1
|
Immunomodulatory Roles of PACAP and VIP: Lessons from Knockout Mice. J Mol Neurosci 2018; 66:102-113. [PMID: 30105629 DOI: 10.1007/s12031-018-1150-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023]
Abstract
A bidirectional cross-talk is established between the nervous and immune systems through common mediators including neuropeptides, neurotransmitters, and cytokines. Among these, PACAP and VIP are two highly related neuropeptides widely distributed in the organism with purported immunomodulatory actions. Due to their well-known anti-inflammatory properties, administration of these peptides has proven to be beneficial in models of acute and chronic inflammatory diseases. Nevertheless, the relevance of the endogenous source of these peptides in the modulation of immune responses remains to be elucidated. The development of transgenic mice with specific deletions in the genes coding for these neuropeptides (Vip and Adcyap1) or for their G-protein-coupled receptors VPAC1, VPAC2, and PAC1 (Vipr1, Vipr2, Adcyap1r1) has allowed to address this question, underscoring the complexity of the immunoregulatory properties of PACAP and VIP. The goal of this review is to integrate the existing information on the immune phenotypes of mice deficient for PACAP, VIP, or their receptors, to provide a global view on the roles of these endogenous neuropeptides during immunological health and disease.
Collapse
|
2
|
Khandekar N, Berning BA, Sainsbury A, Lin S. The role of pancreatic polypeptide in the regulation of energy homeostasis. Mol Cell Endocrinol 2015; 418 Pt 1:33-41. [PMID: 26123585 DOI: 10.1016/j.mce.2015.06.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/16/2015] [Accepted: 06/03/2015] [Indexed: 12/13/2022]
Abstract
Imbalances in normal regulation of food intake can cause obesity and related disorders. Inadequate therapies for such disorders necessitate better understanding of mechanisms that regulate energy homeostasis. Pancreatic polypeptide (PP), a robust anorexigenic hormone, effectively modulates food intake and energy homeostasis, thus potentially aiding anti-obesity therapeutics. Intra-gastric and intra-intestinal infusion of nutrients stimulate PP secretion from the gastrointestinal tract, leading to vagal stimulation that mediates complex actions via the neuropeptide Y4 receptor in arcuate nucleus of the hypothalamus, subsequently activating key hypothalamic nuclei and dorsal vagal complex of the brainstem to influence energy homeostasis and body composition. Novel studies indicate affinity of PP for the relatively underexplored neuropeptide y6 receptor, mediating actions via the suprachiasmatic nucleus and pathways involving vasoactive intestinal polypeptide and insulin like growth factor 1. This review highlights detailed mechanisms by which PP mediates its actions on energy balance through various areas in the brain.
Collapse
Affiliation(s)
- Neeta Khandekar
- Neurological Diseases Division, Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Britt A Berning
- Neurological Diseases Division, Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Amanda Sainsbury
- The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Shu Lin
- Neurological Diseases Division, Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
3
|
Loh K, Herzog H, Shi YC. Regulation of energy homeostasis by the NPY system. Trends Endocrinol Metab 2015; 26:125-35. [PMID: 25662369 DOI: 10.1016/j.tem.2015.01.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 01/01/2023]
Abstract
Obesity develops when energy intake exceeds energy expenditure over time. Numerous neurotransmitters, hormones, and factors have been implicated to coordinately control energy homeostasis, centrally and peripherally. However, the neuropeptide Y (NPY) system has emerged as the one with the most critical functions in this process. While NPY centrally promotes feeding and reduces energy expenditure, peptide YY (PYY) and pancreatic polypeptide (PP), the other family members, mediate satiety. Importantly, recent research has uncovered additional functions for these peptides that go beyond the simple feeding/satiety circuits and indicate a more extensive function in controlling energy homeostasis. In this review, we will discuss the actions of the NPY system in the regulation of energy balance, with a particular focus on energy expenditure.
Collapse
Affiliation(s)
- Kim Loh
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia.
| | - Yan-Chuan Shi
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia.
| |
Collapse
|
4
|
Yulyaningsih E, Loh K, Lin S, Lau J, Zhang L, Shi Y, Berning BA, Enriquez R, Driessler F, Macia L, Khor EC, Qi Y, Baldock P, Sainsbury A, Herzog H. Pancreatic polypeptide controls energy homeostasis via Npy6r signaling in the suprachiasmatic nucleus in mice. Cell Metab 2014; 19:58-72. [PMID: 24411939 DOI: 10.1016/j.cmet.2013.11.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 10/04/2013] [Accepted: 11/15/2013] [Indexed: 12/29/2022]
Abstract
Y-receptors control energy homeostasis, but the role of Npy6 receptors (Npy6r) is largely unknown. Young Npy6r-deficient (Npy6r(-/-)) mice have reduced body weight, lean mass, and adiposity, while older and high-fat-fed Npy6r(-/-) mice have low lean mass with increased adiposity. Npy6r(-/-) mice showed reduced hypothalamic growth hormone releasing hormone (Ghrh) expression and serum insulin-like growth factor-1 (IGF-1) levels relative to WT. This is likely due to impaired vasoactive intestinal peptide (VIP) signaling in the suprachiasmatic nucleus (SCN), where we found Npy6r coexpressed in VIP neurons. Peripheral administration of pancreatic polypeptide (PP) increased Fos expression in the SCN, increased energy expenditure, and reduced food intake in WT, but not Npy6r(-/-), mice. Moreover, intraperitoneal (i.p.) PP injection increased hypothalamic Ghrh mRNA expression and serum IGF-1 levels in WT, but not Npy6r(-/-), mice, an effect blocked by intracerebroventricular (i.c.v.) Vasoactive Intestinal Peptide (VPAC) receptors antagonism. Thus, PP-initiated signaling through Npy6r in VIP neurons regulates the growth hormone axis and body composition.
Collapse
Affiliation(s)
- Ernie Yulyaningsih
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Kim Loh
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Shu Lin
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Jackie Lau
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Lei Zhang
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Yanchuan Shi
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Britt A Berning
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Ronaldo Enriquez
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Frank Driessler
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Laurence Macia
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Ee Cheng Khor
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Yue Qi
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Paul Baldock
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Amanda Sainsbury
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia; School of Medical Sciences, Wallace Wurth Building, University of NSW, Botany Street, Sydney 2052, Australia; The Boden Institute of Obesity, Nutrition, Exercise, and Eating Disorders, Sydney Medical School, The University of Sydney, Medical Foundation Building, 92-94 Parramatta Road, Camperdown NSW 2006, Australia
| | - Herbert Herzog
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia; UNSW Medicine, ASGM Building, University of NSW, Botany Street, Sydney 2052, Australia.
| |
Collapse
|
5
|
Shen S, Gehlert DR, Collier DA. PACAP and PAC1 receptor in brain development and behavior. Neuropeptides 2013; 47:421-30. [PMID: 24220567 DOI: 10.1016/j.npep.2013.10.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/12/2013] [Accepted: 10/13/2013] [Indexed: 10/26/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) act through three class B G-protein coupled receptors, PAC1, VPAC1 and VPAC2, initiating multiple signaling pathways. In addition to natural peptides ligands, a number of synthetic peptides and a small molecular antagonist have been generated. Genetically modified animals have been produced for the neuropeptides and receptors. Neuroanatomical, electrophysiological, behavioral and pharmacological characterization of the mutants and transgenic mice uncovered diverse roles of PACAP-PAC1-VAPC2 signaling in peripheral tissues and in the central nervous system. Human genetic studies suggest that the PACAP-PAC1-VPAC2 signaling can be associated with psychiatric illness via mechanisms of not only loss-of-function, but also gain-of-function. For example, a duplication of chromosome 7q36.3 (encoding the VPAC2 receptor) was shown to be associated with schizophrenia, and high levels of PACAP-PAC1 signaling are associated with posttraumatic stress disorder. Whereas knockout animals are appropriate to address loss-of-function of human genetics, transgenic mice overexpressing human transgenes in native environment using artificial chromosomes are particularly valuable and essential to address the consequences of gain-of-function. This review focuses on role of PACAP and PAC1 receptor in brain development, behavior of animals and potential implication in human neurodevelopmental disorders. It also encourages keeping an open mind that alterations of VIP/PACAP signaling may associate with psychiatric illness without overt neuroanatomic changes, and that tuning of VIP/PACAP signaling may represent a novel avenue for the treatment of the psychiatric illness.
Collapse
Affiliation(s)
- Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, National University of Ireland (NUI) Galway, Galway, Ireland.
| | | | | |
Collapse
|
6
|
Silva AB, Palmer DB. Evidence of conserved neuroendocrine interactions in the thymus: intrathymic expression of neuropeptides in mammalian and non-mammalian vertebrates. Neuroimmunomodulation 2011; 18:264-70. [PMID: 21952678 DOI: 10.1159/000329493] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The function of lymphoid organs and immune cells is often modulated by hormones, steroids and neuropeptides produced by the neuroendocrine and immune systems. The thymus intrinsically produces these factors and a comparative analysis of the expression of neuropeptides in the thymus of different species would highlight the evolutionary importance of neuroendocrine interaction in T cell development. In this review, we highlight the evidence which describes the intrathymic expression and function of various neuropeptides and their receptors, in particular somatostatin, substance P, vasointestinal polypeptide, calcitonin gene-related peptide and neuropeptide Y, in mammals (human, rodent) and non-mammals (avian, amphibian and teleost), and conclude that neuropeptides play a conserved role in vertebrate thymocyte development.
Collapse
Affiliation(s)
- Alberto B Silva
- Infection and Immunity Group, Department of Veterinary Basic Sciences, Royal Veterinary College, London, UK
| | | |
Collapse
|
8
|
Horvath G, Mark L, Brubel R, Szakaly P, Racz B, Kiss P, Tamas A, Helyes Z, Lubics A, Hashimoto H, Baba A, Shintani N, Furjes G, Nemeth J, Reglodi D. Mice deficient in pituitary adenylate cyclase activating polypeptide display increased sensitivity to renal oxidative stress in vitro. Neurosci Lett 2009; 469:70-4. [PMID: 19932736 DOI: 10.1016/j.neulet.2009.11.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 11/13/2009] [Accepted: 11/17/2009] [Indexed: 12/24/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a multifunctional neuropeptide, showing widespread occurrence in the nervous system and also in peripheral organs. The neuroprotective effects of PACAP are well-established in different neuronal systems against noxious stimuli in vitro and in vivo. Recently, its general cytoprotective actions have been recognized, including renoprotective effects. However, the effect of endogenous PACAP in the kidneys is not known. The main aim of the present study was to investigate whether the lack of this endogenous neuropeptide influences survival of kidney cells against oxidative stress. First, we determined the presence of endogenous PACAP from mouse kidney homogenates by mass spectrometry and PACAP-like immunoreactivity by radioimmunoassay. Second, primary cultures were isolated from wild type and PACAP deficient mice and cell viability was assessed following oxidative stress induced by 0.5, 1.5 and 3mM H(2)O(2). Our mass spectrometry and radioimmunoassay results show that PACAP is endogenously present in the kidney. The main part of our study revealed that the sensitivity of cells from PACAP deficient mice was increased to oxidative stress: both after 2 or 4h of exposure, cell viability was significantly reduced compared to that from control wild type mice. This increased sensitivity of kidneys from PACAP deficient mice could be counteracted by exogenously given PACAP38. These results show, for the first time, that endogenous PACAP protects against oxidative stress in the kidney, and that PACAP may act as a stress sensor in renal cells. These findings further support the general cytoprotective nature of this neuropeptide.
Collapse
|