1
|
Lin K, Stiles J, Tambo W, Ajmal E, Piao Q, Powell K, Li C. Bimodal functions of calcitonin gene-related peptide in the brain. Life Sci 2024; 359:123177. [PMID: 39486618 DOI: 10.1016/j.lfs.2024.123177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
AIMS Calcitonin gene-related peptide (CGRP) is a pluripotent neuropeptide crucial for maintaining vascular homeostasis, yet its full therapeutic potential remains incompletely exploited. Within the brain, CGRP demonstrates a distinct bimodal effect, contributing to neuroprotection in ischemic conditions while inducing neuronal sensitization and inflammation in non-ischemic settings. Despite extensive research on CGRP, the absence of a definitive determinant for this observed dichotomy has limited its potential for therapeutic applications in the brain. This review examines the effects of CGRP in both physiological and pathological conditions, aiming to identify a unifying factor that could enhance its therapeutic applicability. MATERIALS AND METHODS This comprehensive literature review analyzes the molecular pathways associated with CGRP and the specific cellular responses observed in these contexts. Additionally, the review investigates the psychological implications of CGRP in relation to cerebral perfusion levels, aiming to elucidate its underlying factors. KEY FINDINGS Reviewing the literature reveals that, elevated levels of CGRP in non-ischemic conditions exert detrimental effects on brain function, while they confer protective effects in the context of ischemia. These encompass anti-oxidative, anti-inflammatory, anti-apoptotic, and angiogenic properties, along with behavioral normalization. Current findings indicate promising therapeutic avenues for CGRP beyond the acute phases of cerebral injury, extending to neurodegenerative and psychological disorders associated with cerebral hypoperfusion, as well as chronic recovery following acute cerebral injuries. SIGNIFICANCE Improved understanding of CGRP's bimodal properties, alongside advancements in CGRP delivery methodologies and brain ischemia detection technologies, paves the way for realizing its untapped potential and broad therapeutic benefits in diverse pathological conditions.
Collapse
Affiliation(s)
- Kanheng Lin
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Emory University, Atlanta, GA, USA
| | - Jacob Stiles
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; The College of William & Mary, Williamsburg, VA, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Erum Ajmal
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Division of Neurosurgery, SUNY Downstate College of Medicine, Brooklyn, NY, USA
| | - Quanyu Piao
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA; Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
2
|
Li C, Ajmal E, Alok K, Powell K, Wadolowski S, Tambo W, Turpin J, Barthélemy E, Al-Abed Y, LeDoux D. CGRP as a potential mediator for the sexually dimorphic responses to traumatic brain injury. Biol Sex Differ 2024; 15:44. [PMID: 38816868 PMCID: PMC11138127 DOI: 10.1186/s13293-024-00619-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND The outcomes of traumatic brain injury (TBI) exhibit variance contingent upon biological sex. Although female sex hormones exert neuroprotective effects, the administration of estrogen and progesterone has not yielded conclusive results. Hence, it is conceivable that additional mediators, distinct from female sex hormones, merit consideration due to their potential differential impact on TBI outcomes. Calcitonin gene-related peptide (CGRP) exhibits sexually dimorphic expression and demonstrates neuroprotective effects in acute brain injuries. In this study, we aimed to examine sex-based variations in TBI structural and functional outcomes with respect to CGRP expression. METHODS Male and female Sprague Dawley rats were exposed to controlled cortical impact to induce severe TBI, followed by interventions with and without CGRP inhibition. In the acute phase of TBI, the study centered on elucidating the influence of CGRP on oxidative stress, nuclear factor erythroid 2-related factor 2 (Nrf2) and endothelial nitric oxide synthase (eNOS) signaling in the peri-impact tissue. Subsequently, during the chronic phase of TBI, the investigation expanded to evaluate CGRP expression in relation to lesion volume, microvascular dysfunction, and white matter injury, as well as working and spatial memory, anxiety-like, and depression-like behaviors in subjects of both sexes. RESULTS Female rats exhibited elevated levels of CGRP in the peri-impact brain tissue during both baseline conditions and in the acute and chronic phases of TBI, in comparison to age-matched male counterparts. Enhanced CGRP levels in specific brain sub-regions among female rats correlated with superior structural and functional outcomes following TBI compared to their male counterparts. CGRP inhibition induced heightened oxidative stress and a reduction in the expression of Nrf2 and eNOS in both male and female rats, with the observed alteration being more pronounced in females than in males. CONCLUSIONS This study marks the inaugural identification of CGRP as a downstream mediator contributing to the sexually dimorphic response observed in TBI outcomes.
Collapse
Affiliation(s)
- Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, 11030, USA.
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, Manhasset, NY, 11030, USA.
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
| | - Erum Ajmal
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Division of Neurosurgery, SUNY Downstate College of Medicine, Brooklyn, NY, 11203, USA
| | - Khaled Alok
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, 11030, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Steven Wadolowski
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, Manhasset, NY, 11030, USA
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Justin Turpin
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, 11030, USA
| | - Ernest Barthélemy
- Division of Neurosurgery, SUNY Downstate College of Medicine, Brooklyn, NY, 11203, USA
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - David LeDoux
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, 11030, USA
| |
Collapse
|
3
|
Viudez-Martínez A, Torregrosa AB, Navarrete F, García-Gutiérrez MS. Understanding the Biological Relationship between Migraine and Depression. Biomolecules 2024; 14:163. [PMID: 38397400 PMCID: PMC10886628 DOI: 10.3390/biom14020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
Migraine is a highly prevalent neurological disorder. Among the risk factors identified, psychiatric comorbidities, such as depression, seem to play an important role in its onset and clinical course. Patients with migraine are 2.5 times more likely to develop a depressive disorder; this risk becomes even higher in patients suffering from chronic migraine or migraine with aura. This relationship is bidirectional, since depression also predicts an earlier/worse onset of migraine, increasing the risk of migraine chronicity and, consequently, requiring a higher healthcare expenditure compared to migraine alone. All these data suggest that migraine and depression may share overlapping biological mechanisms. Herein, this review explores this topic in further detail: firstly, by introducing the common epidemiological and risk factors for this comorbidity; secondly, by focusing on providing the cumulative evidence of common biological aspects, with a particular emphasis on the serotoninergic system, neuropeptides such as calcitonin-gene-related peptide (CGRP), pituitary adenylate cyclase-activating polypeptide (PACAP), substance P, neuropeptide Y and orexins, sexual hormones, and the immune system; lastly, by remarking on the future challenges required to elucidate the etiopathological mechanisms of migraine and depression and providing updated information regarding new key targets for the pharmacological treatment of these clinical entities.
Collapse
Affiliation(s)
- Adrián Viudez-Martínez
- Hospital Pharmacy Service, Hospital General Dr. Balmis de Alicante, 03010 Alicante, Spain;
| | - Abraham B. Torregrosa
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
4
|
Zhu W, Li W, Jiang J, Wang D, Mao X, Zhang J, Zhang X, Chang J, Yao P, Yang X, Da Costa C, Zhang Y, Yu J, Li H, Li S, Chi X, Li N. Chronic salmon calcitonin exerts an antidepressant effect via modulating the p38 MAPK signaling pathway. Front Mol Neurosci 2023; 16:1071327. [PMID: 36969556 PMCID: PMC10036804 DOI: 10.3389/fnmol.2023.1071327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
Depression is a common recurrent psychiatric disorder with a high lifetime prevalence and suicide rate. At present, although several traditional clinical drugs such as fluoxetine and ketamine, are widely used, medications with a high efficiency and reduced side effects are of urgent need. Our group has recently reported that a single administration of salmon calcitonin (sCT) could ameliorate a depressive-like phenotype via the amylin signaling pathway in a mouse model established by chronic restraint stress (CRS). However, the molecular mechanism underlying the antidepressant effect needs to be addressed. In this study, we investigated the antidepressant potential of sCT applied chronically and its underlying mechanism. In addition, using transcriptomics, we found the MAPK signaling pathway was upregulated in the hippocampus of CRS-treated mice. Further phosphorylation levels of ERK/p38/JNK kinases were also enhanced, and sCT treatment was able only to downregulate the phosphorylation level of p38/JNK, with phosphorylated ERK level unaffected. Finally, we found that the antidepressant effect of sCT was blocked by p38 agonists rather than JNK agonists. These results provide a mechanistic explanation of the antidepressant effect of sCT, suggesting its potential for treating the depressive disorder in the clinic.
Collapse
Affiliation(s)
- Wenhui Zhu
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Weifen Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jian Jiang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dilong Wang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xinliang Mao
- Perfect Life and Health Institute, Zhongshan, Guangdong, China
| | - Jin Zhang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xunzhi Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jinlong Chang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Peijia Yao
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiuyan Yang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | | | - Ying Zhang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiezhong Yu
- The Fourth People’s Hospital of Datong City, Datong, China
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, London, United Kingdom
- China-UK Institute for Frontier Science, Shenzhen, China
- *Correspondence: Huiliang Li,
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Shupeng Li,
| | - Xinjin Chi
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Xinjin Chi,
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- China-UK Institute for Frontier Science, Shenzhen, China
- The Fifth People’s Hospital of Datong City, Datong, China
- Ningning Li,
| |
Collapse
|
5
|
Kupcova I, Danisovic L, Grgac I, Harsanyi S. Anxiety and Depression: What Do We Know of Neuropeptides? Behav Sci (Basel) 2022; 12:262. [PMID: 36004833 PMCID: PMC9405013 DOI: 10.3390/bs12080262] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
In modern society, there has been a rising trend of depression and anxiety. This trend heavily impacts the population's mental health and thus contributes significantly to morbidity and, in the worst case, to suicides. Modern medicine, with many antidepressants and anxiolytics at hand, is still unable to achieve remission in many patients. The pathophysiology of depression and anxiety is still only marginally understood, which encouraged researchers to focus on neuropeptides, as they are a vast group of signaling molecules in the nervous system. Neuropeptides are involved in the regulation of many physiological functions. Some act as neuromodulators and are often co-released with neurotransmitters that allow for reciprocal communication between the brain and the body. Most studied in the past were the antidepressant and anxiolytic effects of oxytocin, vasopressin or neuropeptide Y and S, or Substance P. However, in recent years, more and more novel neuropeptides have been added to the list, with implications for the research and development of new targets, diagnostic elements, and even therapies to treat anxiety and depressive disorders. In this review, we take a close look at all currently studied neuropeptides, their related pathways, their roles in stress adaptation, and the etiology of anxiety and depression in humans and animal models. We will focus on the latest research and information regarding these associated neuropeptides and thus picture their potential uses in the future.
Collapse
Affiliation(s)
- Ida Kupcova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (I.K.); (L.D.)
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (I.K.); (L.D.)
| | - Ivan Grgac
- Institute of Anatomy, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (I.K.); (L.D.)
| |
Collapse
|
6
|
Carboni L, El Khoury A, Beiderbeck DI, Neumann ID, Mathé AA. Neuropeptide Y, calcitonin gene-related peptide, and neurokinin A in brain regions of HAB rats correlate with anxiety-like behaviours. Eur Neuropsychopharmacol 2022; 57:1-14. [PMID: 35008014 DOI: 10.1016/j.euroneuro.2021.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/07/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022]
Abstract
Anxiety disorders are pervasive psychiatric disorders causing great suffering. The high (HAB) and low (LAB) anxiety-related behaviour rats were selectively bred to investigate neurobiological correlates of anxiety. We compared the level of neuropeptides relevant for anxiety- and depression-related behaviours in selected brain regions of HAB and LAB rats. Increased anxiety and depression-like behaviours of male and female HAB rats in the elevated plus-maze and forced swim tests were accompanied by elevated levels of neuropeptide Y (NPY) in the prefrontal (PFC), frontal (FC) and cingulate cortex (CCx), the striatum, and periaqueductal grey (PAG). Moreover, HAB rats displayed sex-dependent, elevated levels of calcitonin gene-related peptide (CGRP) in PFC, FC, CCx, hippocampus, and PAG. Higher neurokinin A (NKA) levels were detected in CCx, striatum, and PAG in HAB males and in CCx and hypothalamus in HAB females. Increased neurotensin was detected in CCx and PAG in HAB males and in hypothalamus in HAB females. Elevated corticotropin-releasing hormone (CRH) levels appeared in female HAB hypothalamus. Significant correlations were found between anxiety-like behaviour and NPY, CGRP, NKA, and neurotensin, particularly with NPY in CCx and striatum, CGRP in FC and hippocampus, and NKA in entorhinal cortex. This is the first report of NPY, CGRP, NKA, Neurotensin, and CRH measurements in brain regions of HAB and LAB rats, which showed widespread NPY and CGRP alterations in cortical regions, with NKA and neurotensin changes localised in sub-cortical areas. The results may contribute to elucidate pathophysiological mechanisms underlying anxiety and depression and should facilitate identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| | - Aram El Khoury
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
| | - Daniela I Beiderbeck
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, 93040, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, 93040, Regensburg, Germany
| | - Aleksander A Mathé
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
| |
Collapse
|
7
|
Kim MS, Kim BY, Saghetlians A, Zhang X, Okida T, Kim SY. Anti-nociceptive effects of dual neuropeptide antagonist therapy in mouse model of neuropathic and inflammatory pain. Korean J Pain 2022; 35:173-182. [PMID: 35354680 PMCID: PMC8977203 DOI: 10.3344/kjp.2022.35.2.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 11/05/2022] Open
Abstract
Background Neurokinin-1 (NK1) and calcitonin gene-related peptide (CGRP) play a vital role in pain pathogenesis, and these proteins' antagonists have attracted attention as promising pharmaceutical candidates. The authors investigated the antinociceptive effect of co-administration of the CGRP antagonist and an NK1 antagonist on pain models compared to conventional single regimens. Methods C57Bl/6J mice underwent sciatic nerve ligation for the neuropathic pain model and were injected with 4% formalin into the hind paw for the inflammatory pain model. Each model was divided into four groups: vehicle, NK1 antagonist, CGRP antagonist, and combination treatment groups. The NK1 antagonist aprepitant (BIBN4096, 1 mg/kg) or the CGRP antagonist olcegepant (MK-0869, 10 mg/kg) was injected intraperitoneally. Mechanical allodynia, thermal hypersensitivity, and anxiety-related behaviors were assessed using the von Frey, hot plate, and elevated plus-maze tests. The flinching and licking responses were also evaluated after formalin injection. Results Co-administration of aprepitant and olcegepant more significantly alleviated pain behaviors than administration of single agents or vehicle, increasing the mechanical threshold and improving the response latency. Anxiety-related behaviors were also markedly improved after dual treatment compared with either naive mice or the neuropathic pain model in the dual treatment group. Flinching frequency and licking response after formalin injection decreased significantly in the dual treatment group. Isobolographic analysis showed a meaningful additive effect between the two compounds. Conclusions A combination pharmacological therapy comprised of multiple neuropeptide antagonists could be a more effective therapeutic strategy for alleviating neuropathic or inflammatory pain.
Collapse
Affiliation(s)
- Min Su Kim
- Department of Rehabilitation Medicine, Wonkwang University College of Medicine, Iksan, Korea
| | - Bo Yeon Kim
- Department of Rehabilitation Medicine, Wonkwang University College of Medicine, Iksan, Korea.,Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Xiang Zhang
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Takuya Okida
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - So Yeon Kim
- Department of Rehabilitation Medicine, Wonkwang University College of Medicine, Iksan, Korea.,Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
8
|
Jiang J, Ju J, Luo L, Song Z, Liao H, Yang X, Wei S, Wang D, Zhu W, Chang J, Ma J, Hu H, Yu J, Wang H, Hou ST, Li S, Li H, Li N. Salmon Calcitonin Exerts an Antidepressant Effect by Activating Amylin Receptors. Front Pharmacol 2022; 13:826055. [PMID: 35237169 PMCID: PMC8883047 DOI: 10.3389/fphar.2022.826055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Depressive disorder is defined as a psychiatric disease characterized by the core symptoms of anhedonia and learned helplessness. Currently, the treatment of depression still calls for medications with high effectiveness, rapid action, and few side effects, although many drugs, including fluoxetine and ketamine, have been approved for clinical usage by the Food and Drug Administration (FDA). In this study, we focused on calcitonin as an amylin receptor polypeptide, of which the antidepressant effect has not been reported, even if calcitonin gene-related peptides have been previously demonstrated to improve depressive-like behaviors in rodents. Here, the antidepressant potential of salmon calcitonin (sCT) was first evaluated in a chronic restraint stress (CRS) mouse model of depression. We observed that the immobility duration in CRS mice was significantly increased during the tail suspension test and forced swimming test. Furthermore, a single administration of sCT was found to successfully rescue depressive-like behaviors in CRS mice. Lastly, AC187 as a potent amylin receptor antagonist was applied to investigate the roles of amylin receptors in depression. We found that AC187 significantly eliminated the antidepressant effects of sCT. Taken together, our data revealed that sCT could ameliorate a depressive-like phenotype probably via the amylin signaling pathway. sCT should be considered as a potential therapeutic candidate for depressive disorder in the future.
Collapse
Affiliation(s)
- Jian Jiang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Jun Ju
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Liang Luo
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ze Song
- Oncology Department, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Huanquan Liao
- The Clinical Neuroscience Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiuyan Yang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Shoupeng Wei
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Dilong Wang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Wenhui Zhu
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Jinlong Chang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Junzhe Ma
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- China-UK Institute for Frontier Science, Shenzhen, China
| | - Hao Hu
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Jiezhong Yu
- The Fourth People’s Hospital of Datong City, Datong, China
| | - Huiqing Wang
- The Fifth People’s Hospital of Datong City, Datong, China
| | - Sheng-Tao Hou
- Brain Research Centre and Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- *Correspondence: Shupeng Li, ; Huiliang Li, ; Ningning Li,
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, London, United Kingdom
- *Correspondence: Shupeng Li, ; Huiliang Li, ; Ningning Li,
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- China-UK Institute for Frontier Science, Shenzhen, China
- *Correspondence: Shupeng Li, ; Huiliang Li, ; Ningning Li,
| |
Collapse
|
9
|
Endogenous calcitonin gene-related peptide in cerebrospinal fluid and early quality of life and mental health after good-grade spontaneous subarachnoid hemorrhage-a feasibility series. Neurosurg Rev 2020; 44:1479-1492. [PMID: 32572710 PMCID: PMC8121729 DOI: 10.1007/s10143-020-01333-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/22/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022]
Abstract
The vasodilatory calcitonin gene-related peptide (CGRP) is excessively released after spontaneous subarachnoid hemorrhage (sSAH) and modulates psycho-behavioral function. In this pilot study, we prospectively analyzed the treatment-specific differences in the secretion of endogenous CGRP into cerebrospinal fluid (CSF) during the acute stage after good-grade sSAH and its impact on self-reported health-related quality of life (hrQoL). Twenty-six consecutive patients (f:m = 13:8; mean age 50.6 years) with good-grade sSAH were enrolled (drop out 19% (n = 5)): 35% (n = 9) underwent endovascular aneurysm occlusion, 23% (n = 6) microsurgery, and 23% (n = 6) of the patients with perimesencephalic SAH received standardized intensive medical care. An external ventricular drain was inserted within 72 h after the onset of bleeding. CSF was drawn daily from day 1–10. CGRP levels were determined via competitive enzyme immunoassay and calculated as “area under the curve” (AUC). All patients underwent a hrQoL self-report assessment (36-Item Short Form Health Survey (SF-36), ICD-10-Symptom-Rating questionnaire (ISR)) after the onset of sSAH (t1: day 11–35) and at the 6-month follow-up (t2). AUC CGRP (total mean ± SD, 5.7 ± 1.8 ng/ml/24 h) was excessively released into CSF after sSAH. AUC CGRP levels did not differ significantly when dichotomizing the aSAH (5.63 ± 1.77) and pSAH group (5.68 ± 2.08). aSAH patients revealed a higher symptom burden in the ISR supplementary item score (p = 0.021). Multiple logistic regression analyses corroborated increased mean levels of AUC CGRP in CSF at t1 as an independent prognostic factor for a significantly higher symptom burden in most ISR scores (compulsive-obsessive syndrome (OR 5.741, p = 0.018), anxiety (OR 7.748, p = 0.021), depression (OR 2.740, p = 0.005), the supplementary items (OR 2.392, p = 0.004)) and for a poorer performance in the SF-36 physical component summary score (OR 0.177, p = 0.001). In contrast, at t2, CSF AUC CGRP concentrations no longer correlated with hrQoL. To the best of our knowledge, this study is the first to correlate the levels of endogenous CSF CGRP with hrQoL outcome in good-grade sSAH patients. Excessive CGRP release into CSF may have a negative short-term impact on hrQoL and emotional health like anxiety and depression. While subacutely after sSAH, higher CSF levels of the vasodilator CGRP are supposed to be protective against vasospasm-associated cerebral ischemia, from a psychopathological point of view, our results suggest an involvement of CSF CGRP in the dysregulation of higher integrated behavior.
Collapse
|
10
|
Abstract
With the approval of calcitonin gene-related peptide (CGRP) and CGRP receptor monoclonal antibodies by the Federal Drug Administration, a new era in the treatment of migraine patients is beginning. However, there are still many unknowns in terms of CGRP mechanisms of action that need to be elucidated to allow new advances in migraine therapies. CGRP has been studied both clinically and preclinically since its discovery. Here we review some of the preclinical data regarding CGRP in animal models of migraine.
Collapse
Affiliation(s)
- Anne-Sophie Wattiez
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,Center for the Prevention and Treatment of Visual Loss, Iowa VA Health Care System, Iowa City, IA, USA
| | - Mengya Wang
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA. .,Center for the Prevention and Treatment of Visual Loss, Iowa VA Health Care System, Iowa City, IA, USA. .,Department of Pharmacology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
11
|
Borkum JM. CGRP and Brain Functioning: Cautions for Migraine Treatment. Headache 2019; 59:1339-1357. [DOI: 10.1111/head.13591] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Jonathan M. Borkum
- Department of Psychology University of Maine Orono ME USA
- Health Psych Maine Waterville ME USA
| |
Collapse
|
12
|
Laurencin C, Thobois S. Malattia di Parkinson e depressione. Neurologia 2019. [DOI: 10.1016/s1634-7072(19)42021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
13
|
VanderPluym J, Dodick DW, Lipton RB, Ma Y, Loupe PS, Bigal ME. Fremanezumab for preventive treatment of migraine: Functional status on headache-free days. Neurology 2018; 91:e1152-e1165. [PMID: 30120138 PMCID: PMC6161555 DOI: 10.1212/01.wnl.0000544321.19316.40] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 06/25/2018] [Indexed: 12/14/2022] Open
Abstract
Objective To evaluate the effect of fremanezumab on the functional status on headache-free days in phase 2 episodic migraine (EM) and chronic migraine (CM) studies. Methods Functional status data were collected prospectively via the electronic headache diary on all headache-free days by patients answering questions regarding work/school/household chore performance, speed of work completion, concentration, and feeling of fatigue. Individuals with EM receiving monthly doses of fremanezumab 225 mg (n = 96) or 675 mg (n = 97) or placebo (n = 104) were compared. Individuals with CM receiving fremanezumab 675 mg followed by monthly 225 mg (n = 88) and 900 mg (n = 86) were also independently compared to those receiving placebo (n = 89). Results In patients with EM, compared to patients receiving placebo, those receiving fremanezumab experienced an increased number of headache-free days with normal function in work/school/household chore performance and concentration/mental fatigue measures compared to their baseline over the entire treatment period (all p < 0.005). An increased number of headache-free days with normal functional performance for some measures was also found in the CM group in those treated with fremanezumab. Conclusion There was an increased number of headache-free days with normal functional performance on all measures for the patients with EM and some measures for patients with CM in the fremanezumab-treated groups. Further research is required to confirm these findings in a prospective study and to clarify the underlying mechanism(s). ClinicalTrials.gov identifier: NCT02025556 and NCT02021773. Classification of evidence This study provides Class II evidence that for patients with migraine, fremanezumab increases normal functional performance on headache-free days.
Collapse
Affiliation(s)
- Juliana VanderPluym
- From the Mayo Clinic (J.V., D.W.D.), Phoenix, AZ; Montefiore Headache Center (R.B.L.), Albert Einstein College of Medicine, New York, NY; Teva Pharmaceuticals Ltd (Y.M., P.S.L.), Netanya, Israel; and Teva Pharmaceuticals Ltd (M.E.B.), Frazer, PA. Dr. Bigal is now at Purdue Pharma, Stamford, CT.
| | - David W Dodick
- From the Mayo Clinic (J.V., D.W.D.), Phoenix, AZ; Montefiore Headache Center (R.B.L.), Albert Einstein College of Medicine, New York, NY; Teva Pharmaceuticals Ltd (Y.M., P.S.L.), Netanya, Israel; and Teva Pharmaceuticals Ltd (M.E.B.), Frazer, PA. Dr. Bigal is now at Purdue Pharma, Stamford, CT
| | - Richard B Lipton
- From the Mayo Clinic (J.V., D.W.D.), Phoenix, AZ; Montefiore Headache Center (R.B.L.), Albert Einstein College of Medicine, New York, NY; Teva Pharmaceuticals Ltd (Y.M., P.S.L.), Netanya, Israel; and Teva Pharmaceuticals Ltd (M.E.B.), Frazer, PA. Dr. Bigal is now at Purdue Pharma, Stamford, CT
| | - Yuju Ma
- From the Mayo Clinic (J.V., D.W.D.), Phoenix, AZ; Montefiore Headache Center (R.B.L.), Albert Einstein College of Medicine, New York, NY; Teva Pharmaceuticals Ltd (Y.M., P.S.L.), Netanya, Israel; and Teva Pharmaceuticals Ltd (M.E.B.), Frazer, PA. Dr. Bigal is now at Purdue Pharma, Stamford, CT
| | - Pippa S Loupe
- From the Mayo Clinic (J.V., D.W.D.), Phoenix, AZ; Montefiore Headache Center (R.B.L.), Albert Einstein College of Medicine, New York, NY; Teva Pharmaceuticals Ltd (Y.M., P.S.L.), Netanya, Israel; and Teva Pharmaceuticals Ltd (M.E.B.), Frazer, PA. Dr. Bigal is now at Purdue Pharma, Stamford, CT
| | - Marcelo E Bigal
- From the Mayo Clinic (J.V., D.W.D.), Phoenix, AZ; Montefiore Headache Center (R.B.L.), Albert Einstein College of Medicine, New York, NY; Teva Pharmaceuticals Ltd (Y.M., P.S.L.), Netanya, Israel; and Teva Pharmaceuticals Ltd (M.E.B.), Frazer, PA. Dr. Bigal is now at Purdue Pharma, Stamford, CT
| |
Collapse
|
14
|
Kopach O, Krotov V, Shysh A, Sotnic A, Viatchenko-Karpinski V, Dosenko V, Voitenko N. Spinal PKCα inhibition and gene-silencing for pain relief: AMPAR trafficking at the synapses between primary afferents and sensory interneurons. Sci Rep 2018; 8:10285. [PMID: 29980697 PMCID: PMC6035211 DOI: 10.1038/s41598-018-28512-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 06/22/2018] [Indexed: 01/21/2023] Open
Abstract
Upregulation of Ca2+-permeable AMPA receptors (CP-AMPARs) in dorsal horn (DH) neurons has been causally linked to persistent inflammatory pain. This upregulation, demonstrated for both synaptic and extrasynaptic AMPARs, depends on the protein kinase C alpha (PKCα) activation; hence, spinal PKC inhibition has alleviated peripheral nociceptive hypersensitivity. However, whether targeting the spinal PKCα would alleviate both pain development and maintenance has not been explored yet (essential to pharmacological translation). Similarly, if it could balance the upregulated postsynaptic CP-AMPARs also remains unknown. Here, we utilized pharmacological and genetic inhibition of spinal PKCα in various schemes of pain treatment in an animal model of long-lasting peripheral inflammation. Pharmacological inhibition (pre- or post-treatment) reduced the peripheral nociceptive hypersensitivity and accompanying locomotive deficit and anxiety in rats with induced inflammation. These effects were dose-dependent and observed for both pain development and maintenance. Gene-therapy (knockdown of PKCα) was also found to relieve inflammatory pain when applied as pre- or post-treatment. Moreover, the revealed therapeutic effects were accompanied with the declined upregulation of CP-AMPARs at the DH synapses between primary afferents and sensory interneurons. Our results provide a new focus on the mechanism-based pain treatment through interference with molecular mechanisms of AMPAR trafficking in central pain pathways.
Collapse
Affiliation(s)
- Olga Kopach
- Department of Sensory Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine. .,Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.
| | - Volodymyr Krotov
- Department of Sensory Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Angela Shysh
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Andrij Sotnic
- Department of Sensory Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Viacheslav Viatchenko-Karpinski
- Department of Sensory Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine.,The University of Alabama at Birmingham, Birmingham, United States
| | - Victor Dosenko
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kyiv, Ukraine.,Kyiv Academic University, Kyiv, Ukraine
| | - Nana Voitenko
- Department of Sensory Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine. .,Kyiv Academic University, Kyiv, Ukraine.
| |
Collapse
|
15
|
Svenningsson P, Pålhagen S, Mathé AA. Neuropeptide Y and Calcitonin Gene-Related Peptide in Cerebrospinal Fluid in Parkinson's Disease with Comorbid Depression versus Patients with Major Depressive Disorder. Front Psychiatry 2017; 8:102. [PMID: 28659833 PMCID: PMC5466951 DOI: 10.3389/fpsyt.2017.00102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/24/2017] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. The diagnosis of PD is based on movement dysfunctions. Many patients also suffer from comorbid depression in spite of adequate treatment with dopamine replacement, indicating that also other non-dopaminergic mechanisms are involved. Indeed, neuropeptides are critically implicated in the pathophysiology of major depressive disorder (MDD). To increase our understanding of the biochemical basis of depression in PD patients, we examined the levels of neuropeptide Y (NPY) and calcitonin gene-related peptide (CGRP) in cerebrospinal fluid (CSF) from PD patients, with or without comorbid depression, and compared them to the levels in patients with MDD. We also compared the levels of NPY and CGRP with 5-hydroxyindoleacetic acid (5-HIAA), the major serotonin metabolite. Both NPY and CGRP were higher in PD patients with comorbid depression compared to MDD patients. No similar difference was found in 5-HIAA levels. Accordingly, there were no correlations between NPY and 5-HIAA or CGRP and 5-HIAA levels. The finding of higher NPY and CGRP CSF levels in PD patients with MDD raises the possibility that different pathophysiological processes may underlie depression in PD and MDD.
Collapse
Affiliation(s)
- Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sven Pålhagen
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Aleksander A Mathé
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Nakaya K, Nagura Y, Hasegawa R, Ito H, Fukudo S. Dai-Kenchu-To, a Herbal Medicine, Attenuates Colorectal Distention-induced Visceromotor Responses in Rats. J Neurogastroenterol Motil 2016; 22:686-693. [PMID: 27095743 PMCID: PMC5056579 DOI: 10.5056/jnm15190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/16/2016] [Accepted: 03/05/2016] [Indexed: 01/14/2023] Open
Abstract
Background/Aims Dai-kenchu-to (DKT), a traditional Japanese herbal medicine, is known to increase gastrointestinal motility and improve ileal function. We tested our hypotheses that (1) pretreatment with DKT would block the colorectal distention-induced visceromotor response in rats, and (2) pretreatment with DKT would attenuate colorectal distention-induced adrenocorticotropic hormone (ACTH) release and anxiety-related behavior. Methods Rats were pretreated with vehicle or DKT (300 mg/kg/5 mL, per os). Visceromotor responses were analyzed using electromyography in response to colorectal distention (10, 20, 40, 60, and 80 mmHg for 20 seconds at 3-minutes intervals). Anxiety-related behavior was measured during exposure to an elevated-plus maze after colorectal distention. Plasma ACTH and serum corticosterone levels were measured after exposure to the elevated-plus maze. Results Colorectal distention produced robust contractions of the abdominal musculature, graded according to stimulus intensity, in vehicle-treated rats. At 40, 60, and 80 mmHg of colorectal distention, the visceromotor responses of DKT-treated rats was significantly lower than that of vehicle-treated rats. At 80 mmHg, the amplitude was suppressed to approximately one-third in DKT-treated rats, compared with that in vehicle-treated rats. Smooth muscle compliance and the velocity of accommodation to 60 mmHg of stretching did not significantly differ between the vehicle-treated and DKT-treated rats. Similarly, the DKT did not influence colorectal distention-induced ACTH release, corticosterone levels, or anxiety-related behavior in rats. Conclusions Our results suggest that DKT attenuates the colorectal distention-induced visceromotor responses, without increasing smooth muscle compliance, ACTH release or anxiety-related behavior in rats.
Collapse
Affiliation(s)
- Kumi Nakaya
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yohko Nagura
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryoko Hasegawa
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hitomi Ito
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shin Fukudo
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
17
|
Hashikawa-Hobara N, Ogawa T, Sakamoto Y, Hashikawa N. [The relationship between calcitonin gene-related peptide and depression-like behavior]. Nihon Yakurigaku Zasshi 2016; 148:139-143. [PMID: 27581961 DOI: 10.1254/fpj.148.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
18
|
Acute Putrescine Supplementation with Schwann Cell Implantation Improves Sensory and Serotonergic Axon Growth and Functional Recovery in Spinal Cord Injured Rats. Neural Plast 2015; 2015:186385. [PMID: 26550496 PMCID: PMC4621347 DOI: 10.1155/2015/186385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/25/2015] [Accepted: 07/02/2015] [Indexed: 01/29/2023] Open
Abstract
Schwann cell (SC) transplantation exhibits significant potential for spinal cord injury (SCI) repair and its use as a therapeutic modality has now progressed to clinical trials for subacute and chronic human SCI. Although SC implants provide a receptive environment for axonal regrowth and support functional recovery in a number of experimental SCI models, axonal regeneration is largely limited to local systems and the behavioral improvements are modest without additional combinatory approaches. In the current study we investigated whether the concurrent delivery of the polyamine putrescine, started either 30 min or 1 week after SCI, could enhance the efficacy of SCs when implanted subacutely (1 week after injury) into the contused rat spinal cord. Polyamines are ubiquitous organic cations that play an important role in the regulation of the cell cycle, cell division, cytoskeletal organization, and cell differentiation. We show that the combination of putrescine with SCs provides a significant increase in implant size, an enhancement in axonal (sensory and serotonergic) sparing and/or growth, and improved open field locomotion after SCI, as compared to SC implantation alone. These findings demonstrate that polyamine supplementation can augment the effectiveness of SCs when used as a therapeutic approach for subacute SCI repair.
Collapse
|
19
|
Calcitonin gene-related peptide pre-administration acts as a novel antidepressant in stressed mice. Sci Rep 2015; 5:12559. [PMID: 26251188 PMCID: PMC4528222 DOI: 10.1038/srep12559] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 07/03/2015] [Indexed: 12/21/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide that has potent vasodilator properties and is involved in various behavioral disorders. The relationship between CGRP and depression-like behavior is unclear. In this study, we used chronically stressed mice to investigate whether CGRP is involved in depression-like behavior. Each mouse was exposed to restraint and water immersion stress for 15 days. After stress exposure, mice were assessed using behavioral tests: open field test, forced swim test and sucrose preference test. Serum corticosterone levels, hippocampal proliferation and mRNA expression of neurotrophins were measured. After stress exposure, mice exhibited depression-like behavior and decreased CGRP mRNA levels in the hippocampus. Although intracerebroventricular CGRP administration (0.5 nmol) did not alter depression-like behavior after 15-day stress exposure, a single CGRP administration into the brain, before the beginning of the 15-day stress exposure, normalized the behavioral dysfunctions and increased nerve growth factor (Ngf) mRNA levels in stressed mice. Furthermore, in the mouse E14 hippocampal cell line, CGRP treatment induced increased expression of Ngf mRNA. The NGF receptor inhibitor K252a inhibited CGRP's antidepressant-like effects in stressed mice. These results suggest that CGRP expression in the mouse hippocampus is associated with depression-like behavior and changes in Ngf mRNA levels.
Collapse
|
20
|
Pozo-Rosich P, Storer RJ, Charbit AR, Goadsby PJ. Periaqueductal gray calcitonin gene-related peptide modulates trigeminovascular neurons. Cephalalgia 2015; 35:1298-307. [DOI: 10.1177/0333102415576723] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/13/2015] [Indexed: 11/17/2022]
Abstract
Background Calcitonin gene-related peptide (CGRP) receptor antagonism is an approach to migraine therapy. The locus of action of antimigraine treatment is not resolved. The objective was to investigate CGRP receptors in the ventrolateral periaqueductal gray (vlPAG) involved in the modulation of trigeminovascular nociception by descending influences on neurotransmission. Methods The presence of calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1), which form functional CGRP receptors, was investigated. CGRP and its receptor antagonists, olcegepant and CGRP ( 8 – 37 ), were microinjected into the vlPAG while changes of neural responses in the trigeminocervical complex (TCC) were monitored. Results Immunoreactivity indicated the presence of functional CGRP receptor components in the vlPAG and adjacent mesencephalic trigeminal nucleus. Inhibition of TCC responses to stimulation of dural afferents and ophthalmic cutaneous receptive fields after microinjection of bicuculline into vlPAG indicated a connection between the vlPAG and TCC neurons. CGRP facilitated these TCC responses, whereas olcegepant and CGRP ( 8 – 37 ) decreased them. Conclusions CGRP and its receptor antagonists act on neurons in the region of vlPAG to influence nociceptive transmission in the TCC. This suggests CGRP receptor antagonists may act at loci outside of the TCC and reinforces the concept of migraine as a disorder of the brain.
Collapse
Affiliation(s)
- P Pozo-Rosich
- Headache Group-Department of Neurology, University of California, San Francisco, CA, USA
| | - RJ Storer
- Headache Group-Department of Neurology, University of California, San Francisco, CA, USA
| | - AR Charbit
- Headache Group-Department of Neurology, University of California, San Francisco, CA, USA
| | - PJ Goadsby
- Headache Group-Department of Neurology, University of California, San Francisco, CA, USA
- Headache Group- Basic & Clinical Neuroscience, King’s College London, UK
| |
Collapse
|
21
|
Shao B, Zhou YL, Wang H, Lin YS. The role of calcitonin gene-related peptide in post-stroke depression in chronic mild stress-treated ischemic rats. Physiol Behav 2015; 139:224-30. [DOI: 10.1016/j.physbeh.2014.11.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 11/15/2022]
|
22
|
Woods IG, Schoppik D, Shi VJ, Zimmerman S, Coleman HA, Greenwood J, Soucy ER, Schier AF. Neuropeptidergic signaling partitions arousal behaviors in zebrafish. J Neurosci 2014; 34:3142-60. [PMID: 24573274 PMCID: PMC3935080 DOI: 10.1523/jneurosci.3529-13.2014] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/01/2014] [Accepted: 01/07/2014] [Indexed: 11/21/2022] Open
Abstract
Animals modulate their arousal state to ensure that their sensory responsiveness and locomotor activity match environmental demands. Neuropeptides can regulate arousal, but studies of their roles in vertebrates have been constrained by the vast array of neuropeptides and their pleiotropic effects. To overcome these limitations, we systematically dissected the neuropeptidergic modulation of arousal in larval zebrafish. We quantified spontaneous locomotor activity and responsiveness to sensory stimuli after genetically induced expression of seven evolutionarily conserved neuropeptides, including adenylate cyclase activating polypeptide 1b (adcyap1b), cocaine-related and amphetamine-related transcript (cart), cholecystokinin (cck), calcitonin gene-related peptide (cgrp), galanin, hypocretin, and nociceptin. Our study reveals that arousal behaviors are dissociable: neuropeptide expression uncoupled spontaneous activity from sensory responsiveness, and uncovered modality-specific effects upon sensory responsiveness. Principal components analysis and phenotypic clustering revealed both shared and divergent features of neuropeptidergic functions: hypocretin and cgrp stimulated spontaneous locomotor activity, whereas galanin and nociceptin attenuated these behaviors. In contrast, cart and adcyap1b enhanced sensory responsiveness yet had minimal impacts on spontaneous activity, and cck expression induced the opposite effects. Furthermore, hypocretin and nociceptin induced modality-specific differences in responsiveness to changes in illumination. Our study provides the first systematic and high-throughput analysis of neuropeptidergic modulation of arousal, demonstrates that arousal can be partitioned into independent behavioral components, and reveals novel and conserved functions of neuropeptides in regulating arousal.
Collapse
Affiliation(s)
- Ian G. Woods
- Department of Biology, Ithaca College, Ithaca, New York 14850, and
- Department of Molecular and Cellular Biology and
| | | | | | | | - Haley A. Coleman
- Department of Biology, Ithaca College, Ithaca, New York 14850, and
| | - Joel Greenwood
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| | - Edward R. Soucy
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| | - Alexander F. Schier
- Department of Molecular and Cellular Biology and
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
23
|
Jiao J, Opal MD, Dulawa SC. Gestational environment programs adult depression-like behavior through methylation of the calcitonin gene-related peptide gene. Mol Psychiatry 2013; 18:1273-80. [PMID: 23044705 PMCID: PMC3543477 DOI: 10.1038/mp.2012.136] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 02/05/2023]
Abstract
Early life exposure to specific environmental factors can increase risk for developing psychopathology including major depression in adulthood. However, the molecular pathways and epigenetic mechanisms that mediate the effects of early environments on adult mood remain poorly understood. We examined the effects of different gestational and rearing conditions on adult anxiety- and depression-like behavior using a combined reciprocal outcrossing and cross-fostering design in Balb/cJ (cJ) and C57BL/6J (B6) mouse strains. First filial (F1) hybrid offspring, which were gestated by B6 or cJ dams and then reared by either strain, were evaluated for behavior and whole-genome hippocampal gene expression during adulthood. Adult hybrid mice gestated by B6 dams showed increased depression-like behavior in the forced swim and sucrose preference tests, increased hippocampal expression of alpha calcitonin gene-related peptide (αCGRP) transcripts, and decreased methylation of the αCGRP promoter compared with those gestated by cJ dams. Differential expression of αCGRP in adulthood did not result from genomic imprinting, and differences between B6 and cJ mitochondrial DNA were not responsible for behavioral phenotypes observed. Finally, central administration of αCGRP to adult hybrid mice increased depression-like behavior, whereas the CGRP1 receptor antagonist CGRP8-37 reduced depression-like behavior in the forced swim test. Our findings suggest that gestational factors influence adult depression-like behavior through methylation of the αCGRP gene.
Collapse
Affiliation(s)
- Jianwei Jiao
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637
| | - Mark D. Opal
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637,Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637
| | - Stephanie C. Dulawa
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637,Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637
| |
Collapse
|
24
|
Dynamic genotype-selective "phenotypic switching" of CGRP expression contributes to differential neuropathic pain phenotype. Exp Neurol 2013; 250:194-204. [PMID: 24076003 DOI: 10.1016/j.expneurol.2013.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 08/18/2013] [Accepted: 09/16/2013] [Indexed: 11/23/2022]
Abstract
Using a genetic model we demonstrate the role played by "phenotypic switching" of calcitonin gene related peptide (CGRP) expression in axotomized large Aβ afferents in the development of neuropathic pain behavior in rats. After nerve injury both substance P and CGRP are upregulated in Aβ afferents in the corresponding DRGs. It has been proposed that intraspinal release of these neurotransmitters upon gentle stroking of skin drives ascending pain signaling pathways resulting in tactile allodynia. We reported previously that in rat lines genetically selected for high (HA) vs. low (LA) pain phenotype, SP is upregulated equally in both strains, but that CGRP is upregulated exclusively in the pain prone HA line (Nitzan-Luques et al., 2011). This implicates CGRP as the principal driver of tactile allodynia. Here we confirm this conclusion by showing: 1) that the time of emergence of CGRP-IR in DRG Aβ neurons and their central terminals in HA rats matches that of pain behavior, 2) that following spinal nerve lesion (SNL) selective activation of low threshold afferents indeed drives postsynaptic pain-signaling neurons and induces central sensitization in HA rats, as monitored using c-Fos as a marker. These changes are much less prominent in LA rats, 3) that intrathecal (i.t.) administration of CGRP induces tactile allodynia in naïve rats and 4) that i.t. administration of the CGRP-receptor antagonist BIBN4096BS (Olcegepant) attenuates SNL-evoked tactile allodynia, without blocking baseline nociception. Together, these observations support the hypothesis that genotype-selective phenotypic switching of CGRP expression in Aβ afferents following nerve injury is a fundamental mechanism of neuropathic tactile allodynia.
Collapse
|
25
|
Abstract
This article covers the remarkable recent decades as clinicians and scientists have grappled with understanding headache. It is a challenge to understand how a 'normal' brain can become dysfunctional, incapacitating an individual, and then become 'normal' again. Does the answer lie in the anatomy, electrical pathways, the chemistry or a combination? How do the pieces fit together? The components are analyzed in this article. Animal models have provided potential answers. However, these processes have never been proven in man. The dynamic imaging of pain and headache is rapidly evolving and providing new insights and directions of research.
Collapse
|
26
|
Morales-Medina JC, Dumont Y, Quirion R. A possible role of neuropeptide Y in depression and stress. Brain Res 2009; 1314:194-205. [PMID: 19782662 DOI: 10.1016/j.brainres.2009.09.077] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 09/14/2009] [Accepted: 09/19/2009] [Indexed: 11/15/2022]
Abstract
Neuropeptide Y (NPY) mediates its physiological effects through at least four receptors known as Y(1), Y(2), Y(4), and Y(5). This peptide is one of the most abundant peptides in the central nervous system and is highly conserved throughout evolution. The most abundant receptors of the NPY family, the Y(1) and Y(2) receptors, are densely expressed in the cortex, hippocampus, and amygdala. These brain regions are particularly associated with mood disorders, stress responses, and memory processing. With this in mind, researchers suggested the involvement of NPY as well as the Y(1) and Y(2) receptors in affective disorders. Earlier studies showed that NPY and the Y(1) and Y(2) receptors mediate some aspects of depression-like disorders and stress responses in rodents. Recent research also suggests the involvement of the Y(4) and Y(5) receptors in emotion-related processes in rodents. In addition, human studies have consistently suggested a role for NPY in stress responses, whereas conflicting data have been obtained in relation to the role of NPY in depression-related illnesses. However, novel evidence from polymorphisms in the prepro-NPY gene has shed new light on the potential clinical relevance of NPY in depression. In this article, we review the literature from both animal and human studies regarding the contribution of NPY and its receptors in depression and stress.
Collapse
|
27
|
Recober A, Kaiser EA, Kuburas A, Russo AF. Induction of multiple photophobic behaviors in a transgenic mouse sensitized to CGRP. Neuropharmacology 2009; 58:156-65. [PMID: 19607849 DOI: 10.1016/j.neuropharm.2009.07.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 06/30/2009] [Accepted: 07/03/2009] [Indexed: 12/18/2022]
Abstract
Migraine is a complex neurological disorder with a significant impact on patients and society. Clinical and preclinical studies have established the neuropeptide calcitonin gene-related peptide (CGRP) as a key player in migraine and other neurovascular headaches. To study the role of CGRP in these disorders, we have characterized the photophobic phenotype of nestin/hRAMP1 mice, a transgenic model with genetically engineered increased sensitivity to CGRP. These mice have increased nervous system expression of a regulatory subunit of the CGRP receptor, human receptor activity-modifying receptor (hRAMP1). We have previously demonstrated that nestin/hRAMP1 mice display a light-aversive behavior that is greatly enhanced by CGRP and blocked by a CGRP receptor antagonist used to treat migraine. Here we have compared their behavior in two different experimental setups with testing chambers of different sizes and light intensities as well as in complete darkness. We demonstrated similar degrees of light aversion in nestin/hRAMP1 mice with 1000 and 50 lux. To control for other possible factors driving nestin/hRAMP1 mice to the dark zone, we tested them in the absence of any light, and they showed identical behavior as littermates. Furthermore, both nestin/hRAMP1 and control mice have decreased motility in response to CGRP in the dark, but not the light side of the chamber. Our findings confirm the robust CGRP-induced light-aversive phenotype of nestin/hRAMP1 mice, which can be a surrogate of photophobia, and validates its usefulness as a model of migraine and other disorders associated with photophobia.
Collapse
Affiliation(s)
- Ana Recober
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|