1
|
Yang Z, Li H, Wu P, Li Q, Yu C, Wang D, Li W. Multi-biological functions of intermedin in diseases. Front Physiol 2023; 14:1233073. [PMID: 37745233 PMCID: PMC10511904 DOI: 10.3389/fphys.2023.1233073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Intermedin (IMD) is a member of the calcitonin gene-related peptide (CGRP)/calcitonin (CT) superfamily, and it is expressed extensively throughout the body. The typical receptors for IMD are complexes composed of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein (RAMP), which leads to a biased activation towards Gαs. As a diagnostic and prognostic biomarker, IMD regulates the initiation and metastasis of multiple tumors. Additionally, IMD functions as a proangiogenic factor that can restrain excessive vascular budding and facilitate the expansion of blood vessel lumen, ultimately resulting in the fusion of blood vessels. IMD has protective roles in various diseases, including ischemia-reperfusion injury, metabolic disease, cardiovascular diseases and inflammatory diseases. This review systematically elucidates IMD's expression, structure, related receptors and signal pathway, as well as its comprehensive functions in the context of acute kidney injury, obesity, diabetes, heart failure and sepsis. However, the precise formation process of IMD short peptides in vivo and their downstream signaling pathway have not been fully elucidated yet. Further in-depth studies are need to translate IMD research into clinical applications.
Collapse
Affiliation(s)
- Zhi Yang
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Pengfei Wu
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingyan Li
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - ChunYan Yu
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Denian Wang
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Li
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Garelja ML, Bower RL, Brimble MA, Chand S, Harris PW, Jamaluddin MA, Petersen J, Siow A, Walker CS, Hay DL. Pharmacological characterisation of mouse calcitonin and calcitonin receptor-like receptors reveals differences compared with human receptors. Br J Pharmacol 2022; 179:416-434. [PMID: 34289083 PMCID: PMC8776895 DOI: 10.1111/bph.15628] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND PURPOSE The calcitonin (CT) receptor family is complex, comprising two receptors (the CT receptor [CTR] and the CTR-like receptor [CLR]), three accessory proteins (RAMPs) and multiple endogenous peptides. This family contains several important drug targets, including CGRP, which is targeted by migraine therapeutics. The pharmacology of this receptor family is poorly characterised in species other than rats and humans. To facilitate understanding of translational and preclinical data, we need to know the receptor pharmacology of this family in mice. EXPERIMENTAL APPROACH Plasmids encoding mouse CLR/CTR and RAMPs were transiently transfected into Cos-7 cells. cAMP production was measured in response to agonists in the absence or presence of antagonists. KEY RESULTS We report the first synthesis and characterisation of mouse adrenomedullin, adrenomedullin 2 and βCGRP and of mouse CTR without or with mouse RAMPs. Receptors containing m-CTR had subtly different pharmacology than human receptors; they were promiscuous in their pharmacology, both with and without RAMPs. Several peptides, including mouse αCGRP and mouse adrenomedullin 2, were potent agonists of the m-CTR:m-RAMP3 complex. Pharmacological profiles of receptors comprising m-CLR:m-RAMPs were generally similar to those of their human counterparts, albeit with reduced specificity. CONCLUSION AND IMPLICATIONS Mouse receptor pharmacology differed from that in humans, with mouse receptors displaying reduced discrimination between ligands. This creates challenges for interpreting which receptor may underlie an effect in preclinical models and thus translation of findings from mice to humans. It also highlights the need for new ligands to differentiate between these complexes. LINKED ARTICLES This article is part of a themed issue on Advances in Migraine and Headache Therapy (BJP 75th Anniversary).. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.3/issuetoc.
Collapse
Affiliation(s)
- Michael L. Garelja
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand,School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Rebekah L Bower
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Margaret A. Brimble
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand,School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Shanan Chand
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Paul W.R. Harris
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand,School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | | | - Jakeb Petersen
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Andrew Siow
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand,School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Christopher S. Walker
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Debbie L. Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand,School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand,Author to whom correspondence should be addressed,
| |
Collapse
|
3
|
Hay DL, Garelja ML, Poyner DR, Walker CS. Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25. Br J Pharmacol 2017; 175:3-17. [PMID: 29059473 DOI: 10.1111/bph.14075] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 12/19/2022] Open
Abstract
The calcitonin/CGRP family of peptides includes calcitonin, α and β CGRP, amylin, adrenomedullin (AM) and adrenomedullin 2/intermedin (AM2/IMD). Their receptors consist of one of two GPCRs, the calcitonin receptor (CTR) or the calcitonin receptor-like receptor (CLR). Further diversity arises from heterodimerization of these GPCRs with one of three receptor activity-modifying proteins (RAMPs). This gives the CGRP receptor (CLR/RAMP1), the AM1 and AM2 receptors (CLR/RAMP2 or RAMP3) and the AMY1, AMY2 and AMY3 receptors (CTR/RAMPs1-3 complexes, respectively). Apart from the CGRP receptor, there are only peptide antagonists widely available for these receptors, and these have limited selectivity, thus defining the function of each receptor in vivo remains challenging. Further challenges arise from the probable co-expression of CTR with the CTR/RAMP complexes and species-dependent splice variants of the CTR (CT(a) and CT(b) ). Furthermore, the AMY1(a) receptor is activated equally well by both amylin and CGRP, and the preferred receptor for AM2/IMD has been unclear. However, there are clear therapeutic rationales for developing agents against the various receptors for these peptides. For example, many agents targeting the CGRP system are in clinical trials, and pramlintide, an amylin analogue, is an approved therapy for insulin-requiring diabetes. This review provides an update on the pharmacology of the calcitonin family of peptides by members of the corresponding subcommittee of the International Union of Basic and Clinical Pharmacology and colleagues.
Collapse
Affiliation(s)
- Debbie L Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Michael L Garelja
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - David R Poyner
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | | |
Collapse
|
4
|
Zhang SY, Xu MJ, Wang X. Adrenomedullin 2/intermedin: a putative drug candidate for treatment of cardiometabolic diseases. Br J Pharmacol 2017; 175:1230-1240. [PMID: 28407200 DOI: 10.1111/bph.13814] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/15/2017] [Accepted: 03/30/2017] [Indexed: 11/28/2022] Open
Abstract
Adrenomedullin (ADM) 2/intermedin (IMD) is a short peptide that belongs to the CGRP superfamily. Although it shares receptors with CGRP, ADM and amylin, ADM2 has significant and unique functions in the cardiovascular system. In the past decade, the cardiovascular effect of ADM2 has been carefully analysed. In this review, progress in understanding the effects of ADM2 on the cardiovascular system and its protective role in cardiometabolic diseases are summarized. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Song-Yang Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Ming-Jiang Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| |
Collapse
|
5
|
García-Ponce A, Chánez Paredes S, Castro Ochoa KF, Schnoor M. Regulation of endothelial and epithelial barrier functions by peptide hormones of the adrenomedullin family. Tissue Barriers 2016; 4:e1228439. [PMID: 28123925 DOI: 10.1080/21688370.2016.1228439] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 01/16/2023] Open
Abstract
The correct regulation of tissue barriers is of utmost importance for health. Barrier dysfunction accompanies inflammatory disorders and, if not controlled properly, can contribute to the development of chronic diseases. Tissue barriers are formed by monolayers of epithelial cells that separate organs from their environment, and endothelial cells that cover the vasculature, thus separating the blood stream from underlying tissues. Cells within the monolayers are connected by intercellular junctions that are linked by adaptor molecules to the cytoskeleton, and the regulation of these interactions is critical for the maintenance of tissue barriers. Many endogenous and exogenous molecules are known to regulate barrier functions in both ways. Proinflammatory cytokines weaken the barrier, whereas anti-inflammatory mediators stabilize barriers. Adrenomedullin (ADM) and intermedin (IMD) are endogenous peptide hormones of the same family that are produced and secreted by many cell types during physiologic and pathologic conditions. They activate certain G-protein-coupled receptor complexes to regulate many cellular processes such as cytokine production, actin dynamics and junction stability. In this review, we summarize current knowledge about the barrier-stabilizing effects of ADM and IMD in health and disease.
Collapse
Affiliation(s)
- Alexander García-Ponce
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| | - Sandra Chánez Paredes
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| | - Karla Fabiola Castro Ochoa
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| |
Collapse
|
6
|
Khoshdel Z, Takhshid MA, Owji AA. Effects of intrathecal amylin on formalin-induced nociception and on cAMP accumulation in the rat embryonic spinal cells. Neuropeptides 2016; 57:95-100. [PMID: 26778650 DOI: 10.1016/j.npep.2015.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/23/2015] [Accepted: 12/26/2015] [Indexed: 11/17/2022]
Abstract
Amylin (AMY) is a member of calcitonin family of peptides. In this study, the effects of intrathecal (i.t) injection of AMY on the inflammatory pain and on the cAMP accumulation in the rat spinal cells were investigated. By using AMY receptor antagonists, we also studied the pharmacology of AMY receptors in the spinal cells. Formalin model of inflammatory pain was induced by intraplantar injection of formalin. AMY (0.06250-2500pmol/rat) was administrated i.t 15min before the injection of formalin. Antagonists were injected i.t 10min before the injection of AMY and/or morphine. AMY reduced formalin-induced pain in a dose dependent mode. This effect was inhibited by the potent AMY antagonist, AC187 but not CGRP8-37. rAMY8-37, most commonly reported as a weak AMY antagonist, showed to be equally or more potent than AC187 in antagonizing the above effects. The opioid antagonist, naloxone, had no significant effects on AMY antinociceptive effects. Primary dissociated cell culture was used to investigate the effect of AMY on cAMP production and to characterize AMY receptors in the spinal cells. AMY moderately increases cAMP accumulation in the spinal cells with an EC50 value of 74.62nM. This effect was not affected by CGRP8-37 but was inhibited by AC187 and rAMY8-37 with pA2 values of 7.94 and 7.87 respectively. In conclusion, effects of AMY in reducing formalin induced pain and on the cAMP accumulation by spinal cells are mediated through undefined receptors.
Collapse
Affiliation(s)
- Zahra Khoshdel
- Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Takhshid
- Diagnostic Laboratory Sciences and Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Akbar Owji
- Research Center for Psychiatry and Behavioral Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Bell D, Campbell M, McAleer SF, Ferguson M, Donaghy L, Harbinson MT. Endothelium-derived intermedin/adrenomedullin-2 protects human ventricular cardiomyocytes from ischaemia-reoxygenation injury predominantly via the AM₁ receptor. Peptides 2016; 76:1-13. [PMID: 26743504 DOI: 10.1016/j.peptides.2015.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/09/2015] [Accepted: 12/23/2015] [Indexed: 02/07/2023]
Abstract
Application of intermedin/adrenomedullin-2 (IMD/AM-2) protects cultured human cardiac vascular cells and fibroblasts from oxidative stress and simulated ischaemia-reoxygenation injury (I-R), predominantly via adrenomedullin AM1 receptor involvement; similar protection had not been investigated previously in human cardiomyocytes (HCM). Expression of IMD, AM and their receptor components was studied in HCM. Receptor subtype involvement in protection by exogenous IMD against injury by simulated I-R was investigated using receptor component-specific siRNAs. Direct protection by endogenous IMD against HCM injury, both as an autocrine factor produced in HCM themselves and as a paracrine factor released from HCMEC co-cultured with HCM, was investigated using peptide-specific siRNA for IMD. IMD, AM and their receptor components (CLR, RAMPs1-3) were expressed in HCM. IMD 1nmol L(-1), applied either throughout ischaemia (3h) and re-oxygenation (1h) or during re-oxygenation (1h) alone, attenuated HCM injury (P<0.05); cell viabilities were 59% and 61% respectively vs. 39% in absence of IMD. Cytoskeletal disruption, protein carbonyl formation and caspase activity followed similar patterns. Pre-treatment (4 days) of HCM with CLR and RAMP2 siRNAs attenuated (P<0.05) protection by exogenous IMD. Pre-treatment of HCMEC with IMD (and AM) siRNA augmented (P<0.05) I-R injury: cell viabilities were 22% (and 32%) vs. 39% untreated HCMEC. Pre-treatment of HCM with IMD (and AM) siRNA did not augment HCM injury: cell viabilities were 37% (and 39%) vs. 39% untreated HCM. Co-culture with HCMEC conferred protection from injury on HCM; such protection was attenuated when HCMEC were pre-treated with IMD (but not AM) siRNA before co-culture. Although IMD is present in HCM, IMD derived from HCMEC and acting in a paracrine manner, predominantly via AM1 receptors, makes a marked contribution to cardiomyocyte protection by the endogenous peptide against acute I-R injury.
Collapse
Affiliation(s)
- David Bell
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom.
| | - Malcolm Campbell
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Stephen F McAleer
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Matthew Ferguson
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Liz Donaghy
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Mark T Harbinson
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
8
|
Li P, Sun HJ, Han Y, Wang JJ, Zhang F, Tang CS, Zhou YB. Intermedin enhances sympathetic outflow via receptor-mediated cAMP/PKA signaling pathway in nucleus tractus solitarii of rats. Peptides 2013; 47:1-6. [PMID: 23816795 DOI: 10.1016/j.peptides.2013.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/07/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
Abstract
Direct administration of intermedin (IMD) into the brain elicits cardiovascular effects different from the systemic administration. Nucleus tractus solitarii (NTS) is an important region for the cardiovascular regulation. The present study was designed to determine the effect of IMD on modulating the sympathetic outflow and its related molecular mechanism in the NTS. Renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded in anesthetized rats. Site-specific microinjection of IMD (20pmol) bilaterally into the NTS significantly increased RSNA and MAP. IMD-evoked increases of RSNA and MAP were almost abolished by pretreatment with receptor antagonist ADM22-52, an adenylyl cyclase (AC) inhibitor SQ22536, or a protein kinase A (PKA) inhibitor Rp-cAMP. However, pretreatment with another receptor antagonist calcitonin gene-related peptide (CGRP)8-37 did not suppress the increases of RSNA and MAP induced by IMD. Furthermore, IMD increased the cyclic adenosine monophosphate (cAMP) level, which was inhibited by ADM22-52 pretreatment in the NTS. These results suggest that IMD participates in the sympathetic nerve activity and central regulation of the cardiovascular system and a receptor-mediated cAMP/PKA signaling pathway is involved in IMD-induced effects in the NTS.
Collapse
Affiliation(s)
- Peng Li
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Adrenomedullin 2 (AM2) or intermedin is a member of the calcitonin gene-related peptide (CGRP)/calcitonin family of peptides and was discovered in 2004. Unlike other members of this family, no unique receptor has yet been identified for it. It is extensively distributed throughout the body. It causes hypotension when given peripherally, but when given into the CNS, it increases blood pressure and causes sympathetic activation. It also increases prolactin release, is anti-diuretic and natriuretic and reduces food intake. Whilst its effects resemble those of AM, it is frequently more potent. Some characterization of AM2 has been done on molecularly defined receptors; the existing data suggest that it preferentially activates the AM(2) receptor formed from calcitonin receptor-like receptor and receptor activity modifying protein 3. On this complex, its potency is generally equivalent to that of AM. There is no known receptor-activity where it is more potent than AM. In tissues and in animals it is frequently antagonised by CGRP and AM antagonists; however, situations exist in which an AM2 response is maintained even in the presence of supramaximal concentrations of these antagonists. Thus, there is a partial mismatch between the pharmacology seen in tissues and that on cloned receptors. The only AM2 antagonists are peptide fragments, and these have limited selectivity. It remains unclear as to whether novel AM2 receptors exist or whether the mismatch in pharmacology can be explained by factors such as metabolism.
Collapse
|
10
|
Aslam M, Pfeil U, Gündüz D, Rafiq A, Kummer W, Piper HM, Noll T. Intermedin (adrenomedullin2) stabilizes the endothelial barrier and antagonizes thrombin-induced barrier failure in endothelial cell monolayers. Br J Pharmacol 2012; 165:208-22. [PMID: 21671901 DOI: 10.1111/j.1476-5381.2011.01540.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Intermedin is a member of the calcitonin gene-related-peptide (CGRP) family expressed in endothelial cells and acts via calcitonin receptor-like receptors (CLRs). Here we have analysed the receptors for intermedin and its effect on the endothelial barrier in monolayers of human umbilical vein endothelial cells (HUVECs). EXPERIMENTAL APPROACH We analysed the effect of intermedin on albumin permeability, contractile machinery, actin cytoskeleton and VE-cadherin in cultured HUVECs. KEY RESULTS Intermedin concentration-dependently reduced basal endothelial permeability to albumin and antagonized thrombin-induced hyperpermeability. Intermedin was less potent (EC(50) 1.29 ± 0.12 nM) than adrenomedullin (EC(50) 0.24 ± 0.07 nM) in reducing endothelial permeability. These intermedin effects were inhibited by AM(22-52) and higher concentrations of αCGRP(8-37), with pA(2) values of αCGRP(8-37) of 6.4 for both intermedin and adrenomedullin. PCR data showed that HUVEC expressed only the CLR/RAMP2 receptor complex. Intermedin activated cAMP/PKA and cAMP/Epac signalling pathways. Intermedin's effect on permeability was blocked by inhibition of PKA but not of eNOS. Intermedin antagonized thrombin-induced contractile activation, RhoA activation and stress fibre formation. It also induced Rac1 activation, enhanced cell-cell adhesion and antagonized thrombin-induced loss of cell-cell adhesion. Treatment with a specific inhibitor of Rac1 prevented intermedin-mediated barrier stabilization. CONCLUSION AND IMPLICATIONS Intermedin stabilized endothelial barriers in HUVEC monolayers via CLR/RAMP2 receptors. These effects were mediated via cAMP-mediated inactivation of contractility and strengthening of cell-cell adhesion. These findings identify intermedin as a barrier stabilizing agent and suggest intermedin as a potential treatment for vascular leakage in inflammatory conditions.
Collapse
Affiliation(s)
- M Aslam
- Physiologisches Institut, Justus-Liebig-Universität, Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
11
|
Bell D, Campbell M, Ferguson M, Sayers L, Donaghy L, O'Regan A, Jewhurst V, Harbinson M. AM₁-receptor-dependent protection by intermedin of human vascular and cardiac non-vascular cells from ischaemia-reperfusion injury. J Physiol 2011; 590:1181-97. [PMID: 22183724 DOI: 10.1113/jphysiol.2011.221895] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Intermedin (IMD) protects rodent heart and vasculature from oxidative stress and ischaemia. Less is known about distribution of IMD and its receptors and the potential for similar protection in man. Expression of IMD and receptor components were studied in human aortic endothelium cells (HAECs), smooth muscle cells (HASMCs), cardiac microvascular endothelium cells (HMVECs) and fibroblasts (v-HCFs). Receptor subtype involvement in protection by IMD against injury by hydrogen peroxide (H₂O₂, 1 mmol l⁻¹) and simulated ischaemia and reperfusion were investigated using receptor component-specific siRNAs. IMD and CRLR, RAMP1, RAMP2 and RAMP3 were expressed in all cell types.When cells were treated with 1 nmol l⁻¹ IMD during exposure to 1 mmol l⁻¹ H₂O₂ for 4 h, viability was greater vs. H2O2 alone (P<0.05 for all cell types). Viabilities under 6 h simulated ischaemia differed (P<0.05) in the absence and presence of 1 nmol l⁻¹ IMD: HAECs 63% and 85%; HMVECs 51% and 68%; v-HCFs 42% and 96%. IMD 1 nmol l⁻¹ present throughout ischaemia (3 h) and reperfusion (1 h) attenuated injury (P<0.05): viabilities were 95%, 74% and 82% for HAECs, HMVECs and v-HCFs, respectively, relative to those in the absence of IMD (62%, 35%, 32%, respectively). When IMD 1 nmol l⁻¹ was present during reperfusion only, protection was still evident (P<0.05, 79%, 55%, 48%, respectively). Cytoskeletal disruption and protein carbonyl formation followed similar patterns. Pre-treatment (4 days) of HAECs with CRLR or RAMP2, but not RAMP1 or RAMP3, siRNAs abolished protection by IMD (1 nmol l⁻¹) against ischaemia-reperfusion injury. IMD protects human vascular and cardiac non-vascular cells from oxidative stress and ischaemia-reperfusion,predominantly via AM1 receptors.
Collapse
Affiliation(s)
- David Bell
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Jolly L, March JE, Kemp PA, Bennett T, Gardiner SM. Mechanisms involved in the regional haemodynamic effects of intermedin (adrenomedullin 2) compared with adrenomedullin in conscious rats. Br J Pharmacol 2010; 157:1502-13. [PMID: 19681873 DOI: 10.1111/j.1476-5381.2009.00306.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Intermedin (IMD) is a newly identified member of the calcitonin family of peptides that shares structural and functional homology with adrenomedullin (AM). In vivo cardiovascular effects of AM have been described, but relatively little is known of the in vivo actions of IMD. The purpose of this study was to compare the regional haemodynamic effects of IMD with those of AM in conscious rats, and investigate possible underlying mechanisms. EXPERIMENTAL APPROACH Measurements of blood pressure, heart rate and renal, mesenteric and hindquarters haemodynamics were made in conscious, chronically-instrumented rats. KEY RESULTS IMD caused tachycardia and vasodilatation in all three vascular beds, associated with modest hypotension. At an equimolar dose (1 nmol.kg(-1)), most of the cardiovascular effects of IMD were greater than those of AM. The AM receptor antagonist, AM(22-52), was equally effective in attenuating the renal and mesenteric vasodilator effects of IMD (1 nmol.kg(-1)) and AM (3 nmol.kg(-1)), but inhibition of NO synthase was more effective at reducing the vasodilator effects of IMD than AM. Vascular K(ATP) channel blockade with U-37883A did not inhibit the vasodilator effects of either peptide. CONCLUSIONS AND IMPLICATIONS In vivo, the regional haemodynamic profile of IMD resembles that of AM, and some of the vasodilator effects of IMD are mediated by AM receptors and NO, but not by K(ATP) channels. The cardiovascular effects of AM have been implicated in various pathological conditions, but whether or not endogenous IMD fulfils a similar role remains to be determined.
Collapse
Affiliation(s)
- L Jolly
- Centre for Integrated Systems Biology & Medicine, School of Biomedical Sciences, University of Nottingham, Nottingham, UK
| | | | | | | | | |
Collapse
|