1
|
Benmokhtar S, Laraqui A, Hilali F, Bajjou T, El Zaitouni S, Jafari M, Baba W, Elannaz H, Lahlou IA, Hafsa C, Oukabli M, Mahfoud T, Tanz R, Ichou M, Ennibi K, Dakka N, Sekhsokh Y. RAS/RAF/MAPK Pathway Mutations as Predictive Biomarkers in Middle Eastern Colorectal Cancer: A Systematic Review. Clin Med Insights Oncol 2024; 18:11795549241255651. [PMID: 38798959 PMCID: PMC11128178 DOI: 10.1177/11795549241255651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Background This review article aims to investigate the prevalence and spectrum of rat sarcoma (RAS) and V-Raf Murine Sarcoma Viral Oncogene Homolog B (BRAF) mutations, and their connection with geographical location, clinicopathological features, and other relevant factors in colorectal cancer (CRC) patients in the Middle East. Methods A systematic literature review, employing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework, was conducted to investigate the association between the frequency of relevant mutations and the descriptive clinicopathological characteristics of CRC patients. Multiple electronic databases, including PubMed, Science Direct, Web of Science, Scopus, and Google Scholar, were searched to analyze the relevant literature. Results A total of 19 eligible studies comprising 2960 patients with CRC were included in this review. A comprehensive analysis of the collected literature data as well as descriptive and methodological insights is provided. Men were predominant in reviewed studies for the region, accounting for 58.6%. Overall, RAS mutation prevalence was 38.1%. Kirsten RAS Viral Oncogene Homolog (KRAS) mutations were the most common, accounting for 37.1% of cases and distributed among different exons, with the G12D mutation being the most frequent in exon 2 (23.2%) followed by G12V (13.7%), G13D (10.1%), G12C (5.1%), G12A (5.04%), and G12S (3.6%). Neuroblastoma RAS Viral Oncogene Homolog (NRAS) mutations were identified in 3.3% of tumor samples, with the most common mutation site located in exons 2, 3, and 4, and codon 61 being the most common location for the region. The total mutation frequency in the BRAF gene was 2.6%, with the V600E mutation being the most common. Conclusion The distribution patterns of RAS and BRAF mutations among CRC patients exhibit notable variations across diverse ethnic groups. Our study sheds light on this phenomenon by demonstrating a higher prevalence of KRAS mutations in CRC patients from the Middle East, as compared with those from other regions. The identification of these mutations and geographical differences is important for personalized treatment planning and could potentially aid in the development of novel targeted therapies. The distinct distribution patterns of RAS and BRAF mutations among CRC patients across different ethnic groups, as well as the regional variability in mutation prevalence, highlight the need for further research in this area.
Collapse
Affiliation(s)
- Soukaina Benmokhtar
- Royal School of Military Health Service, Sequencing Unit, Laboratory of Virology, Center of Virology, Infectious, and Tropical Diseases, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
- Laboratory of Biology of Human Pathologies and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Abdelilah Laraqui
- Royal School of Military Health Service, Sequencing Unit, Laboratory of Virology, Center of Virology, Infectious, and Tropical Diseases, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
- Laboratory of Biology of Human Pathologies and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Farida Hilali
- Laboratory of Research and Biosafety P3, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Tahar Bajjou
- Laboratory of Research and Biosafety P3, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Sara El Zaitouni
- Laboratory of Biology of Human Pathologies and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Meryem Jafari
- Laboratory of Biology of Human Pathologies and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Walid Baba
- Laboratory of Biology of Human Pathologies and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Hicham Elannaz
- Royal School of Military Health Service, Sequencing Unit, Laboratory of Virology, Center of Virology, Infectious, and Tropical Diseases, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Idriss Amine Lahlou
- Royal School of Military Health Service, Sequencing Unit, Laboratory of Virology, Center of Virology, Infectious, and Tropical Diseases, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Chahdi Hafsa
- Department of Medical Oncology, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Mohamed Oukabli
- Department of Pathology, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Tarik Mahfoud
- Center of Virology, Infectious and Tropical Diseases, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Rachid Tanz
- Center of Virology, Infectious and Tropical Diseases, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Mohamed Ichou
- Center of Virology, Infectious and Tropical Diseases, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Khaled Ennibi
- Royal School of Military Health Service, Sequencing Unit, Laboratory of Virology, Center of Virology, Infectious, and Tropical Diseases, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
- Center of Virology, Infectious and Tropical Diseases, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Nadia Dakka
- Laboratory of Biology of Human Pathologies and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Yassine Sekhsokh
- Laboratory of Research and Biosafety P3, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| |
Collapse
|
2
|
Zeng J, Fan W, Li J, Wu G, Wu H. KRAS/NRAS Mutations Associated with Distant Metastasis and BRAF/PIK3CA Mutations Associated with Poor Tumor Differentiation in Colorectal Cancer. Int J Gen Med 2023; 16:4109-4120. [PMID: 37720173 PMCID: PMC10503567 DOI: 10.2147/ijgm.s428580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023] Open
Abstract
Background The occurrence, progression, and prognosis of colorectal cancer (CRC) are regulated by EGFR-mediated signaling pathways. However, the relationship between the core genes (KRAS/NRAS/BRAF/PIK3CA) status in the signaling pathways and clinicopathological characteristics of CRC patients in Hakka population remains controversial. Methods Patients were genotyped for KRAS (codons 12, 13, 61, 117, and 146), NRAS (codons 12, 61, 117, and 146), BRAF (codons 600), and PIK3CA (codons 542, 545 and 1047) mutations. Clinical records were collected, and clinicopathological characteristic associations were analyzed together with mutations of studied genes. Results Four hundred and eight patients (256 men and 152 women) were included in the analysis. At least one mutation in the four genes was detected in 216 (52.9%) patients, while none was detected in 192 (47.1%) patients. KRAS, NRAS, BRAF, and PIK3CA mutation status were detected in 190 (46.6%), 11 (2.7%), 10 (2.5%), 34 (8.3%) samples, respectively. KRAS exon 2 had the highest proportion (62.5%). Age, tumor site, tumor size, lymphovascular invasion, and perineural invasion were not associated with gene mutations. KRAS mutations (adjusted OR 1.675, 95% CI 1.017-2.760, P=0.043) and NRAS mutations (adjusted OR 5.183, 95% CI 1.239-21.687, P=0.024) appeared more frequently in patients with distant metastasis. BRAF mutations (adjusted OR 7.224, 95% CI 1.356-38.488, P=0.021) and PIK3CA mutations (adjusted OR 3.811, 95% CI 1.268-11.455, P=0.017) associated with poorly differentiated tumor. Conclusion KRAS/NRAS mutations are associated with distant metastasis and BRAF/PIK3CA mutations are associated with poor tumor differentiation in CRC. And the results provided a better understanding between clinicopathological characteristics and gene mutations in CRC patients.
Collapse
Affiliation(s)
- Juanzi Zeng
- Department of Medical Oncology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Wenwei Fan
- Department of Gastroenterology, Dongguan Eighth People’s Hospital, Dongguan, People’s Republic of China
| | - Jiaquan Li
- Department of Medical Oncology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Guowu Wu
- Department of Medical Oncology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Heming Wu
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| |
Collapse
|
3
|
Nakano S, Yamaji T, Shiraishi K, Hidaka A, Shimazu T, Kuchiba A, Saito M, Kunishima F, Nakaza R, Kohno T, Sawada N, Inoue M, Tsugane S, Iwasaki M. Smoking and risk of colorectal cancer according to KRAS and BRAF mutation status in a Japanese prospective Study. Carcinogenesis 2023; 44:476-484. [PMID: 37352389 DOI: 10.1093/carcin/bgad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 06/25/2023] Open
Abstract
Although smoking is a major modifiable risk factor for many types of cancer, evidence for colorectal cancer is equivocal in Asian populations. Recent Western studies have proposed that the association between smoking and colorectal cancer is restricted to specific tumor molecular subtypes. However, no studies have evaluated the association according to tumor molecular subtypes in Asian populations. In a Japanese prospective population-based cohort study of 18 773 participants, we collected tumor tissues from incident colorectal cancer cases and evaluated KRAS (Kirsten rat sarcoma viral oncogene homolog) and BRAF (v-raf murine sarcoma viral oncogene homolog B) mutation status using target sequencing. Multivariable-adjusted Cox proportional hazard model was used to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) for associations of smoking with the risk of overall colorectal cancer and its subtypes defined by KRAS and BRAF mutation status. Among 339 cases, KRAS and BRAF mutations were identified in 164 (48.4%) and 16 (4.7%) cases, respectively. The multivariable-adjusted HR for ever smoking compared with never smoking was 1.24 [95% CI: 0.93-1.66], 1.75 [1.14-2.68], 0.87 [0.59-1.29], 1.24 [0.93-1.67] and 1.22 [0.38-3.93] for overall, KRAS wild-type, KRAS-mutated, BRAF wild-type and BRAF-mutated colorectal cancer, respectively. The statistically significant heterogeneity was indicated between KRAS mutation status (Pheterogeneity = 0.01) but not between BRAF mutation status. This study is the first to demonstrate that smokers have an approximately 2-fold higher risk of KRAS wild-type colorectal cancer than never smokers in an Asian population. Our findings support that smoking is a risk factor for colorectal cancer, especially for its subtype without KRAS mutations, in Asian populations.
Collapse
Affiliation(s)
- Shiori Nakano
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Akihisa Hidaka
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
- Division of Gastroenterology and Hepatology, The Jikei University Daisan Hospital, Tokyo, Japan
| | - Taichi Shimazu
- Division of Behavioral Sciences, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Aya Kuchiba
- Graduate School of Health Innovation, Kanagawa University of Human Services, Kanagawa, Japan
- Division of Biostatistical Research, Institute for Cancer Control/Biostatistics Division, Center for Research Administration and Support, National Cancer Center, Tokyo, Japan
| | - Masahiro Saito
- Department of Diagnostic Pathology, Hiraka General Hospital, Yokote, Akita, Japan
| | - Fumihito Kunishima
- Department of Diagnostic Pathology, Okinawa Prefecture Chubu Hospital, Okinawa, Japan
| | - Ryouji Nakaza
- Department of clinical laboratory, Nakagami Hospital, Okinawa, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Norie Sawada
- Division of Cohort research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Manami Inoue
- Division of Prevention, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Shoichiro Tsugane
- Division of Cohort research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
- Division of Cohort research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| |
Collapse
|
4
|
Identification of APC Mutation as a Potential Predictor for Immunotherapy in Colorectal Cancer. JOURNAL OF ONCOLOGY 2022; 2022:6567998. [PMID: 35874638 PMCID: PMC9300385 DOI: 10.1155/2022/6567998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022]
Abstract
To date, anticancer immunotherapy has presented some clinical benefits to most of advanced mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal cancer (CRC) patients. In addition to MSI status, we aimed to reveal the potential predictive value of adenomatous polyposis coli (APC) gene mutations in CRC patients. A total of 238 Chinese CRC patients was retrospectively identified and analyzed for clinical features and gene alternations in APC-mutant type (MT) and APC-wild-type (WT) groups. Clinical responses were then evaluated from the public TCGA database and MSKCC immunotherapy database. Although programmed cell death ligand 1 (PD-L1) level, MSI status, loss of heterogeneity at the human leukocyte antigen (HLA LOH), and tumor neoantigen burden (TNB) level were not statistically different between the APC-MT group and APC-WT group, tumor mutation burden (TMB) level was significantly higher in APC-MT patients (P < 0.05). Furthermore, comutation analysis for APC mutations revealed co-occurring genomic alterations of PCDHB7 and exclusive mutations of CTNNB1, BRAF, AFF3, and SNX25 (P < 0.05). Besides, overall survival from MSKCC-CRC cohort was longer in the APC-WT group than in the APC-MT group (HR 2.26 (95% CI 1.05–4.88), P < 0.05). Furthermore, most of patients in the APC-WT group were detected as high-grade immune subtypes (C2–C4) comparing with those in the APC-MT group. In addition, the percentages of NK T cells, Treg cells, and fibroblasts cells were higher in APC-WT patients than in APC-MT patients (P < 0.05). In summary, APC mutations might be associated with poor outcomes for immunotherapy in CRC patients regardless of MSI status. This study suggested APC gene mutations might be a potential predictor for immunotherapy in CRC.
Collapse
|
5
|
Afolabi H, Md Salleh S, Zakaria Z, Seng CE, Mohd Nafil SNB, Abdul Aziz AAB, Wada Y, Irekeola A. A Systematic Review and Meta-analysis on the Occurrence of Biomarker Mutation in Colorectal Cancer among the Asian Population. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5824183. [PMID: 35782059 PMCID: PMC9246611 DOI: 10.1155/2022/5824183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022]
Abstract
Globally, colorectal carcinoma (CRC) is the third most common cancer and the third major cause of cancer-related death in both sexes. KRAS and BRAF mutations are almost mutually exclusively involved in the pathogenesis of CRC. Both are major culprits in treatment failure and poor prognosis for CRC. Method. A systematic review and meta-analysis of various research was done following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. This trial is registered with PROSPERO CRD42021256452. The initial search included 646 articles; after the removal of noneligible studies, a total of 88 studies was finally selected. Data analysis was carried out using OpenMeta Analyst and Comprehensive Meta-Analysis 3.0 (CMA 3.0) software to investigate the prevalence of KRAS and BRAF mutations among patients with CRC in Asia. Results. The meta-analysis comprises of 25,525 sample sizes from Asia with most being male 15,743/25525 (61.7%). Overall prevalence of KRAS mutations was (59/88) 36.3% (95% CI: 34.5-38.2) with I 2 = 85.54% (P value < 0.001). In 43/59 studies, frequency of KRAS mutations was majorly in codon 12 (76.6% (95% CI: 74.2-78.0)) and less in codon 13 (21.0% (95% CI: 19.1-23.0)). Overall prevalence of BRAF mutations was 5.6% (95% CI: 3.9-8.0) with I 2 = 94.00% (P value < 0.001). When stratified according to location, a higher prevalence was observed in Indonesia (71.8%) while Pakistan has the lowest (13.5%). Conclusion. Total prevalence of KRAS and BRAF mutations in CRC was 36.6% and 5.6%, respectively, and the results conformed with several published studies on KRAS and BRAF mutations.
Collapse
Affiliation(s)
- Hafeez Afolabi
- Department of General Surgery, School of Medical Sciences, Universiti Sains Malaysia Hospital, Malaysia
| | - Salzihan Md Salleh
- Department of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150 Kelantan, Malaysia
| | - Zaidi Zakaria
- Department of General Surgery, School of Medical Sciences, Universiti Sains Malaysia Hospital, Malaysia
| | - Ch'ng Ewe Seng
- Department of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150 Kelantan, Malaysia
| | - Siti Norasikin Binti Mohd Nafil
- Department of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150 Kelantan, Malaysia
| | - Ahmad Aizat Bin Abdul Aziz
- School of Medical Sciences, Hospital Universiti Sains Malaysia HUSM, Universiti Sains Malaysia USM, Kubang Kerian, 16150 Kelantan, Malaysia
| | - Yusuf Wada
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150 Kelantan, Malaysia
| | - Ahmad Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150 Kelantan, Malaysia
| |
Collapse
|