1
|
Wang P, Ma K, Yang L, Zhang G, Ye M, Wang S, Wei S, Chen Z, Gu J, Zhang L, Niu J, Tao S. Predicting signaling pathways regulating demyelination in a rat model of lithium-pilocarpine-induced acute epilepsy: A proteomics study. Int J Biol Macromol 2021; 193:1457-1470. [PMID: 34742844 DOI: 10.1016/j.ijbiomac.2021.10.209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022]
Abstract
Demyelination is observed in animal models of intractable epilepsy (IE). Epileptogenesis damages the myelin sheath and dysregulates oligodendrocyte precursor cell (OPC) development. However, the molecular pathways regulating demyelination in epilepsy are unclear. Here, we predicted the molecular mechanisms regulating demyelination in a rat model of lithium-pilocarpine hydrochloride-induced epilepsy. We identified DGKA/Mboat2/Inpp5j and NOS/Keratin 28 as the main target molecules that regulate demyelination via glycerolipid and glycerophospholipid metabolism, phosphatidylinositol signaling, and estrogen signaling in demyelinated forebrain slice cultures (FSCs). In seizure-like FCSs, the actin cytoskeleton was regulated by Cnp and MBP via Pak4/Tmsb4x (also known as Tβ4) and Kif5c/Kntc1. Tβ4 possibly prevented OPC differentiation and maturation and inhibited MBP phosphorylation via the p38MAPK/ERK1/JNK1 pathway. The MAPK signaling pathway was more likely activated in seizure-like FCSs than in demyelinated FCSs. pMBP expression was decreased in the hippocampus of lithium-pilocarpine hydrochloride-induced acute epilepsy rats. The expression of remyelination-related factors was suppressed in the hippocampus and corpus callosum in lithium-pilocarpine hydrochloride-induced epilepsy rats. These findings suggest that the actin cytoskeleton, Tβ4, and MAPK signaling pathways regulate the decrease in pMBP in the hippocampus in a rat model of epilepsy. Our results indicate that regulating the actin cytoskeleton, Tβ4, and MAPK signaling pathways may facilitate the prevention of demyelination in IE.
Collapse
Affiliation(s)
- Peng Wang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan 750004, China.
| | - Kang Ma
- Department of Anatomy, Ningxia Medical University, Yinchuan 750004, China
| | - Lu Yang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan 750004, China
| | - Guodong Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Mengyi Ye
- Ningxia Medical University College of Traditional Chinese Medicine, Yinchuan 750004, Ningxia, China
| | - Siqi Wang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Shuangshuang Wei
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Zhangping Chen
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan 750004, China
| | - Jinghai Gu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan 750004, China
| | - Lianxiang Zhang
- Department of Anatomy, Ningxia Medical University, Yinchuan 750004, China
| | - Jianguo Niu
- Department of Anatomy, Ningxia Medical University, Yinchuan 750004, China.
| | - Sun Tao
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan 750004, China; Department of Neurosurgery, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
2
|
Wang R, Zhang L, Liao R, Li Q, Pi R, Yang X. N2L, a novel lipoic acid-niacin dimer protects HT22 cells against β-amyloid peptide-induced damage through attenuating apoptosis. Metab Brain Dis 2019; 34:1761-1770. [PMID: 31478183 DOI: 10.1007/s11011-019-00482-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/09/2019] [Indexed: 10/26/2022]
Abstract
β-amyloid protein (Aβ) is thought to be the primary cause of the pathogenesis of Alzheimer's disease (AD). Niacin has been reported to have beneficial effects on AD. Previously, we synthesized a novel compound lipoicacid-niacin dimer (N2L) and revealed that it had potent blood-lipid regulation and antioxidative properties without aflushing effect. Given that lipid metabolism is also associated with AD, the present study aimed to investigate the neuroprotective effects of N2L on Aβ1-42-induced cytotoxicity in HT22 cells. We found that N2L significantly attenuated cell apoptosis, MDA level, ROS content, and the mitochondrial membrane potential corruption induced by Aβ1-42 in HT22 cells. In addition, the activities of SOD, GSH-px and CAT that were decreased by Aβ1-42 were also restored by N2L. Furthermore, N2L reduced proapoptotic signaling by increasing the expression of anti-apoptotic Bcl-2 and decreasing the protein expression of both pro-apoptotic Bax and cleaved Caspase-3. Together, these findings indicate that N2L holds great potential for neuroprotection against Aβ1-42-induced cytotoxicity via inhibition of oxidative stress and cell apoptosis, suggesting that N2L may be a promising agent for AD therapy.
Collapse
Affiliation(s)
- Rikang Wang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Lang Zhang
- Jiangxi Provincial Children's Hospital, Nanchang, 330006, People's Republic of China
| | - Rifang Liao
- Department of Pharmacy, Sun Yat-sen Memorial Hospital, SunYat-sen University, Guangzhou, 510120, China
| | - Qian Li
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Rongbiao Pi
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China
- International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiaobo Yang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
3
|
Chen DZ, Wang WW, Chen YL, Yang XF, Zhao M, Yang YY. miR‑128 is upregulated in epilepsy and promotes apoptosis through the SIRT1 cascade. Int J Mol Med 2019; 44:694-704. [PMID: 31173166 DOI: 10.3892/ijmm.2019.4223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/20/2019] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to examine the functional and molecular effects of miR‑128 in epilepsy, in order to investigate its potential protective mechanisms. Firstly, miR‑128 expression in rats with lithium chloride‑induced epilepsy was demonstrated to be increased compared with the control rats. Subsequently, results from an in vitro epilepsy model demonstrated that overexpression of miR‑128 promoted nerve cell apoptosis, increased the protein expression of tumor protein p53, BCL2 associated X (Bax) and Cytochrome c, and enhanced caspase‑3/9 activity, whereas it suppressed the protein expression of sirtuin 1 (SIRT1). In addition, these alterations may be reversed by the downregulation of miR‑128. Furthermore, treatment with CAY10602, a SIRT1 agonist, reduced the effects of miR‑128 on nerve cells in vitro. Treatment with pifithrin‑β hydrobromide, a p53 inhibitor, was additionally able to mitigate the effects of miR‑128 in vitro. In conclusion, the present findings indicated that anti‑miR‑128 may exert neuroprotective effects in epilepsy, through the SIRT1/p53/Bax/Cytochrome c/caspase signaling pathway.
Collapse
Affiliation(s)
- De-Zhe Chen
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Wei-Wei Wang
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Yan-Ling Chen
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Xia-Feng Yang
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Min Zhao
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Yan-Yan Yang
- Department of Neurology, Taishan Medical University, Taian, Shandong 271016, P.R. China
| |
Collapse
|
4
|
Dhir S, Tarasenko M, Napoli E, Giulivi C. Neurological, Psychiatric, and Biochemical Aspects of Thiamine Deficiency in Children and Adults. Front Psychiatry 2019; 10:207. [PMID: 31019473 PMCID: PMC6459027 DOI: 10.3389/fpsyt.2019.00207] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/22/2019] [Indexed: 01/19/2023] Open
Abstract
Thiamine (vitamin B1) is an essential nutrient that serves as a cofactor for a number of enzymes, mostly with mitochondrial localization. Some thiamine-dependent enzymes are involved in energy metabolism and biosynthesis of nucleic acids whereas others are part of the antioxidant machinery. The brain is highly vulnerable to thiamine deficiency due to its heavy reliance on mitochondrial ATP production. This is more evident during rapid growth (i.e., perinatal periods and children) in which thiamine deficiency is commonly associated with either malnutrition or genetic defects. Thiamine deficiency contributes to a number of conditions spanning from mild neurological and psychiatric symptoms (confusion, reduced memory, and sleep disturbances) to severe encephalopathy, ataxia, congestive heart failure, muscle atrophy, and even death. This review discusses the current knowledge on thiamine deficiency and associated morbidity of neurological and psychiatric disorders, with special emphasis on the pediatric population, as well as the putative beneficial effect of thiamine supplementation in autism spectrum disorder (ASD) and other neurological conditions.
Collapse
Affiliation(s)
- Shibani Dhir
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Maya Tarasenko
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Davis, CA, United States
| |
Collapse
|
5
|
Zhu G, Zhang W, Liu Y, Wang S. miR‑371b‑5p inhibits endothelial cell apoptosis in monocrotaline‑induced pulmonary arterial hypertension via PTEN/PI3K/Akt signaling pathways. Mol Med Rep 2018; 18:5489-5501. [PMID: 30387816 PMCID: PMC6236307 DOI: 10.3892/mmr.2018.9614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 03/16/2018] [Indexed: 01/25/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a clinical hemodynamic syndrome. It is characterized by elevated PA pressure and pulmonary vascular resistance. In the present study, the role of microRNA (miRNA/miR)-371b-5p in monocrotaline-induced PAH and the underlying mechanisms were investigated. In a monocrotaline-induced PAH rat model, gene chip and reverse transcription-quantitative polymerase chain reaction were employed to measure miRNA expression levels. The results revealed that miR-371b-5p was downregulated in PAH rats compared with the control group. In addition, in vitro results demonstrated that an miR-371b-5p inhibitor reduced miR-371b-5p expression levels, increased apoptosis and reduced proliferation of pulmonary arterial endothelial cells (PAECs) in rats with monocrotaline-induced PAH. Furthermore, inhibition of miR-371b-5p induced phosphatase and tensin homolog (PTEN) protein expression and suppressed that of phosphoinositide 3-kinase (PI3K) and phosphorylated (p)-Akt in the PAECs. In addition, VO-OHpic, a PTEN inhibitor, reduced the protein expression levels of PTEN in the PAECs and inhibited the effects of anti-miR-371b-5p on cell apoptosis. In addition, LY294002, a PI3K inhibitor, reduced the PI3K and p-Akt protein expression in the PAECs and reversed the effects of miR-371b-5p overexpression on the apoptosis of PAECs in rats with monocrotaline-induced PAH. Collectively, the results of the present study indicate that, in this animal model of PAH, miR-371b-5p inhibits apoptosis of PAECs via PTEN/PI3K/Akt signaling pathways.
Collapse
Affiliation(s)
- Guangfa Zhu
- Department of Pulmonary and Critical Care Medicine, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Wenmei Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Yan Liu
- Department of Infectious Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Shenghao Wang
- Department of Infectious Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| |
Collapse
|
6
|
Mesdaghinia A, Alinejad M, Abed A, Heydari A, Banafshe HR. Anticonvulsant effects of thiamine on pentylenetetrazole-induced seizure in mice. Nutr Neurosci 2017; 22:165-173. [DOI: 10.1080/1028415x.2017.1357919] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Azam Mesdaghinia
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Marziye Alinejad
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Abed
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Azhdar Heydari
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Banafshe
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
7
|
Abstract
An autosomal recessive syndrome of hyperphosphatasia (elevated circulating alkaline phosphatase (AP), seizures and neurologic deficits) was first described by Mabry and colleagues in 1970. Over the ensuing four decades, few cases were reported. In 2010, however, new families were identified and the syndromic nature of the disorder confirmed. Shortly thereafter, next generation sequencing was used to characterize causative defects in the glycosyl phosphatidylinositol (GPI) biosynthetic pathway, based partly on our understanding of how AP is anchored by GPI to the plasma membrane. Whether the seizures and cognitive defects seen in Mabry syndrome patients are attributable in part to the constant hyperphosphatasia is not known, as there are more than 250 other proteins dependent on GPI for their anchoring to the plasma membrane. However, Mabry syndrome may provide a new window on AP function in growth and development.
Collapse
Affiliation(s)
- David E C Cole
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada,
| | | |
Collapse
|
8
|
Luong KVQ, Nguyễn LTH. The beneficial role of thiamine in Parkinson disease. CNS Neurosci Ther 2013; 19:461-8. [PMID: 23462281 PMCID: PMC6493530 DOI: 10.1111/cns.12078] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/24/2013] [Accepted: 01/26/2013] [Indexed: 12/29/2022] Open
Abstract
Parkinson disease (PD) is the second most common form of neurodegeneration among elderly individuals. PD is clinically characterized by tremors, rigidity, slowness of movement, and postural imbalance. In this paper, we review the evidence for an association between PD and thiamine. Interestingly, a significant association has been demonstrated between PD and low levels of serum thiamine, and thiamine supplements appear to have beneficial clinical effects against PD. Multiple studies have evaluated the connection between thiamine and PD pathology, and candidate pathways involve the transcription factor Sp1, p53, Bcl-2, caspase-3, tyrosine hydroxylase, glycogen synthase kinase-3β, vascular endothelial growth factor, advanced glycation end products, nuclear factor kappa B, mitogen-activated protein kinase, and the reduced form of nicotinamide adenine dinucleotide phosphate. Thus, a review of the literature suggests that thiamine plays a role in PD, although further investigation into the effects of thiamine in PD is needed.
Collapse
Affiliation(s)
- Khanh V Q Luong
- Vietnamese American Medical Research Foundation, Westminster, CA 92683, USA
| | | |
Collapse
|
9
|
Role of oxidative stress in refractory epilepsy: evidence in patients and experimental models. Int J Mol Sci 2013; 14:1455-76. [PMID: 23344052 PMCID: PMC3565330 DOI: 10.3390/ijms14011455] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/06/2012] [Accepted: 12/18/2012] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress, a state of imbalance in the production of reactive oxygen species and nitrogen, is induced by a wide variety of factors. This biochemical state is associated with systemic diseases, and diseases affecting the central nervous system. Epilepsy is a chronic neurological disorder with refractoriness to drug therapy at about 30%. Currently, experimental evidence supports the involvement of oxidative stress in seizures, in the process of their generation, and in the mechanisms associated with refractoriness to drug therapy. Hence, the aim of this review is to present information in order to facilitate the handling of this evidence and determine the therapeutic impact of the biochemical status for this pathology.
Collapse
|