1
|
Luo B. Insights into the advances in therapeutic drugs for neuroinflammation-related diseases. Int J Neurosci 2023:1-26. [PMID: 37722706 DOI: 10.1080/00207454.2023.2260088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Studies have shown that neurodegenerative diseases such as AD and PD are related to neuroinflammation. Neuroinflammation is a common inflammatory condition that can lead to a variety of dysfunction in the body. At present, it is no medications specifically approved to prevent or cure neuroinflammation, so even though many drugs can temporarily control the neurological symptoms of neuroinflammation, but no one can reverse the progress of neuroinflammation, let al.one completely cure neuroinflammation. Therefore, it is urgent to develop new drug development for neuroinflammation treatment. In this review, we highlight the therapeutic advancement in the field of neurodegenerative disorders, by focusing on the impact of neuroinflammation treatment has on these conditions, and the effective drugs for the treatment of neuroinflammation and neurodegenerative diseases and their latest research progress are reviewed according to the related signaling pathway, as well as the prospect of their clinical application is also discussed. The purpose of this review is to enable specialists to better understand the mechanisms underlying neuroinflammation and anti-inflammatory drugs, promote the development of therapeutic drugs for neuroinflammation and neurodegenerative diseases, and further provide therapeutic references for clinical neurologists.
Collapse
Affiliation(s)
- Bozhi Luo
- School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
2
|
Shvartsur R, Agam G, Uzzan S, Azab AN. Low-Dose Aspirin Augments the Anti-Inflammatory Effects of Low-Dose Lithium in Lipopolysaccharide-Treated Rats. Pharmaceutics 2022; 14:pharmaceutics14050901. [PMID: 35631487 PMCID: PMC9143757 DOI: 10.3390/pharmaceutics14050901] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 12/23/2022] Open
Abstract
Mounting evidence suggests that immune-system dysfunction and inflammation play a role in the pathophysiology and treatment of mood-disorders in general and of bipolar disorder in particular. The current study examined the effects of chronic low-dose aspirin and low-dose lithium (Li) treatment on plasma and brain interleukin-6 and tumor necrosis factor-α production in lipopolysaccharide (LPS)-treated rats. Rats were fed regular or Li-containing food (0.1%) for six weeks. Low-dose aspirin (1 mg/kg) was administered alone or together with Li. On days 21 and 42 rats were injected with 1 mg/kg LPS or saline. Two h later body temperature was measured and rats were sacrificed. Blood samples, the frontal-cortex, hippocampus, and the hypothalamus were extracted. To assess the therapeutic potential of the combined treatment, rats were administered the same Li + aspirin protocol without LPS. We found that the chronic combined treatment attenuated LPS-induced hypothermia and significantly reduced plasma and brain cytokine level elevation, implicating the potential neuroinflammatory diminution purportedly present among the mentally ill. The combined treatment also significantly decreased immobility time and increased struggling time in the forced swim test, suggestive of an antidepressant-like effect. This preclinical evidence provides a potential approach for treating inflammation-related mental illness.
Collapse
Affiliation(s)
- Rachel Shvartsur
- Department of Nursing, School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel;
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel; (G.A.); (S.U.)
| | - Galila Agam
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel; (G.A.); (S.U.)
| | - Sarit Uzzan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel; (G.A.); (S.U.)
| | - Abed N. Azab
- Department of Nursing, School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel;
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel; (G.A.); (S.U.)
- Correspondence: ; Tel.: +972-86-479880; Fax: +972-86-477-683
| |
Collapse
|
3
|
Strekalova T, Pavlov D, Trofimov A, Anthony DC, Svistunov A, Proshin A, Umriukhin A, Lyundup A, Lesch KP, Cespuglio R. Hippocampal Over-Expression of Cyclooxygenase-2 (COX-2) Is Associated with Susceptibility to Stress-Induced Anhedonia in Mice. Int J Mol Sci 2022; 23:2061. [PMID: 35216176 PMCID: PMC8879061 DOI: 10.3390/ijms23042061] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
The phenomenon of individual variability in susceptibility/resilience to stress and depression, in which the hippocampus plays a pivotal role, is attracting increasing attention. We investigated the potential role of hippocampal cyclooxygenase-2 (COX-2), which regulates plasticity, neuroimmune function, and stress responses that are all linked to this risk dichotomy. We used a four-week-long chronic mild stress (CMS) paradigm, in which mice could be stratified according to their susceptibility/resilience to anhedonia, a key feature of depression, to investigate hippocampal expression of COX-2, a marker of microglial activation Iba-1, and the proliferation marker Ki67. Rat exposure, social defeat, restraints, and tail suspension were used as stressors. We compared the effects of treatment with either the selective COX-2 inhibitor celecoxib (30 mg/kg/day) or citalopram (15 mg/kg/day). For the celecoxib and vehicle-treated mice, the Porsolt test was used. Anhedonic (susceptible) but not non-anhedonic (resilient) animals exhibited elevated COX-2 mRNA levels, increased numbers of COX-2 and Iba-1-positive cells in the dentate gyrus and the CA1 area, and decreased numbers of Ki67-positive cells in the subgranular zone of the hippocampus. Drug treatment decreased the percentage of anhedonic mice, normalized swimming activity, reduced behavioral despair, and improved conditioned fear memory. Hippocampal over-expression of COX-2 is associated with susceptibility to stress-induced anhedonia, and its pharmacological inhibition with celecoxib has antidepressant effects that are similar in size to those of citalopram.
Collapse
Affiliation(s)
- Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.T.); (K.-P.L.)
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
| | - Dmitrii Pavlov
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
- Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Alexander Trofimov
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.T.); (K.-P.L.)
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
| | - Daniel C. Anthony
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
| | - Andrei Svistunov
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
| | - Andrey Proshin
- P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia;
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
| | - Alexei Lyundup
- Research and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.T.); (K.-P.L.)
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Wuerzburg, Germany
| | - Raymond Cespuglio
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (D.P.); (D.C.A.); (A.S.); (A.U.); (R.C.)
- Centre de Recherche en Neurosciences de Lyon (CRNL), 69500 Bron, France
| |
Collapse
|
4
|
Shen W, Jiang L, Zhao J, Wang H, Hu M, Chen L, Chen Y. Bioactive lipids and their metabolism: new therapeutic opportunities for Parkinson's disease. Eur J Neurosci 2021; 55:846-872. [PMID: 34904314 DOI: 10.1111/ejn.15566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022]
Abstract
Parkinson's disease (PD) is a neurological disorder characterized by motor dysfunction, which can also be associated with non-motor symptoms. Its pathogenesis is thought to stem from a loss of dopaminergic neurons in the substantia nigra pars compacta and the formation of Lewy bodies containing aggregated α-synuclein. Recent works suggested that lipids might play a pivotal role in the pathophysiology of PD. In particular, the so-called "bioactive" lipids whose changes in the concentration may lead to functional consequences and affect many pathophysiological processes, including neuroinflammation, are closely related to PD in terms of symptoms, disease progression, and incidence. This study aimed to explore the molecular metabolism and physiological functions of bioactive lipids, such as fatty acids (mainly unsaturated fatty acids), eicosanoids, endocannabinoids, oxysterols, representative sphingolipids, diacylglycerols, and lysophosphatidic acid, in the development of PD. The knowledge of bioactive lipids in PD gained through preclinical and clinical studies is expected to improve the understanding of disease pathogenesis and provide novel therapeutic avenues.
Collapse
Affiliation(s)
- Wenjing Shen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Li Jiang
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jingyi Zhao
- Department of Neurology, Dalian Medical University, Dalian, Liaoning, China
| | - Haili Wang
- Department of Neurology, Dalian Medical University, Dalian, Liaoning, China
| | - Meng Hu
- The Second Xiangya Hospital, Central Sounth University, Changsha, Hunan Province, China
| | - Lanlan Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yingzhu Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
Ghazanfari N, van Waarde A, Dierckx RAJO, Doorduin J, de Vries EFJ. Is cyclooxygenase-1 involved in neuroinflammation? J Neurosci Res 2021; 99:2976-2998. [PMID: 34346520 PMCID: PMC9542093 DOI: 10.1002/jnr.24934] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/08/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022]
Abstract
Purpose: Reactive microglia are an important hallmark of neuroinflammation. Reactive microglia release various inflammatory mediators, such as cytokines, chemokines, and prostaglandins, which are produced by enzymes like cyclooxygenases (COX). The inducible COX‐2 subtype has been associated with inflammation, whereas the constitutively expressed COX‐1 subtype is generally considered as a housekeeping enzyme. However, recent evidence suggests that COX‐1 can also be upregulated and may play a prominent role in the brain during neuroinflammation. In this review, we summarize the evidence that supports this involvement of COX‐1. Methods: Five databases were used to retrieve relevant studies that addressed COX‐1 in the context of neuroinflammation. The search resulted in 32 articles, describing in vitro, in vivo, post mortem, and in vivo imaging studies that specifically investigated the COX‐1 isoform under such conditions. Results: Reviewed literature generally indicated that the overexpression of COX‐1 was induced by an inflammatory stimulus, which resulted in an increased production of prostaglandin E2. The pharmacological inhibition of COX‐1 was shown to suppress the induction of inflammatory mediators like prostaglandin E2. Positron emission tomography (PET) imaging studies in animal models confirmed the overexpression of COX‐1 during neuroinflammation. The same imaging method, however, could not detect any upregulation of COX‐1 in patients with Alzheimer's disease. Conclusion: Taken together, studies in cultured cells and living rodents suggest that COX‐1 is involved in neuroinflammation. Most postmortem studies on human brains indicate that the concentration of COX‐1‐expressing microglial cells is increased near sites of inflammation. However, evidence for the involvement of COX‐1 in neuroinflammation in the living human brain is still largely lacking.
Collapse
Affiliation(s)
- Nafiseh Ghazanfari
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
6
|
Andreadou EG, Katsipis G, Tsolaki M, Pantazaki AA. Involvement and relationship of bacterial lipopolysaccharides and cyclooxygenases levels in Alzheimer's Disease and Mild Cognitive Impairment patients. J Neuroimmunol 2021; 357:577561. [PMID: 34091099 DOI: 10.1016/j.jneuroim.2021.577561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/24/2021] [Accepted: 03/29/2021] [Indexed: 11/30/2022]
Abstract
This study reports elevated levels of bacterial lipopolysaccharides (LPSs) and cyclooxygenases (COX-1/2) in blood serum and cerebrospinal fluid (CSF) of Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) patients compared to cognitively healthy individuals, indicating LPSs as promising biomarkers, especially in serum. LPSs, in both fluids, positively correlate with COX-1/2, Αβ42 and tau and negatively with mental state. Furthermore, COX-2 is the main determinant of LPSs presence in serum, whereas COX-1 in CSF. These results underline the significance of microbial/ inflammatory involvement in dementia and offer novel perspectives on the roles of LPSs and COX in pathogenesis of AD.
Collapse
Affiliation(s)
- Eleni G Andreadou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001 Thermi, Thessaloniki, Greece.
| | - Georgios Katsipis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001 Thermi, Thessaloniki, Greece
| | - Magda Tsolaki
- First Neurology Department, "AHEPA" University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Greek Association of Alzheimer's Disease and Related Disorders - GAADRD, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001 Thermi, Thessaloniki, Greece
| | - Anastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001 Thermi, Thessaloniki, Greece.
| |
Collapse
|
7
|
|
8
|
Metryka E, Kupnicka P, Kapczuk P, Simińska D, Tarnowski M, Goschorska M, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Lead (Pb) as a Factor Initiating and Potentiating Inflammation in Human THP-1 Macrophages. Int J Mol Sci 2020; 21:ijms21062254. [PMID: 32214022 PMCID: PMC7139839 DOI: 10.3390/ijms21062254] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/12/2020] [Accepted: 03/21/2020] [Indexed: 01/03/2023] Open
Abstract
The aim of this study was to assess the influence of lead (Pb) at low concentrations (imitating Pb levels in human blood in chronic environmental exposure to this metal) on interleukin 1β (IL-1β) and interleukin 6 (IL-6) concentrations and the activity and expression of COX-1 and COX-2 in THP-1 macrophages. Macrophages were cultured in vitro in the presence of Pb at concentrations of: 1.25 μg/dL; 2.5 μg/dL; 5 μg/dL; 10 μg/dL. The first two concentrations of Pb were selected on the basis of our earlier study, which showed that Pb concentration in whole blood (PbB) of young women living in the northern regions of Poland and in the cord blood of their newborn children was within this range (a dose imitating environmental exposure). Concentrations of 5 μg/dL and 10 μg/dL correspond to the previously permissible PbB concentrations in children or pregnant women, and adults. Our results indicate that even low concentrations of Pb cause an increase in production of inflammatory interleukins (IL-1β and IL-6), increases expression of COX-1 and COX-2, and increases thromboxane B2 and prostaglandin E2 concentration in macrophages. This clearly suggests that the development of inflammation is associated not only with COX-2 but also with COX-1, which, until recently, had only been attributed constitutive expression. It can be concluded that environmental Pb concentrations are able to activate the monocytes/macrophages similarly to the manner observed during inflammation.
Collapse
Affiliation(s)
- Emilia Metryka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland; (E.M.); (P.K.); (P.K.); (D.S.); (M.G.); (D.C.)
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland; (E.M.); (P.K.); (P.K.); (D.S.); (M.G.); (D.C.)
| | - Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland; (E.M.); (P.K.); (P.K.); (D.S.); (M.G.); (D.C.)
| | - Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland; (E.M.); (P.K.); (P.K.); (D.S.); (M.G.); (D.C.)
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland;
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland; (E.M.); (P.K.); (P.K.); (D.S.); (M.G.); (D.C.)
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland; (E.M.); (P.K.); (P.K.); (D.S.); (M.G.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland; (E.M.); (P.K.); (P.K.); (D.S.); (M.G.); (D.C.)
- Correspondence:
| |
Collapse
|
9
|
Cruz-Rivera YE, Perez-Morales J, Santiago YM, Gonzalez VM, Morales L, Cabrera-Rios M, Isaza CE. A Selection of Important Genes and Their Correlated Behavior in Alzheimer's Disease. J Alzheimers Dis 2019; 65:193-205. [PMID: 30040709 PMCID: PMC6087431 DOI: 10.3233/jad-170799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In 2017, approximately 5 million Americans were living with Alzheimer’s disease (AD), and it is estimated that by 2050 this number could increase to 16 million. In this study, we apply mathematical optimization to approach microarray analysis to detect differentially expressed genes and determine the most correlated structure among their expression changes. The analysis of GSE4757 microarray dataset, which compares expression between AD neurons without neurofibrillary tangles (controls) and with neurofibrillary tangles (cases), was casted as a multiple criteria optimization (MCO) problem. Through the analysis it was possible to determine a series of Pareto efficient frontiers to find the most differentially expressed genes, which are here proposed as potential AD biomarkers. The Traveling Sales Problem (TSP) model was used to find the cyclical path of maximal correlation between the expression changes among the genes deemed important from the previous stage. This leads to a structure capable of guiding biological exploration with enhanced precision and repeatability. Ten genes were selected (FTL, GFAP, HNRNPA3, COX1, ND2, ND3, ND4, NUCKS1, RPL41, and RPS10) and their most correlated cyclic structure was found in our analyses. The biological functions of their products were found to be linked to inflammation and neurodegenerative diseases and some of them had not been reported for AD before. The TSP path connects genes coding for mitochondrial electron transfer proteins. Some of these proteins are closely related to other electron transport proteins already reported as important for AD.
Collapse
Affiliation(s)
- Yazeli E Cruz-Rivera
- The Applied Optimization Group/Department of Industrial Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | - Jaileene Perez-Morales
- Department of Basic Science-Biochemistry Division, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Yaritza M Santiago
- The Applied Optimization Group/Department of Industrial Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | - Valerie M Gonzalez
- The Applied Optimization Group/Department of Industrial Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | - Luisa Morales
- Public Health Program, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Mauricio Cabrera-Rios
- The Applied Optimization Group/Department of Industrial Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | - Clara E Isaza
- The Applied Optimization Group/Department of Industrial Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico.,Public Health Program, Ponce Health Sciences University, Ponce, Puerto Rico
| |
Collapse
|
10
|
Huang XW, Xu Y, Sui X, Lin H, Xu JM, Han D, Ye DD, Lv GF, Liu YX, Qu XB, Duan MH. Scutellarein suppresses Aβ-induced memory impairment via inhibition of the NF-κB pathway in vivo and in vitro. Oncol Lett 2019; 17:5581-5589. [PMID: 31186780 PMCID: PMC6507344 DOI: 10.3892/ol.2019.10274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 02/22/2019] [Indexed: 12/26/2022] Open
Abstract
The flavonoid compound scutellarin (Scu) is a traditional Chinese medicine used to treat a variety of diseases; however, the use of scutellarein (Scue), the hydrolysate of Scu, and its mechanisms of action in Alzheimer's disease (AD) have not been fully elucidated. In the present study, the effects of Scue on amyloid β (Aβ)-induced AD-like pathology were investigated. An in vitro model of inflammation and an aged rat model were used to confirm the effects of Scue. In vitro MTT assays and flow cytometry were used to assess the effects of Scue on cell viability and apoptosis, respectively. A Morris water maze was used to evaluate spatial learning and memory, and the levels of Aβ deposition, superoxide dismutase, malondialdehyde, apoptosis, neuro-inflammatory factors and nuclear factor-κB (NF-κB) activation in hippocampal tissues in vivo were measured to determine the effect of Scue in AD. Scue may be protective, as it decreased the apoptosis of hippocampal cells in vitro, inhibited Aβ-induced cognitive impairment, suppressed hippocampal neuro-inflammation and suppressed activation of NF-κB in vivo. Therefore, Scue may be a useful agent for the treatment of Aβ-associated pathology in the central nervous system through inhibition of the protein kinase B/NF-κB signaling pathway and thus, future studies are required to investigate the efficacy of Scue in patients with AD.
Collapse
Affiliation(s)
- Xiao-Wei Huang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Yan Xu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Xin Sui
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - He Lin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Jia-Ming Xu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Dong Han
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Dou-Dan Ye
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Guang-Fu Lv
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Yue-Xin Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Xiao-Bo Qu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Ming-Hua Duan
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| |
Collapse
|
11
|
Chen Y, Zhu L, Ji L, Yang Y, Lu L, Wang X, Zhou G. Silencing the ACAT1 Gene in Human SH-SY5Y Neuroblastoma Cells Inhibits the Expression of Cyclo-Oxygenase 2 (COX2) and Reduces β-Amyloid-Induced Toxicity Due to Activation of Protein Kinase C (PKC) and ERK. Med Sci Monit 2018; 24:9007-9018. [PMID: 30541014 PMCID: PMC6299791 DOI: 10.12659/msm.912862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Acyl-coenzymeA: cholesterol acyltransferase (ACAT) 1, a key enzyme converting excess free cholesterol to cholesterol esters, has been demonstrated to be associated with the pathogenesis of Alzheimer disease (AD). However, the mechanism underlying the protective role of ACAT1 blockage in AD progression remains elusive. Material/Methods Human neuroblastoma SH-SY5Y cells were treated for 24 h with increasing concentrations of aggregated Aβ25–35 (5, 15, 25, and 45 μmol) with or without the ACAT1 siRNA pretreatment. Cell viability analysis was measured by CCK-8 assay. The genome-wide correlation between ACAT1 and all other probe sets was measured by the Pearson correlation coefficient (r). Western blotting was used to detect the ACAT1 protein expression in the hippocampus of APP/PSN transgenic AD mice. The mRNA level for each target was analyzed by qPCR. Western blotting was used to detect the ACAT1, cyclo-oxygenase-2 (Cox2), Calcium voltage-gated channel subunits (CACNAs), and ERK/PKC proteins in SH-SY5Y cells with or without the ACAT1 siRNA pretreatment in the presence of Aβ25–35. Results The expression of ACAT1 was significantly increased in the hippocampus of APP/PSN mice, and also showed an increasing trend when SH-SY5Y cells were exposed to Aβ25–35. Silencing ACAT1 significantly attenuated Aβ-induced cytotoxicity and cell apoptosis in SH-SY5Y cells. The genome-wide correlation analysis showed that Ptgs2 had the most significant correlation with Acat1 in the hippocampus of BXD RI mice. We further determined the regulatory effect of ACAT1 on COX2 expression by silencing or over-expressing ACAT1 in SH-SY5Y cells and found that silencing ACAT1 played a protective role in AD progression by regulating CACNAs and PKC/ERK signaling cascades. Conclusions Silencing ACAT1 attenuates Aβ25–35-induced cytotoxicity and cell apoptosis in SH-SY5Y cells, which may due to the synergistic effect of ACAT1 and COX2 through PKC/ERK pathways.
Collapse
Affiliation(s)
- Ying Chen
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China (mainland).,Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu, China (mainland)
| | - Lu Zhu
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu, China (mainland).,Department of Human Anatomy, College of Basic Medicine, Xinjiang Medical University, Xinjiang, Urumqi, China (mainland)
| | - Lei Ji
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu, China (mainland)
| | - Ying Yang
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu, China (mainland)
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Xiaodong Wang
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu, China (mainland)
| | - Guomim Zhou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China (mainland)
| |
Collapse
|
12
|
Szabó-Révész P. Modifying the physicochemical properties of NSAIDs for nasal and pulmonary administration. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 27:87-93. [PMID: 30103868 DOI: 10.1016/j.ddtec.2018.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/16/2018] [Accepted: 03/28/2018] [Indexed: 11/26/2022]
Abstract
This review focuses on nasal and pulmonary delivery of NSAIDs (non-steroidal anti-inflammatory drugs) for fast-onset analgesia, for the potential prevention of Alzheimer's disease (AD), as well as for an add-on treatment in cystic fibrosis (CF) and non-small cell lung cancer (NSCLC). I discuss how the physicochemical properties of NSAIDs can be modified with respect to the biological characteristics of the target site. Innovative technology and/or dosage forms can promote an effective therapy.
Collapse
Affiliation(s)
- P Szabó-Révész
- University of Szeged, Institute of Pharmaceutical Technology and Regulatory Affairs, Eötvös u 6, 6720 Szeged, Hungary.
| |
Collapse
|
13
|
Netrin-1 improves the amyloid-β-mediated suppression of memory and synaptic plasticity. Brain Res Bull 2017; 131:107-116. [DOI: 10.1016/j.brainresbull.2017.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 03/14/2017] [Accepted: 03/29/2017] [Indexed: 11/24/2022]
|
14
|
Sil S, Ghosh T. Cox-2 Plays a Vital Role in the Impaired Anxiety Like Behavior in Colchicine Induced Rat Model of Alzheimer Disease. Behav Neurol 2016; 2016:1501527. [PMID: 26880859 PMCID: PMC4736908 DOI: 10.1155/2016/1501527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/18/2015] [Accepted: 12/20/2015] [Indexed: 11/18/2022] Open
Abstract
The anxiety status is changed along with memory impairments in intracerebroventricular colchicine injected rat model of Alzheimer Disease (cAD) due to neurodegeneration, which has been indicated to be mediated by inflammation. Inducible cox-2, involved in inflammation, may have important role in the colchicine induced alteration of anxiety status. Therefore, the present study was designed to investigate the role of cox-2 on the anxiety behavior (response to novelty in an elevated open field space) of cAD by inhibiting it with three different doses (10, 20, and 30 mg) of etoricoxib (a cox-2 blocker) in two time points (14 and 21 days). The results showed anxiolytic behavior in cAD along with lower serum corticosterone level, both of which were recovered at all the doses of etoricoxib on day 21. On day 14 all of the anxiety parameters showed similar results to that of day 21 at high doses but not at 10 mg/kg body weight. Results indicate that the parameters of anxiety were dependent on neuronal circuitries that were probably sensitive to etoricoxib induced blocking of neurodegeneration. The present study showed that anxiolytic behavior in cADr is predominantly due to cox-2 mediated neuroinflammation induced neurodegeneration in the brain.
Collapse
Affiliation(s)
- Susmita Sil
- Neurophysiology Laboratory, Department of Physiology, University College of Science and Technology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata, West Bengal 700 009, India
| | - Tusharkanti Ghosh
- Neurophysiology Laboratory, Department of Physiology, University College of Science and Technology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata, West Bengal 700 009, India
| |
Collapse
|
15
|
Sil S, Ghosh T. Role of cox-2 mediated neuroinflammation on the neurodegeneration and cognitive impairments in colchicine induced rat model of Alzheimer's Disease. J Neuroimmunol 2015; 291:115-24. [PMID: 26857505 DOI: 10.1016/j.jneuroim.2015.12.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 11/15/2022]
Abstract
The neurodegeneration in colchicine induced AD (cAD) rats is linked with neuroinflammation. The inducible cox-2 present in the brain may participate in the neuroinflammatory process related to progressive neurodegeneration in cAD rats. The aim of this study is to investigate the role of cox-2 in the neurodegeneration and cognitive impairments in cAD rats. The parameters of memory (working and reference memory), inflammatory markers [IL-1β, TNF-α, prostaglandin E2 (PGE2), cox-2 level] and histopathology of hippocampus were measured after 21-day of i.c.v. colchicine injection in rats and compared with that of control and sham operated rats. These parameters were also measured in these 3 different groups of rats after p.o. administration of 3 different doses of etoricoxib, a cox 2 inhibitor. The impairments of working and reference memory were associated with neuroinflammation and neurodegeneration in the hippocampus and increased cox-2 and PGE2 levels in hippocampus in cAD. Administration of etoricoxib in cAD rats resulted in recovery of memory impairments, neurodegeneration and neuroinflammation in hippocampus and inhibition of cox-2 and PGE2 levels in hippocampus. It appears from the results that activation of cox-2 in cAD is related to neuroinflammation involved in neurodegeneration. Colchicine induced initial neurodegeneration may trigger cascade of events for a progressive neurodegeneration where cox-2 activation plays a critical role. Moreover, this cox-2 mediated neurodegeneration is related to impairments of memory parameters. Thus, the present study showed that the impairments of memory and neurodegeneration in the hippocampus of cAD in 21-day study are mediated by cox-2 induced neuroinflammation.
Collapse
Affiliation(s)
- Susmita Sil
- Neurophysiology laboratory, Department of Physiology, University College of Science and Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009, West Bengal, India.
| | - Tusharkanti Ghosh
- Neurophysiology laboratory, Department of Physiology, University College of Science and Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009, West Bengal, India.
| |
Collapse
|
16
|
Duan MH, Wang LN, Jiang YH, Pei YY, Guan DD, Qiu ZD. Angelica sinensis reduced Aβ-induced memory impairment in rats. J Drug Target 2015; 24:340-7. [PMID: 26821843 DOI: 10.3109/1061186x.2015.1077848] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Studies have shown that Angelica sinensis (JiLin AoDong Medicine Industry Groups Co., Ltd., Jilin, China) root (AS) ameliorates various diseases, although its effects in Alzheimer's disease (AD) have not been elucidated. PURPOSE The present study examined the effects of AS in a rat model of AD. METHODS Positional Aβ injections were administered to rats. The behavioral effects of AS administration were examined using the Morris water maze, and the molecular effects on gene and protein expression, and apoptosis, were determined. RESULTS AS reversed the social behavioral impairments observed in this rat model of Aβ-induced memory impairment. Western blot analysis also revealed lower hippocampal levels of Aβ and β-site amyloid precursor protein-cleaving enzyme. Terminal deoxynucleotidyl transferased UTP nick end labeling indicated that AS significantly inhibited apoptosis via effects on nuclear factor kappa B (NF-κB) signaling. Real-time PCR, enzyme-linked immunosorbent assay, and immunohistochemical staining indicated that AS effectively inhibited inflammation and upregulated expression of glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) in the hippocampus of this rat AD model. DISCUSSION AS effectively rescued the symptoms of AD in a rat model by inhibiting inflammation, apoptosis, and NF-κB signaling pathway. CONCLUSION These findings suggested that AS could provide a potential drug for the treatment of AD.
Collapse
Affiliation(s)
- Ming-Hua Duan
- a Changchun University of Chinese Medicine , Changchun , China
| | - Li-Na Wang
- a Changchun University of Chinese Medicine , Changchun , China
| | - Yan-Hong Jiang
- a Changchun University of Chinese Medicine , Changchun , China
| | - Ying-Yuan Pei
- a Changchun University of Chinese Medicine , Changchun , China
| | - Dong-Dong Guan
- a Changchun University of Chinese Medicine , Changchun , China
| | - Zhi-Dong Qiu
- a Changchun University of Chinese Medicine , Changchun , China
| |
Collapse
|
17
|
Barzman D, Eliassen J, McNamara R, Abonia P, Mossman D, Durling M, Adler C, DelBello M, Lin PI. Correlations of inflammatory gene pathways, corticolimbic functional activities, and aggression in pediatric bipolar disorder: a preliminary study. Psychiatry Res 2014; 224:107-11. [PMID: 25172408 PMCID: PMC4197049 DOI: 10.1016/j.pscychresns.2014.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/17/2014] [Accepted: 07/30/2014] [Indexed: 11/29/2022]
Abstract
The mechanisms underlying aggression in adolescents with bipolar disorder have been poorly understood. The present study has investigated the associations among TNF gene expressions, functional brain activations under the frustrative non-reward task, and aggression in adolescents with bipolar disorder. Baseline gene expressions and aggressive tendencies were measured with the RNA-sequencing and Brief Rating of Aggression by Children and Adolescents (BRACHA), respectively. Our results show that activity levels of left subgenual anterior cingulate gyrus (ACG), right amygdala, left Brodmann area 10 (orbitofrontal cortex), and right thalamus were inversely correlated with BRACHA scores and were activated with frustrative non-reward during the affective Posner Task. In addition, 11 TNF related gene expressions were significantly correlated with activation of amygdala or ACG during the affective Posner Task. Three TNF gene expressions were inversely correlated with BRACHA score while one TNF gene (TNFAIP3) expression was positively correlated with BRACHA score. Therefore, TNF-related inflammatory cytokine genes may play a role in neural activity associated with frustrative non-reward and aggressive behaviors in pediatric bipolar disorder.
Collapse
Affiliation(s)
- Drew Barzman
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jim Eliassen
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA,Center for Image Research, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robert McNamara
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Pablo Abonia
- Division of Allergy and Clinical Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Douglas Mossman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michele Durling
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Caleb Adler
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA,Center for Image Research, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Melissa DelBello
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ping-I Lin
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children׳s Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
18
|
Abstract
Alzheimer's disease may result from low-grade inflammation of the brain, and the characteristic amyloid β may be a protective response. Epidemiological observation indicates that long-term oral administration of nonsteroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen to patients having rheumatoid arthritis results in reduced risk and delayed onset of Alzheimer's disease. However, oral ibuprofen, flurbiprofen, and other NSAIDs are not an effective treatment. The NSAIDs may work as an Alzheimer's preventive but not a treatment because the oral dose to the brain is too small, 1% to 2% of the total plasma concentration. The NSAID brain dose could be significantly increased by delivering the drug intranasally. Flurbiprofen would be preferable to ibuprofen because flurbiprofen has 12½ times the potency of ibuprofen. The smaller nasal dose of flurbiprofen than ibuprofen could significantly increase patient compliance. Alzheimer's disease starts in the entorhinal cortex, which is closely connected to the olfactory nerves, and spreads anatomically in a defined pattern. Therefore, a nasal NSAID would readily reach the region of the brain where it is most likely to be therapeutic.
Collapse
|
19
|
Couch Y, Anthony DC, Dolgov O, Revischin A, Festoff B, Santos AI, Steinbusch HW, Strekalova T. Microglial activation, increased TNF and SERT expression in the prefrontal cortex define stress-altered behaviour in mice susceptible to anhedonia. Brain Behav Immun 2013; 29:136-146. [PMID: 23305936 DOI: 10.1016/j.bbi.2012.12.017] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/14/2012] [Accepted: 12/21/2012] [Indexed: 01/03/2023] Open
Abstract
A chronic stress paradigm comprising exposure to predation, tail suspension and restraint induces a depressive syndrome in C57BL/6J mice that occurs in some, but not all, animals. Here, we sought to extend our behavioural studies to investigate how susceptibility (sucrose preference<65%) or resilience (sucrose preference>65%) to stress-induced anhedonia affects the 5HT system and the expression of inflammation-related genes. All chronically stressed animals, displayed increased level of anxiety, but susceptible mice exhibited an increased propensity to float in the forced swim test and demonstrate hyperactivity under stressful lighting conditions. These changes were not present in resilient or acutely stressed animals. Compared to resilient animals, susceptible mice showed elevated expression of tumour necrosis factor alpha (TNF) and the 5-HT transporter (SERT) in the pre-frontal area. Enhanced expression of 5HT(2A) and COX-1 in the pre-frontal area was observed in all stressed animals. In turn, indoleamine-2,3-dioxygenase (IDO) was significantly unregulated in the raphe of susceptible animals. At the cellular level, increased numbers of Iba-1-positive microglial cells were also present in the prefrontal area of susceptible animals compared to resilient animals. Consequently, the susceptible animals display a unique molecular profile when compared to resilient, but anxious, animals. Unexpectedly, this altered profile provides a rationale for exploring anti-inflammatory, and possibly, TNF-targeted therapy for major depression.
Collapse
Affiliation(s)
- Yvonne Couch
- Department of Pharmacology, Oxford University, Mansfield Road, Oxford, UK
| | - Daniel C Anthony
- Department of Pharmacology, Oxford University, Mansfield Road, Oxford, UK.
| | - Oleg Dolgov
- Department of Molecular Cell Biology, Max-Planck Institute of Biophysical Chemistry, Göttingen, Germany; Institute of Normal Physiology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia
| | - Alexander Revischin
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia
| | | | - Ana Isabel Santos
- Department of Physiology, Medical Faculty, New University of Lisbon, Campo Martires da Patria, Lisbon, Portugal
| | - Harry W Steinbusch
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Tatyana Strekalova
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
20
|
Quan Y, Jiang J, Dingledine R. EP2 receptor signaling pathways regulate classical activation of microglia. J Biol Chem 2013; 288:9293-302. [PMID: 23404506 DOI: 10.1074/jbc.m113.455816] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of EP2 receptors by prostaglandin E2 (PGE2) promotes brain inflammation in neurodegenerative diseases, but the pathways responsible are unclear. EP2 receptors couple to Gαs and increase cAMP, which associates with protein kinase A (PKA) and cAMP-regulated guanine nucleotide exchange factors (Epacs). Here, we studied EP2 function and its signaling pathways in rat microglia in their resting state or undergoing classical activation in vitro following treatment with low concentrations of lipopolysaccharide and interferon-γ. Real time PCR showed that PGE2 had no effect on expression of CXCL10, TGF-β1, and IL-11 and exacerbated the rapid up-regulation of mRNAs encoding cyclooxygenase-2, inducible NOS, IL-6, and IL-1β but blunted the production of mRNAs encoding TNF-α, IL-10, CCL3, and CCL4. These effects were mimicked fully by the EP2 agonist butaprost but only weakly by the EP1/EP3 agonist 17-phenyl trinor PGE2 or the EP4 agonist CAY10598 and not at all by the EP3/EP1 agonist sulprostone and confirmed by protein measurements of cyclooxygenase-2, IL-6, IL-10, and TNF-α. In resting microglia, butaprost induced cAMP formation and altered the mRNA expression of inflammatory mediators, but protein expression was unchanged. The PKA inhibitor H89 had little or no effect on inflammatory mediators modulated by EP2, whereas the Epac activator 8-(4-chlorophenylthio)-2'-O-methyladenosine 3',5'-cyclic monophosphate acetoxymethyl ester mimicked all butaprost effects. These results indicate that EP2 activation plays a complex immune regulatory role during classical activation of microglia and that Epac pathways are prominent in this role.
Collapse
Affiliation(s)
- Yi Quan
- Department of Pharmacology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
21
|
Choi SH, Aid S, Caracciolo L, Minami SS, Niikura T, Matsuoka Y, Turner RS, Mattson MP, Bosetti F. Cyclooxygenase-1 inhibition reduces amyloid pathology and improves memory deficits in a mouse model of Alzheimer's disease. J Neurochem 2012; 124:59-68. [PMID: 23083210 DOI: 10.1111/jnc.12059] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/28/2012] [Accepted: 10/10/2012] [Indexed: 01/09/2023]
Abstract
Several epidemiological and preclinical studies suggest that non-steroidal anti-inflammatory drugs (NSAIDs), which inhibit cyclooxygenase (COX), reduce the risk of Alzheimer's disease (AD) and can lower β-amyloid (Aβ) production and inhibit neuroinflammation. However, follow-up clinical trials, mostly using selective cyclooxygenase (COX)-2 inhibitors, failed to show any beneficial effect in AD patients with mild to severe cognitive deficits. Recent data indicated that COX-1, classically viewed as the homeostatic isoform, is localized in microglia and is actively involved in brain injury induced by pro-inflammatory stimuli including Aβ, lipopolysaccharide, and interleukins. We hypothesized that neuroinflammation is critical for disease progression and selective COX-1 inhibition, rather than COX-2 inhibition, can reduce neuroinflammation and AD pathology. Here, we show that treatment of 20-month-old triple transgenic AD (3 × Tg-AD) mice with the COX-1 selective inhibitor SC-560 improved spatial learning and memory, and reduced amyloid deposits and tau hyperphosphorylation. SC-560 also reduced glial activation and brain expression of inflammatory markers in 3 × Tg-AD mice, and switched the activated microglia phenotype promoting their phagocytic ability. The present findings are the first to demonstrate that selective COX-1 inhibition reduces neuroinflammation, neuropathology, and improves cognitive function in 3 × Tg-AD mice. Thus, selective COX-1 inhibition should be further investigated as a potential therapeutic approach for AD.
Collapse
Affiliation(s)
- Sang-Ho Choi
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Li X, Rose SE, Montine KS, Keene CD, Montine TJ. Antagonism of neuronal prostaglandin E(2) receptor subtype 1 mitigates amyloid β neurotoxicity in vitro. J Neuroimmune Pharmacol 2012; 8:87-93. [PMID: 22718277 DOI: 10.1007/s11481-012-9380-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 06/04/2012] [Indexed: 01/28/2023]
Abstract
Multiple lines of evidence indicate that regional brain eicosanoid signaling is important in initiation and progression of neurodegenerative conditions that have neuroinflammatory pathologic component, such as AD. We hypothesized that PGE(2) receptor subtype 1 (EP1) signaling (linked to intracellular Ca(2+) release) regulates Aβ peptide neurotoxicity and tested this in two complementary in vitro models: a human neuroblastoma cell line (MC65) producing Aβ(1-40) through conditional expression of the APP C-terminal portion, and murine primary cortical neuron cultures exposed to Aβ(1-42). In MC65 cells, EP1 receptor antagonist SC-51089 reduced Aβ neurotoxicity ~50 % without altering high molecular weight Aβ immunoreactive species formation. Inositol-3-phosphate receptor antagonist 2-aminoethoxy-diphenyl borate offered similar protection. SC-51089 largely protected the neuron cultures from synthetic Aβ(1-42) neurotoxicity. Nimodipine, a Ca(2+) channel blocker, was completely neuroprotective in both models. Based on these data, we conclude that suppressing neuronal EP1 signaling may represent a promising therapeutic approach to ameliorate Aβ peptide neurotoxicity.
Collapse
Affiliation(s)
- Xianwu Li
- Department of Pathology, University of Washington, Box 359645, Seattle, WA 98104, USA.
| | | | | | | | | |
Collapse
|
23
|
Ofengeim D, Shi P, Miao B, Fan J, Xia X, Fan Y, Lipinski MM, Hashimoto T, Polydoro M, Yuan J, Wong STC, Degterev A. Identification of small molecule inhibitors of neurite loss induced by Aβ peptide using high content screening. J Biol Chem 2012; 287:8714-23. [PMID: 22277654 DOI: 10.1074/jbc.m111.290957] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Multiple lines of evidence indicate a strong relationship between Αβ peptide-induced neurite degeneration and the progressive loss of cognitive functions in Alzheimer disease (AD) patients and in AD animal models. This prompted us to develop a high content screening assay (HCS) and Neurite Image Quantitator (NeuriteIQ) software to quantify the loss of neuronal projections induced by Aβ peptide neurons and enable us to identify new classes of neurite-protective small molecules, which may represent new leads for AD drug discovery. We identified thirty-six inhibitors of Aβ-induced neurite loss in the 1,040-compound National Institute of Neurological Disorders and Stroke (NINDS) custom collection of known bioactives and FDA approved drugs. Activity clustering showed that non-steroidal anti-inflammatory drugs (NSAIDs) were significantly enriched among the hits. Notably, NSAIDs have previously attracted significant attention as potential drugs for AD; however their mechanism of action remains controversial. Our data revealed that cyclooxygenase-2 (COX-2) expression was increased following Aβ treatment. Furthermore, multiple distinct classes of COX inhibitors efficiently blocked neurite loss in primary neurons, suggesting that increased COX activity contributes to Aβ peptide-induced neurite loss. Finally, we discovered that the detrimental effect of COX activity on neurite integrity may be mediated through the inhibition of peroxisome proliferator-activated receptor γ (PPARγ) activity. Overall, our work establishes the feasibility of identifying small molecule inhibitors of Aβ-induced neurite loss using the NeuriteIQ pipeline and provides novel insights into the mechanisms of neuroprotection by NSAIDs.
Collapse
Affiliation(s)
- Dimitry Ofengeim
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|