patients with a large ischaemic core. Front Neurol 2023; 13:1077824. [PMID: 36698883 PMCID: PMC9868771 DOI: 10.3389/fneur.2022.1077824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023] Open
Abstract
Background Midline shift (MLS) is troublesome problem that may occur in patients with a large infarct core (LIC) and may be related to the baseline infarct core volume. The purpose of this study was to explore the relationship between baseline infarct core volume and early MLS presence. Materials and methods Patients with acute intracranial large artery occlusion and a pretreatment relative cerebral blood flow (rCBF) <30% volume ≥50 ml on CT perfusion (CTP) were included, clinical outcomes following endovascular treatment (EVT) were retrospectively analyzed. The primary endpoint was MLS within 48 h (early MLS presence). The association between baseline ICV and early MLS presence was evaluated with multivariable regression. Results Ultimately, 95 patients were included, and 29.5% (28/95) of the patients had early MLS. The number of patients with a baseline rCBF < 15% volume (median [interquartile range], 46 [32-60] vs. 29 [19-40]; P < 0.001) was significantly larger in the early severe MLS presence group. A baseline rCBF < 15% volume showed significantly better predictive accuracy for early MLS presence than an rCBF < 30% volume (area under the curve, 0.74 vs. 0.64, P = 0.0023). In addition, an rCBF < 15% volume ≥40 ml (odds ratio, 4.34 [95% CI, 1.571-11.996]) was associated with early MLS presence after adjustment for sex, age, baseline National Institutes of Health Stroke Scale score, onset-to-recanalization time. Conclusion In patients with an acute LIC following EVT, a pretreatment infarct core volume > 40 ml based on an rCBF < 15% showed good predictive value for early MLS occurrence.
Collapse
Affiliation(s)
- Ting-yu Yi
- Zhangzhou Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Yan-min Wu
- Zhangzhou Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Ding-lai Lin
- Zhangzhou Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Feng-long Lang
- Department of Neurology, Fushun Central Hospital, Fushun, Liaoning, China
| | - Yu-yan Yang
- Zhangzhou Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Zhi-nan Pan
- Zhangzhou Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Xiu-fen Zheng
- Zhangzhou Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Gan-ji Hong
- Zhangzhou Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Mei-hua Wu
- Zhangzhou Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Xiao-hui Lin
- Zhangzhou Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Rong-cheng Chen
- Zhangzhou Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Lisan Zeng
- Zhangzhou Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Wen-huo Chen
- Zhangzhou Affiliated Hospital of Fujian Medical University, Fujian, China,*Correspondence: Wen-huo Chen ✉
| | - Yi Sui
- Department of Neurology, Shenyang First People's Hospital, Shenyang Medical College, Shenyang, China,Yi Sui ✉
| |
Collapse
|
15
|
Li C, Wang CC, Meng Y, Fan JY, Zhang J, Wang LJ. Ultrasonic optic nerve sheath diameter could improve the prognosis of acute ischemic stroke in the intensive care unit. Front Pharmacol 2022; 13:1077131. [PMID: 36618944 PMCID: PMC9816399 DOI: 10.3389/fphar.2022.1077131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Objectives: Stroke patients with high intracranial pressure (ICP) may have poor prognosis. Non-invasive ultrasonic optic nerve sheath diameter (ONSD) could evaluate increased ICP. To investigate whether ONSD is valuable for prognosis of patients with acute ischemic stroke (AIS). Methods: AIS receiving intensive care were recruited with the Glasgow Coma Scale (GCS) score. Patients in group A underwent ultrasonic ONSD to assess ICP voluntarily, whereas group B without ONSD. Patients were followed up at discharge and once a week for 3 months with Glasgow Outcome Scale (GOS) score (four to five scores indicated good prognosis and one to three scores indicated poor prognosis). Results: Forty-nine patients were included. GCS scores did not differ significantly between groups A (26 patients) and B (8 ± 3 vs. 7 ± 3, p < 0.05). In group A, ONSD was 5.01 ± 0.48 mm, which correlated with GCS score (p < 0.05). At discharge, the GOS score was higher in group A than in group B (3.35 ± 1.35 vs. 2.57 ± 1.121, p = 0.034). The proportion of patients with a good prognosis was higher in group A than in group B (46.2% vs. 13.0%, p = 0.006). At discharge and after 3 months of follow-up, ONSD at admission was correlated with the GOS score in group A (r = -0.648 [p < 0.05] and -0.731 [p < 0.05], respectively). After 3 months of follow-up, the GOS score was higher in group A than group B (3.00 ± 1.673 vs. 2.04 ± 1.430, p < 0.05). The proportion of patients with a good prognosis was higher in group A than in group B (46.2% vs. 21.2%, p = 0.039). The Kaplan-Meier curve showed a higher rate of good prognosis in group A than in group B. ONSD (p < 0.05) was an independent predictor of poor prognosis. Conclusion: Non-invasive ultrasonic ONSD could be useful in improving the prognosis of patients with AIS receiving intensive care.
Collapse
Affiliation(s)
- Cong Li
- Department of Neurology, The Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Cui-Cui Wang
- Department of Neurology, The Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China,Department of Rehabilitation, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Yan Meng
- Department of Neurology, The Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jia-Yu Fan
- Department of Neurology, The Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jie Zhang
- Department of Neurology, The Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li-Juan Wang
- Department of Neurology, The Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China,*Correspondence: Li-Juan Wang,
| |
Collapse
|
16
|
Kaiser EE, Waters ES, Yang X, Fagan MM, Scheulin KM, Sneed SE, Cheek SR, Jeon JH, Shin SK, Kinder HA, Kumar A, Platt SR, Duberstein KJ, Park HJ, Xie J, West FD. Tanshinone IIA-Loaded Nanoparticle and Neural Stem Cell Therapy Enhances Recovery in a Pig Ischemic Stroke Model. Stem Cells Transl Med 2022; 11:1061-1071. [PMID: 36124817 PMCID: PMC9585947 DOI: 10.1093/stcltm/szac062] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/17/2022] [Indexed: 12/30/2022] Open
Abstract
Induced pluripotent stem cell-derived neural stem cells (iNSCs) are a multimodal stroke therapeutic that possess neuroprotective, regenerative, and cell replacement capabilities post-ischemia. However, long-term engraftment and efficacy of iNSCs is limited by the cytotoxic microenvironment post-stroke. Tanshinone IIA (Tan IIA) is a therapeutic that demonstrates anti-inflammatory and antioxidative effects in rodent ischemic stroke models and stroke patients. Therefore, pretreatment with Tan IIA may create a microenvironment that is more conducive to the long-term survival of iNSCs. In this study, we evaluated the potential of Tan IIA drug-loaded nanoparticles (Tan IIA-NPs) to improve iNSC engraftment and efficacy, thus potentially leading to enhanced cellular, tissue, and functional recovery in a translational pig ischemic stroke model. Twenty-two pigs underwent middle cerebral artery occlusion (MCAO) and were randomly assigned to a PBS + PBS, PBS + iNSC, or Tan IIA-NP + iNSC treatment group. Magnetic resonance imaging (MRI), modified Rankin Scale neurological evaluation, and immunohistochemistry were performed over a 12-week study period. Immunohistochemistry indicated pretreatment with Tan IIA-NPs increased iNSC survivability. Furthermore, Tan IIA-NPs increased iNSC neuronal differentiation and decreased iNSC reactive astrocyte differentiation. Tan IIA-NP + iNSC treatment enhanced endogenous neuroprotective and regenerative activities by decreasing the intracerebral cellular immune response, preserving endogenous neurons, and increasing neuroblast formation. MRI assessments revealed Tan IIA-NP + iNSC treatment reduced lesion volumes and midline shift. Tissue preservation and recovery corresponded with significant improvements in neurological recovery. This study demonstrated pretreatment with Tan IIA-NPs increased iNSC engraftment, enhanced cellular and tissue recovery, and improved neurological function in a translational pig stroke model.
Collapse
Affiliation(s)
- Erin E Kaiser
- Regenerative Bioscience Center, Athens, GA, USA
- Biomedical and Health Sciences Institute, Athens, GA, USA
- Animal and Dairy Science Department, College of Agricultural and Environmental Sciences, Athens, GA, USA
| | - Elizabeth S Waters
- Regenerative Bioscience Center, Athens, GA, USA
- Biomedical and Health Sciences Institute, Athens, GA, USA
- Animal and Dairy Science Department, College of Agricultural and Environmental Sciences, Athens, GA, USA
- Environmental Health Science Department, College of Public Health, Athens, GA, USA
| | - Xueyuan Yang
- Chemistry Department, Franklin College of Arts and Sciences, Athens, GA, USA
| | - Madison M Fagan
- Regenerative Bioscience Center, Athens, GA, USA
- Biomedical and Health Sciences Institute, Athens, GA, USA
- Animal and Dairy Science Department, College of Agricultural and Environmental Sciences, Athens, GA, USA
| | - Kelly M Scheulin
- Regenerative Bioscience Center, Athens, GA, USA
- Biomedical and Health Sciences Institute, Athens, GA, USA
- Animal and Dairy Science Department, College of Agricultural and Environmental Sciences, Athens, GA, USA
| | - Sydney E Sneed
- Regenerative Bioscience Center, Athens, GA, USA
- Animal and Dairy Science Department, College of Agricultural and Environmental Sciences, Athens, GA, USA
| | | | - Julie Heejin Jeon
- Nutritional Sciences Department, College of Family and Consumer Sciences, Athens, GA, USA
| | - Soo K Shin
- Regenerative Bioscience Center, Athens, GA, USA
- Animal and Dairy Science Department, College of Agricultural and Environmental Sciences, Athens, GA, USA
- Small Animal Medicine and Surgery Department, College of Veterinary Medicine, Athens, GA, USA
| | - Holly A Kinder
- Regenerative Bioscience Center, Athens, GA, USA
- Biomedical and Health Sciences Institute, Athens, GA, USA
- Animal and Dairy Science Department, College of Agricultural and Environmental Sciences, Athens, GA, USA
| | - Anil Kumar
- Chemistry Department, Franklin College of Arts and Sciences, Athens, GA, USA
| | - Simon R Platt
- Regenerative Bioscience Center, Athens, GA, USA
- Interdisciplinary Toxicology Program, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Kylee J Duberstein
- Regenerative Bioscience Center, Athens, GA, USA
- Animal and Dairy Science Department, College of Agricultural and Environmental Sciences, Athens, GA, USA
| | - Hea Jin Park
- Nutritional Sciences Department, College of Family and Consumer Sciences, Athens, GA, USA
| | - Jin Xie
- Regenerative Bioscience Center, Athens, GA, USA
- Chemistry Department, Franklin College of Arts and Sciences, Athens, GA, USA
| | - Franklin D West
- Regenerative Bioscience Center, Athens, GA, USA
- Biomedical and Health Sciences Institute, Athens, GA, USA
- Animal and Dairy Science Department, College of Agricultural and Environmental Sciences, Athens, GA, USA
- Small Animal Medicine and Surgery Department, College of Veterinary Medicine, Athens, GA, USA
| |
Collapse
|
17
|
Qaryouti D, Greene-Chandos D. Neurocritical Care Aspects of Ischemic Stroke Management. Crit Care Clin 2022; 39:55-70. [DOI: 10.1016/j.ccc.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Gu Y, Zhou C, Piao Z, Yuan H, Jiang H, Wei H, Zhou Y, Nan G, Ji X. Cerebral edema after ischemic stroke: Pathophysiology and underlying mechanisms. Front Neurosci 2022; 16:988283. [PMID: 36061592 PMCID: PMC9434007 DOI: 10.3389/fnins.2022.988283] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Ischemic stroke is associated with increasing morbidity and has become the main cause of death and disability worldwide. Cerebral edema is a serious complication arising from ischemic stroke. It causes an increase in intracranial pressure, rapid deterioration of neurological symptoms, and formation of cerebral hernia, and is an important risk factor for adverse outcomes after stroke. To date, the detailed mechanism of cerebral edema after stroke remains unclear. This limits advances in prevention and treatment strategies as well as drug development. This review discusses the classification and pathological characteristics of cerebral edema, the possible relationship of the development of cerebral edema after ischemic stroke with aquaporin 4, the SUR1-TRPM4 channel, matrix metalloproteinase 9, microRNA, cerebral venous reflux, inflammatory reactions, and cerebral ischemia/reperfusion injury. It also summarizes research on new therapeutic drugs for post-stroke cerebral edema. Thus, this review provides a reference for further studies and for clinical treatment of cerebral edema after ischemic stroke.
Collapse
Affiliation(s)
- Yuhang Gu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chen Zhou
- Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
| | - Zhe Piao
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Honghua Yuan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huimin Jiang
- Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
| | - Huimin Wei
- Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yifan Zhou
- Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
| | - Guangxian Nan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Guangxian Nan,
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Xunming Ji,
| |
Collapse
|
19
|
Sheth KN, Yuen MM, Mazurek MH, Cahn BA, Prabhat AM, Salehi S, Shah JT, By S, Welch EB, Sofka M, Sacolick LI, Kim JA, Payabvash S, Falcone GJ, Gilmore EJ, Hwang DY, Matouk C, Gordon-Kundu B, Rn AW, Petersen N, Schindler J, Gobeske KT, Sansing LH, Sze G, Rosen MS, Kimberly WT, Kundu P. Bedside detection of intracranial midline shift using portable magnetic resonance imaging. Sci Rep 2022; 12:67. [PMID: 34996970 PMCID: PMC8742125 DOI: 10.1038/s41598-021-03892-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroimaging is crucial for assessing mass effect in brain-injured patients. Transport to an imaging suite, however, is challenging for critically ill patients. We evaluated the use of a low magnetic field, portable MRI (pMRI) for assessing midline shift (MLS). In this observational study, 0.064 T pMRI exams were performed on stroke patients admitted to the neuroscience intensive care unit at Yale New Haven Hospital. Dichotomous (present or absent) and continuous MLS measurements were obtained on pMRI exams and locally available and accessible standard-of-care imaging exams (CT or MRI). We evaluated the agreement between pMRI and standard-of-care measurements. Additionally, we assessed the relationship between pMRI-based MLS and functional outcome (modified Rankin Scale). A total of 102 patients were included in the final study (48 ischemic stroke; 54 intracranial hemorrhage). There was significant concordance between pMRI and standard-of-care measurements (dichotomous, κ = 0.87; continuous, ICC = 0.94). Low-field pMRI identified MLS with a sensitivity of 0.93 and specificity of 0.96. Moreover, pMRI MLS assessments predicted poor clinical outcome at discharge (dichotomous: adjusted OR 7.98, 95% CI 2.07–40.04, p = 0.005; continuous: adjusted OR 1.59, 95% CI 1.11–2.49, p = 0.021). Low-field pMRI may serve as a valuable bedside tool for detecting mass effect.
Collapse
Affiliation(s)
- Kevin N Sheth
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA.
| | - Matthew M Yuen
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA
| | - Mercy H Mazurek
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA
| | - Bradley A Cahn
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA
| | - Anjali M Prabhat
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA
| | | | - Jill T Shah
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA
| | | | | | | | | | - Jennifer A Kim
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA
| | | | - Guido J Falcone
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA
| | - Emily J Gilmore
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA
| | - David Y Hwang
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA
| | - Charles Matouk
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Barbara Gordon-Kundu
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA
| | - Adrienne Ward Rn
- Neuroscience Intensive Care Unit, Yale New Haven Hospital, New Haven, CT, USA
| | - Nils Petersen
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA
| | - Joseph Schindler
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA
| | - Kevin T Gobeske
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA
| | - Lauren H Sansing
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA
| | - Gordon Sze
- Department of Neuroradiology, Yale School of Medicine, New Haven, CT, USA
| | - Matthew S Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - W Taylor Kimberly
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
20
|
Dhar R. Commentary on "Midline Shift Greater than 3 mm Independently Predicts Outcome After Ischemic Stroke". Neurocrit Care 2021; 36:18-20. [PMID: 34580827 DOI: 10.1007/s12028-021-01355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Rajat Dhar
- Division of Neurocritical Care, Department of Neurology, Washington University in Saint Louis School of Medicine, 660 S Euclid Avenue, Campus Box 8111, Saint Louis, MO, USA.
| |
Collapse
|