1
|
Wei X, Shang Y, Zhu Y, Gu Z, Zhang D. Encoding microcarriers for biomedicine. SMART MEDICINE 2023; 2:e20220009. [PMID: 39188559 PMCID: PMC11235794 DOI: 10.1002/smmd.20220009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/22/2022] [Indexed: 08/28/2024]
Abstract
High throughput biological analysis has become an important topic in modern biomedical research and clinical diagnosis. The flow encoding scheme based on the encoding microcarriers provides a feasible strategy for the multiplexed biological analysis. Different encoding characteristics invest the microcarriers with different encoding mechanisms. Biosensor analysis, drug screening, cell culture, and the construction and evaluation of bionic organ chips can be realized by decoding the microcarriers and quantifying the detection signal intensity. In this review, the encoding strategy of microcarriers was divided into the optical and non-optical encoding approaches according to their encoding elements, and the research progress of the microcarrier encoding strategy was elaborated. Finally, we summarized the biomedical applications and predicted their future prospects.
Collapse
Affiliation(s)
- Xiaowei Wei
- Laboratory Medicine CenterThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yixuan Shang
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yefei Zhu
- Laboratory Medicine CenterThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhuxiao Gu
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Dagan Zhang
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
2
|
Rastogi R, Arianfard H, Moss D, Juodkazis S, Adam PM, Krishnamoorthy S. Analyte Co-localization at Electromagnetic Gap Hot-Spots for Highly Sensitive (Bio)molecular Detection by Plasmon Enhanced Spectroscopies. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9113-9121. [PMID: 33583180 DOI: 10.1021/acsami.0c17929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electromagnetic hot-spots at ultranarrow plasmonic nanogaps carry immense potential to drive detection limits down to few molecules in sensors based on surface-enhanced Raman or fluorescence spectroscopies. However, leveraging the EM hot-spots requires access to the gaps, which in turn depends on the size of the analyte in relation to gap distances. Herein, we leverage a well-calibrated process based on self-assembly of block copolymer colloids on a full-wafer level to produce high-density plasmonic nanopillar arrays exhibiting a large number (>1010 cm-2) of uniform interpillar EM hot-spots. The approach allows convenient handles to systematically vary the interpillar gap distances down to a sub-10 nm regime. The results show compelling trends of the impact of analyte dimensions in relation to the gap distances toward their leverage over interpillar hot-spots and the resulting sensitivity in SERS-based molecular assays. Comparing the detection of labeled proteins in surface-enhanced Raman and metal-enhanced fluorescence configurations further reveal the relative advantage of fluorescence over Raman detection while encountering the spatial limitations imposed by the gaps. Quantitative assays with limits of detection down to picomolar concentrations are realized for both small organic molecules and proteins. The well-defined geometries delivered by a nanofabrication approach are critical to arriving at realistic geometric models to establish meaningful correlation between the structure, optical properties, and sensitivity of nanopillar arrays in plasmonic assays. The findings emphasize the need for the rational design of EM hot-spots that takes into account the analyte dimensions to drive ultrahigh sensitivity in plasmon-enhanced spectroscopies.
Collapse
Affiliation(s)
- Rishabh Rastogi
- Materials Research and Technology (MRT) Department, Luxembourg Institute of Technology, 41, Rue du Brill, Belvaux L-4422, Luxembourg
- Laboratory Light, Nanomaterials & Nanotechnologies - L2n, University of Technology of Troyes and CNRS ERL 7004, 12 rue Marie Curie, 10000 Troyes, France
| | - Hamed Arianfard
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - David Moss
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Saulius Juodkazis
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Pierre-Michel Adam
- Laboratory Light, Nanomaterials & Nanotechnologies - L2n, University of Technology of Troyes and CNRS ERL 7004, 12 rue Marie Curie, 10000 Troyes, France
| | - Sivashankar Krishnamoorthy
- Materials Research and Technology (MRT) Department, Luxembourg Institute of Technology, 41, Rue du Brill, Belvaux L-4422, Luxembourg
| |
Collapse
|
3
|
Liu X, Wang Y, Gao Y, Song Y. Gas-propelled biosensors for quantitative analysis. Analyst 2021; 146:1115-1126. [PMID: 33459312 DOI: 10.1039/d0an02154g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gas-propelled biosensors display a simple gas-based signal amplification with quantitative detection features based on the target recognition event in combination with gas propulsion. Due to the liquid-gas conversion, the gas not only pushes the ink bar forward in the microchannel, but also serves as the power to propel the micromotors in the liquid. Thus, this continuous motion leads to a shift in distances which is associated with the target amount. Therefore, gas-propelled biosensors provide a visual quantification based on distance or speed signals without the need for expensive instruments. In this review, we focus on current developments in gas-propelled biosensors for quantitative analysis. First, we list the types of gas utilized as actuators in biosensors. Second, we review the representative gas-propelled biosensors, including the propulsion mechanisms and fabrication methods. Moreover, gas-propelled quantification based on distance and speed is summarized. Finally, we cover applications and provide a future perspective of gas-propelled biosensors.
Collapse
Affiliation(s)
- Xinli Liu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China.
| | | | | | | |
Collapse
|
4
|
Nasir S, Majeed MI, Nawaz H, Rashid N, Ali S, Farooq S, Kashif M, Rafiq S, Bano S, Ashraf MN, Abubakar M, Ahmad S, Rehman A, Amin I. Surface enhanced Raman spectroscopy of RNA samples extracted from blood of hepatitis C patients for quantification of viral loads. Photodiagnosis Photodyn Ther 2020; 33:102152. [PMID: 33348077 DOI: 10.1016/j.pdpdt.2020.102152] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/23/2020] [Accepted: 12/14/2020] [Indexed: 01/31/2023]
Abstract
BACKGROUND Raman spectroscopy is a promising technique to analyze the body fluids for the purpose of non-invasive disease diagnosis. OBJECTIVES To develop a surface-enhanced Raman spectroscopy (SERS) based method for qualitative and quantitative analysis of HCV from blood samples. METHODS SERS was employed to characterize the Hepatitis C viral RNA extracted from different blood samples of hepatitis C virus (HCV) infected patients with predetermined viral loads in comparison with total RNA of healthy individuals. The SERS measurements were performed on 27 extracted RNA samples including low viral loads, medium viral loads, high viral loads and healthy/negative viral load samples. For this purpose, silver nanoparticles (Ag NPs) were used as SERS substrates. Furthermore, multivariate data analysis technique, Principal Component Analysis (PCA) and Partial Least Square Regression (PLSR) were also performed on SERS spectral data. RESULTS The SERS spectral features due to biochemical changes in the extracted RNA samples associated with the increasing viral loads were established which could be employed for HCV diagnostic purpose. PCA was found helpful for the differentiation between Raman spectral data of RNA extracted from hepatitis infected and healthy blood samples. PLSR model is established for the determination of viral loads in HCV positive RNA samples with 99 % accuracy. CONCLUSION SERS can be employed for qualitative and quantitative analysis of HCV from blood samples.
Collapse
Affiliation(s)
- Saira Nasir
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Pakistan
| | | | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Pakistan.
| | - Nosheen Rashid
- Department of Chemistry, University of Central Punjab, Lahore, Faisalabad Campus, Pakistan
| | - Saqib Ali
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Pakistan
| | - Sidra Farooq
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Pakistan
| | - Muhammad Kashif
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Pakistan
| | - Sidra Rafiq
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Pakistan
| | - Saira Bano
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Pakistan
| | | | - Muhammad Abubakar
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Pakistan
| | - Shamsheer Ahmad
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Pakistan
| | - Asma Rehman
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P. O. Box 577, Jhang Road Faisalabad, Pakistan
| | - Imran Amin
- PCR Laboratory, PINUM Hospital, Faisalabad, Pakistan
| |
Collapse
|
5
|
A Fast and Cost-Effective Detection of Melamine by Surface Enhanced Raman Spectroscopy Using a Novel Hydrogen Bonding-Assisted Supramolecular Matrix and Gold-Coated Magnetic Nanoparticles. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7050475] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
Zhang Y, Zhao S, Zheng J, He L. Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.02.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
|
8
|
Shikha S, Salafi T, Cheng J, Zhang Y. Versatile design and synthesis of nano-barcodes. Chem Soc Rev 2017; 46:7054-7093. [DOI: 10.1039/c7cs00271h] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
This review provides a critical discussion on the versatile designing and usage of nano-barcodes for various existing and emerging applications.
Collapse
Affiliation(s)
- Swati Shikha
- Department of Biomedical Engineering
- Faculty of Engineering
- National University of Singapore (NUS)
- 117583 Singapore
| | - Thoriq Salafi
- Department of Biomedical Engineering
- Faculty of Engineering
- National University of Singapore (NUS)
- 117583 Singapore
- NUS Graduate School for Integrative Sciences and Engineering
| | - Jinting Cheng
- Institute of Materials Research and Engineering (IMRE)
- Agency for Science
- Technology and Research (A*STAR)
- Singapore
| | - Yong Zhang
- Department of Biomedical Engineering
- Faculty of Engineering
- National University of Singapore (NUS)
- 117583 Singapore
- NUS Graduate School for Integrative Sciences and Engineering
| |
Collapse
|
9
|
Aliofkhazraei M, Pedrosa P, Carlos FF, Veigas B, Baptista PV. Gold Nanoparticles for DNA/RNA-Based Diagnostics. HANDBOOK OF NANOPARTICLES 2015. [PMCID: PMC7123017 DOI: 10.1007/978-3-319-15338-4_31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The remarkable physicochemical properties of gold nanoparticles (AuNPs) have prompted development in exploring biomolecular interactions with AuNPs-containing systems, pursuing biomedical applications in diagnostics. Among these applications, AuNPs have been remarkably useful for the development of DNA/RNA detection and characterization systems for diagnostics, including systems suitable for point of need. Here, emphasis will be on available molecular detection schemes of relevant pathogens and their molecular characterization, genomic sequences associated with medical conditions (including cancer), mutation and polymorphism identification, and the quantification of gene expression.
Collapse
|
10
|
Valizadeh A. Nanomaterials and Optical Diagnosis of HIV. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1383-90. [PMID: 26099718 DOI: 10.3109/21691401.2015.1052469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The investigators had previously shown that the risk of AIDS/HIV-related illness and transmission reduced (by 96%) with early antiretroviral treatment. Nanomaterials could be applied in early diagnosis of HIV by improving the ability to detect serum biomarkers of the blood-borne infectious diseases, with low sample volume, rapidity, and more sensitivity than currently available FDA-approved methods such as ELISA, particle agglutination assay, and Western Blotting assay. We have demonstrated several experimental studies for optical HIV diagnosis based on nanomaterials in three categories (e.g., the fluorescence-, the SPR-, and the SERS- based biosensors), and have explained each assay.
Collapse
Affiliation(s)
- Alireza Valizadeh
- a Department of Medical Nanotechnology , Faculty of Advanced Medical Sciences & Student Research Committee, Tabriz, University of Medical Sciences , Tabriz , Iran.,b Department of Medical Nanotechnology , School of Advanced Technologies inMedicine, Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
11
|
Nima ZA, Biswas A, Bayer IS, Hardcastle FD, Perry D, Ghosh A, Dervishi E, Biris AS. Applications of surface-enhanced Raman scattering in advanced bio-medical technologies and diagnostics. Drug Metab Rev 2014; 46:155-75. [PMID: 24467460 DOI: 10.3109/03602532.2013.873451] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this review of the literature on surface-enhanced Raman scattering (SERS), we describe recent developments of this technique in the medical field. SERS has developed rapidly in the last few years as a result of the fascinating advancements in instrumentation and the ability to interpret complex Raman data using high-processional, computer-aided programs. This technique, has many advantages over ordinary spectroscopic analytical techniques - such as extremely high sensitivity, molecular selectivity, intense signal and great precision - that can be leveraged to address complex medical diagnostics problems. This review focuses on the SERS-active substrate, as well as major advances in cancer and bacteria detection and imaging. Finally, we present a perspective on anticipated future advancements in SERS techniques to address some of the most critical challenges in the areas of diagnostics, detection, and sensing.
Collapse
Affiliation(s)
- Zeid A Nima
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock , Little Rock, AR , USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Proniewicz E, Skołuba D, Ignatjev I, Niaura G, Sobolewski D, Prahl A, Proniewicz LM. Influence of applied potential on bradykinin adsorption onto Ag, Au, and Cu electrodes. JOURNAL OF RAMAN SPECTROSCOPY 2013; 44:655-664. [DOI: 10.1002/jrs.4246] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Surface‐enhanced Raman scattering, electrochemistry, and generalized two‐dimensional correlation analysis (G2DCA) methods were used to characterize bradykinin (BK), a hormone which is known to be involved in small‐cell and non‐small‐cell lung carcinoma and prostate cancer. BK was deposited onto Ag, Au, and Cu electrode surfaces under different applied electrode potentials (−1.000 V to 0.200 V) in aqueous solutions. Based on the analysis of the enhancement, the broadening, and the shifts in the wavenumbers of individual bands, specific conclusions were drawn regarding the peptide geometry and changes in this geometry that occurred when the electrode type and applied electrode potential were varied. Briefly, BK deposited onto the Ag, Au, and Cu electrode surfaces showed bands that were due to the vibrations of moieties in contact with or in close proximity to the electrode surfaces and were thus located on the same side of the polypeptide backbone. These moieties included the Phe, Arg, and Pro residues. The findings for adsorbed BK were fully supported by G2DCA, which also allowed us to determine the order in which changes occurred when the electrode potential was changed. In addition, it was found that at negative electrode potentials, the Phe rings and methylene groups interact with Ag electrode surface. No such interaction was observed for Au and Cu electrodes. Copyright © 2013 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Edyta Proniewicz
- Faculty of Chemistry Jagiellonian University ul. Ingardena 3 30‐060 Krakow Poland
| | - Dominika Skołuba
- Faculty of Chemistry Jagiellonian University ul. Ingardena 3 30‐060 Krakow Poland
| | - Ilja Ignatjev
- Institute of Chemistry Center for Physical Sciences and Technology A. Gostauto 9 LT‐01108 Vilnius Lithuania
| | - Gediminas Niaura
- Institute of Chemistry Center for Physical Sciences and Technology A. Gostauto 9 LT‐01108 Vilnius Lithuania
| | - Dariusz Sobolewski
- Faculty of Chemistry University of Gdansk Sobieskiego 18 80‐952 Gdansk Poland
| | - Adam Prahl
- Faculty of Chemistry University of Gdansk Sobieskiego 18 80‐952 Gdansk Poland
| | | |
Collapse
|
13
|
|
14
|
Huang K, Martí AA. Recent trends in molecular beacon design and applications. Anal Bioanal Chem 2011; 402:3091-102. [PMID: 22159461 DOI: 10.1007/s00216-011-5570-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 12/26/2022]
Abstract
A molecular beacon (MB) is a hairpin-structured oligonucleotide probe containing a photoluminescent species (PLS) and a quencher at different ends of the strand. In a recognition and detection process, the hybridization of MBs with target DNA sequences restores the strong photoluminescence, which is quenched before hybridization. Making better MBs involves reducing the background photoluminescence and increasing the brightness of the PLS, which therefore involves the development of new PLS and quenchers, as well as innovative PLS-quencher systems. Heavy-metal complexes, nanocrystals, pyrene compounds, and other materials with excellent photophysical properties have been applied as PLS of MBs. Nanoparticles, nanowires, graphene, metal films, and many other media have also been introduced to quench photoluminescence. On the basis of their high specificity, selectivity, and sensitivity, MBs are developed as a general platform for sensing, producing, and carrying molecules other than oligonucleotides.
Collapse
Affiliation(s)
- Kewei Huang
- Department of Chemistry, Rice University, 6100 South Main Street, Houston, TX 77005, USA
| | | |
Collapse
|
15
|
Pagba CV, Lane SM, Cho H, Wachsmann-Hogiu S. Direct detection of aptamer-thrombin binding via surface-enhanced Raman spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:047006. [PMID: 20799837 DOI: 10.1117/1.3465594] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this study, we exploit the sensitivity offered by surface-enhanced Raman scattering (SERS) for the direct detection of thrombin using the thrombin-binding aptamer (TBA) as molecular receptor. The technique utilizes immobilized silver nanoparticles that are functionalized with thiolated thrombin-specific binding aptamer, a 15-mer (5'-GGTTGGTGTGGTTGG-3') quadruplex forming oligonucleotide. In addition to the Raman vibrational bands corresponding to the aptamer and blocking agent, new peaks (mainly at 1140, 1540, and 1635 cm(-1)) that are characteristic of the protein are observed upon binding of thrombin. These spectral changes are not observed when the aptamer-nanoparticle assembly is exposed to a nonbinding protein such as bovine serum albumin (BSA). This methodology could be further used for the development of label-free biosensors for direct detection of proteins and other molecules of interest for which aptamers are available.
Collapse
Affiliation(s)
- Cynthia V Pagba
- University of California, Davis, Sacramento, California 95817, USA.
| | | | | | | |
Collapse
|
16
|
Recent advances in single-molecule sequencing. Curr Opin Biotechnol 2010; 21:4-11. [PMID: 20202812 DOI: 10.1016/j.copbio.2010.02.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/08/2010] [Accepted: 02/08/2010] [Indexed: 11/29/2022]
Abstract
Recent advances in sequencing technologies exhibit a tendency towards single-molecule sequencing, which eventually will lead to the commercial implementation of such platforms. For this purpose dye labelling is currently the foundation of most approaches and an overview is provided on the latest developments. For label-free sequencing the detection of conductivity changes using nanopores or nano-edges will be discussed as well as another promising method that is based on Raman spectroscopy. Here the most recent advance aims to utilize the high lateral resolution of tip-enhanced Raman scattering. For this sequencing procedure Raman spectra must be collected along the DNA or RNA strand, while the difference spectra will provide a direct sequence reading without prior labelling.
Collapse
|
17
|
Wachsmann-Hogiu S, Weeks T, Huser T. Chemical analysis in vivo and in vitro by Raman spectroscopy--from single cells to humans. Curr Opin Biotechnol 2009; 20:63-73. [PMID: 19268566 PMCID: PMC3185305 DOI: 10.1016/j.copbio.2009.02.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 02/10/2009] [Accepted: 02/11/2009] [Indexed: 02/05/2023]
Abstract
The gold standard for clinical diagnostics of tissues is immunofluorescence staining. Toxicity of many fluorescent dyes precludes their application in vivo. Raman spectroscopy, a chemically specific, label-free diagnostic technique, is rapidly gaining acceptance as a powerful alternative. It has the ability to probe the chemical composition of biological materials in a non-destructive and mostly non-perturbing manner. We review the most recent developments in Raman spectroscopy in the life sciences, detailing advances in technology that have improved the ability to screen for diseases. Its role in the monitoring of biological function and mapping the cellular chemical microenvironment will be discussed. Applications including endoscopy, surface-enhanced Raman scattering (SERS), and coherent Raman scattering (CRS) will be reviewed.
Collapse
Affiliation(s)
- Sebastian Wachsmann-Hogiu
- NSF Center for Biophotonics Science and Technology, University of California, Davis, 2700 Stockton Blvd., Suite 1400, Sacramento, CA 95817, USA
- Department of Pathology and Laboratory Medicine, University of California, Davis, 2700 Stockton Blvd., Suite 1400, Sacramento, CA 95817, USA
| | - Tyler Weeks
- NSF Center for Biophotonics Science and Technology, University of California, Davis, 2700 Stockton Blvd., Suite 1400, Sacramento, CA 95817, USA
- Department of Applied Science, University of California, Davis, 2700 Stockton Blvd., Suite 1400, Sacramento, CA 95817, USA
| | - Thomas Huser
- NSF Center for Biophotonics Science and Technology, University of California, Davis, 2700 Stockton Blvd., Suite 1400, Sacramento, CA 95817, USA
- Department of Internal Medicine, University of California, Davis, 2700 Stockton Blvd., Suite 1400, Sacramento, CA 95817, USA,
| |
Collapse
|
18
|
Myers FB, Lee LP. Innovations in optical microfluidic technologies for point-of-care diagnostics. LAB ON A CHIP 2008; 8:2015-31. [PMID: 19023464 DOI: 10.1039/b812343h] [Citation(s) in RCA: 262] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Despite a growing focus from the academic community, the field of microfluidics has yet to produce many commercial devices for point-of-care (POC) diagnostics. One of the main reasons for this is the difficulty in producing low-cost, sensitive, and portable optical detection systems. Although electrochemical methods work well for certain applications, optical detection is generally regarded as superior and is the method most widely employed in laboratory clinical chemistry. Conventional optical systems, however, are costly, require careful alignment, and do not translate well to POC devices. Furthermore, many optical detection paradigms such as absorbance and fluorescence suffer at smaller geometries because the optical path length through the sample is shortened. This review examines the innovative techniques which have recently been developed to address these issues. We highlight microfluidic diagnostic systems which demonstrate practical integration of sample preparation, analyte enrichment, and optical detection. We also examine several emerging detection paradigms involving nanoengineered materials which do not suffer from the same miniaturization disadvantages as conventional measurements.
Collapse
Affiliation(s)
- Frank B Myers
- Biomolecular Nanotechnology Center, Berkeley Sensor and Actuator Center, Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
19
|
Watson DA, Brown LO, Gaskill DF, Naivar M, Graves SW, Doorn SK, Nolan JP. A flow cytometer for the measurement of Raman spectra. Cytometry A 2008; 73:119-28. [DOI: 10.1002/cyto.a.20520] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Sha MY, Xu H, Penn SG, Cromer R. SERS nanoparticles: a new optical detection modality for cancer diagnosis. Nanomedicine (Lond) 2007; 2:725-34. [PMID: 17976033 DOI: 10.2217/17435889.2.5.725] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Surface-enhanced Raman scattering (SERS) is an optical detection technique that offers advantages over traditional assay detection technologies, such as fluorescence and chemiluminescence. These advantages include sensitivity, high levels of multiplexing, robustness and ability to perform detection in blood and other biological matrices. Here, we report on the growing field of SERS-active nanoparticles as a novel method for detection, with special emphasis on their use in the field of oncology. We discuss examples of SERS-active nanoparticles used in an assay for PSA, BRCA1 and Her-2, along with examples of nucleic-acid detection. We present data on a novel homogeneous, single-tube, rapid assay for nucleic acid detection and show how it will benefit the oncology community.
Collapse
Affiliation(s)
- Michael Y Sha
- Oxonica Inc, 665 Clyde Avenue, Suite A, Mountain View, CA 94043, USA
| | | | | | | |
Collapse
|