1
|
Pathomechanisms of depression in progressive supranuclear palsy. J Neural Transm (Vienna) 2023:10.1007/s00702-023-02621-w. [PMID: 36933007 DOI: 10.1007/s00702-023-02621-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
Depression is one of the most frequent neuropsychiatric symptoms in progressive supranuclear palsy (PSP), a four-repeat tauopathy and most common atypical parkinsonian disorder, but its pathophysiology and pathogenesis are poorly understood. Pubmed/Medline was systematically analyzed until January 2023, with focus on the prevalence, major clinical features, neuroimaging findings and treatment options of depression in PSP. The average prevalence of depression in PSP is around 50%; it does usually not correlate with most other clinical parameters. Depression is associated with multi-regional patterns of morphometric gray matter variations, e.g., reduced thickness of temporo-parieto-occipital cortices, and altered functional orbitofrontal and medial frontal circuits with disturbances of mood-related brain networks. Unfortunately, no specific neuropathological data about depression in PSP are available. Antidepressive and electroconvulsive therapies are effective in improving symptoms; the efficacy of transcranial stimulation needs further confirmation. Depression in PSP is a common symptom, related to multi-regional patterns of cerebral disturbances and complex pathogenic mechanisms that deserve further elucidation as a basis for adequate treatment to improve the quality of life in this fatal disease.
Collapse
|
2
|
Pathomechanisms of cognitive impairment in progressive supranuclear palsy. J Neural Transm (Vienna) 2023; 130:481-493. [PMID: 36862189 DOI: 10.1007/s00702-023-02613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disorder characterized by early postural instability and falls, oculomotor dysfunction (vertical supranuclear gaze palsy), parkinsonism with poor response to levodopa, pseudobulbar palsy, and cognitive impairment. This four-repeat tauopathy is morphologically featured by accumulation of tau protein in neurons and glia causing neuronal loss and gliosis in the extrapyramidal system associated with cortical atrophy and white matter lesions. Cognitive impairment being frequent in PSP and more severe than in multiple system atrophy and Parkinson disease, is dominated by executive dysfunction, with milder difficulties in memory, and visuo-spatial and naming dysfunctions. Showing longitudinal decline, it has been related to a variety of pathogenic mechanisms associated with the underlying neurodegenerative process, such as involvement of cholinergic and muscarinergic dysfunctions, and striking tau pathology in frontal and temporal cortical regions associated with reduced synaptic density. Altered striatofrontal, fronto-cerebellar, parahippocampal, and multiple subcortical structures, as well as widespread white matter lesions causing extensive connectivity disruptions in cortico-subcortical and cortico-brainstem connections, support the concept that PSP is a brain network disruption disorder. The pathophysiology and pathogenesis of cognitive impairment in PSP, as in other degenerative movement disorders, are complex and deserve further elucidation as a basis for adequate treatment to improve the quality of life of patients with this fatal disease.
Collapse
|
3
|
Prasuhn J, Göttlich M, Ebeling B, Kourou S, Gerkan F, Bodemann C, Großer SS, Reuther K, Hanssen H, Brüggemann N. Assessment of Bioenergetic Deficits in Patients With Parkinson Disease and Progressive Supranuclear Palsy Using 31P-MRSI. Neurology 2022; 99:e2683-e2692. [PMID: 36195453 DOI: 10.1212/wnl.0000000000201288] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 08/10/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Bioenergetic disturbance, mainly caused by mitochondrial dysfunction, is an established pathophysiologic phenomenon in neurodegenerative movement disorders. The in vivo assessment of brain energy metabolism by 31phosphorus magnetic resonance spectroscopy imaging could provide pathophysiologic insights and serve in the differential diagnosis of parkinsonian disorders. In this study, we investigated such aspects of the underlying pathophysiology in patients with idiopathic Parkinson disease (PwPD) and progressive supranuclear palsy (PwPSP). METHODS In total, 30 PwPD, 16 PwPSP, and 25 healthy control subjects (HCs) underwent a clinical examination, structural magnetic resonance imaging, and 31phosphorus magnetic resonance spectroscopy imaging of the forebrain and basal ganglia in a cross-sectional study. RESULTS High-energy phosphate metabolites were remarkably decreased in PwPD, particularly in the basal ganglia (-42% compared with HCs and -43% compared with PwPSP, p < 0.0001). This result was not confounded by morphometric brain differences. By contrast, PwPSP had normal levels of high-energy energy metabolites. Thus, the combination of morphometric and metabolic neuroimaging was able to discriminate PwPD from PwPSP with an accuracy of up to 0.93 [95%-CI: 0.91-0.94]. DISCUSSION Our study shows that mitochondrial dysfunction and bioenergetic depletion contribute to idiopathic Parkinson disease pathophysiology but not to progressive supranuclear palsy. Combined morphometric and metabolic imaging could serve as an accompanying diagnostic biomarker in the neuroimaging-guided differential diagnosis of these parkinsonian disorders. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that 31phosphorus magnetic resonance spectroscopy imaging combined with morphometric MRI can differentiate PwPD from PwPSP.
Collapse
Affiliation(s)
- Jannik Prasuhn
- From the Institute of Neurogenetics (J.P., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.) and Center for Brain, Behavior, and Metabolism (J.P., M.G., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.), University of Lübeck, Germany; and Department of Neurology (J.P., M.G., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.), University Medical Center Schleswig-Holstein, Germany
| | - Martin Göttlich
- From the Institute of Neurogenetics (J.P., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.) and Center for Brain, Behavior, and Metabolism (J.P., M.G., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.), University of Lübeck, Germany; and Department of Neurology (J.P., M.G., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.), University Medical Center Schleswig-Holstein, Germany
| | - Britt Ebeling
- From the Institute of Neurogenetics (J.P., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.) and Center for Brain, Behavior, and Metabolism (J.P., M.G., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.), University of Lübeck, Germany; and Department of Neurology (J.P., M.G., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.), University Medical Center Schleswig-Holstein, Germany
| | - Sofia Kourou
- From the Institute of Neurogenetics (J.P., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.) and Center for Brain, Behavior, and Metabolism (J.P., M.G., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.), University of Lübeck, Germany; and Department of Neurology (J.P., M.G., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.), University Medical Center Schleswig-Holstein, Germany
| | - Friederike Gerkan
- From the Institute of Neurogenetics (J.P., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.) and Center for Brain, Behavior, and Metabolism (J.P., M.G., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.), University of Lübeck, Germany; and Department of Neurology (J.P., M.G., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.), University Medical Center Schleswig-Holstein, Germany
| | - Christina Bodemann
- From the Institute of Neurogenetics (J.P., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.) and Center for Brain, Behavior, and Metabolism (J.P., M.G., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.), University of Lübeck, Germany; and Department of Neurology (J.P., M.G., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.), University Medical Center Schleswig-Holstein, Germany
| | - Sinja S Großer
- From the Institute of Neurogenetics (J.P., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.) and Center for Brain, Behavior, and Metabolism (J.P., M.G., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.), University of Lübeck, Germany; and Department of Neurology (J.P., M.G., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.), University Medical Center Schleswig-Holstein, Germany
| | - Katharina Reuther
- From the Institute of Neurogenetics (J.P., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.) and Center for Brain, Behavior, and Metabolism (J.P., M.G., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.), University of Lübeck, Germany; and Department of Neurology (J.P., M.G., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.), University Medical Center Schleswig-Holstein, Germany
| | - Henrike Hanssen
- From the Institute of Neurogenetics (J.P., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.) and Center for Brain, Behavior, and Metabolism (J.P., M.G., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.), University of Lübeck, Germany; and Department of Neurology (J.P., M.G., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.), University Medical Center Schleswig-Holstein, Germany
| | - Norbert Brüggemann
- From the Institute of Neurogenetics (J.P., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.) and Center for Brain, Behavior, and Metabolism (J.P., M.G., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.), University of Lübeck, Germany; and Department of Neurology (J.P., M.G., B.E., S.K., F.G., C.B., S.S.G., K.R., H.H., N.B.), University Medical Center Schleswig-Holstein, Germany.
| |
Collapse
|
4
|
Coenzyme Q10: Role in Less Common Age-Related Disorders. Antioxidants (Basel) 2022; 11:antiox11112293. [DOI: 10.3390/antiox11112293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
In this article we have reviewed the potential role of coenzyme Q10 (CoQ10) in the pathogenesis and treatment of a number of less common age-related disorders, for many of which effective therapies are not currently available. For most of these disorders, mitochondrial dysfunction, oxidative stress and inflammation have been implicated in the disease process, providing a rationale for the potential therapeutic use of CoQ10, because of its key roles in mitochondrial function, as an antioxidant, and as an anti-inflammatory agent. Disorders reviewed in the article include multi system atrophy, progressive supranuclear palsy, sporadic adult onset ataxia, and pulmonary fibrosis, together with late onset versions of Huntington’s disease, Alexander disease, lupus, anti-phospholipid syndrome, lysosomal storage disorders, fibromyalgia, Machado-Joseph disease, acyl-CoA dehydrogenase deficiency, and Leber’s optic neuropathy.
Collapse
|
5
|
Prasuhn J, Kunert L, Brüggemann N. Neuroimaging Methods to Map In Vivo Changes of OXPHOS and Oxidative Stress in Neurodegenerative Disorders. Int J Mol Sci 2022; 23:ijms23137263. [PMID: 35806267 PMCID: PMC9266616 DOI: 10.3390/ijms23137263] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction is a pathophysiological hallmark of most neurodegenerative diseases. Several clinical trials targeting mitochondrial dysfunction have been performed with conflicting results. Reliable biomarkers of mitochondrial dysfunction in vivo are thus needed to optimize future clinical trial designs. This narrative review highlights various neuroimaging methods to probe mitochondrial dysfunction. We provide a general overview of the current biological understanding of mitochondrial dysfunction in degenerative brain disorders and how distinct neuroimaging methods can be employed to map disease-related changes. The reviewed methodological spectrum includes positron emission tomography, magnetic resonance, magnetic resonance spectroscopy, and near-infrared spectroscopy imaging, and how these methods can be applied to study alterations in oxidative phosphorylation and oxidative stress. We highlight the advantages and shortcomings of the different neuroimaging methods and discuss the necessary steps to use these for future research. This review stresses the importance of neuroimaging methods to gain deepened insights into mitochondrial dysfunction in vivo, its role as a critical disease mechanism in neurodegenerative diseases, the applicability for patient stratification in interventional trials, and the quantification of individual treatment responses. The in vivo assessment of mitochondrial dysfunction is a crucial prerequisite for providing individualized treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, 23538 Lübeck, Germany; (J.P.); (L.K.)
- Department of Neurology, University Medical Center Schleswig Holstein, Campus Lübeck, 23538 Lübeck, Germany
- Center for Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Liesa Kunert
- Institute of Neurogenetics, University of Lübeck, 23538 Lübeck, Germany; (J.P.); (L.K.)
- Department of Neurology, University Medical Center Schleswig Holstein, Campus Lübeck, 23538 Lübeck, Germany
- Center for Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, 23538 Lübeck, Germany; (J.P.); (L.K.)
- Department of Neurology, University Medical Center Schleswig Holstein, Campus Lübeck, 23538 Lübeck, Germany
- Center for Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Correspondence: ; Tel.: +49-451-500-43420; Fax: +49-451-500-43424
| |
Collapse
|
6
|
Tran K, Ryan S, McDonald M, Thomas AL, Maia JGS, Smith RE. Annonacin and Squamocin Contents of Pawpaw (Asimina triloba) and Marolo (Annona crassiflora) Fruits and Atemoya (A. squamosa × A. cherimola) Seeds. Biol Trace Elem Res 2021; 199:2320-2329. [PMID: 32761515 DOI: 10.1007/s12011-020-02320-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/29/2020] [Indexed: 11/27/2022]
Affiliation(s)
| | | | | | - Andrew L Thomas
- Division of Plant Sciences, Southwest Research Center, University of Missouri, Mt. Vernon, MO, 65712, USA
| | - José Guilherme S Maia
- Programa de Pós-Graduação em Química, Universidade Federal do Maranhão, São Luís, MA, 65080-040, Brazil
| | | |
Collapse
|
7
|
Nicoletti V, Palermo G, Del Prete E, Mancuso M, Ceravolo R. Understanding the Multiple Role of Mitochondria in Parkinson's Disease and Related Disorders: Lesson From Genetics and Protein-Interaction Network. Front Cell Dev Biol 2021; 9:636506. [PMID: 33869180 PMCID: PMC8047151 DOI: 10.3389/fcell.2021.636506] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
As neurons are highly energy-demanding cell, increasing evidence suggests that mitochondria play a large role in several age-related neurodegenerative diseases. Synaptic damage and mitochondrial dysfunction have been associated with early events in the pathogenesis of major neurodegenerative diseases, including Parkinson’s disease, atypical parkinsonisms, and Huntington disease. Disruption of mitochondrial structure and dynamic is linked to increased levels of reactive oxygen species production, abnormal intracellular calcium levels, and reduced mitochondrial ATP production. However, recent research has uncovered a much more complex involvement of mitochondria in such disorders than has previously been appreciated, and a remarkable number of genes and proteins that contribute to the neurodegeneration cascade interact with mitochondria or affect mitochondrial function. In this review, we aim to summarize and discuss the deep interconnections between mitochondrial dysfunction and basal ganglia disorders, with an emphasis into the molecular triggers to the disease process. Understanding the regulation of mitochondrial pathways may be beneficial in finding pharmacological or non-pharmacological interventions to delay the onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Valentina Nicoletti
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanni Palermo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Del Prete
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michelangelo Mancuso
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Valentino RR, Tamvaka N, Heckman MG, Johnson PW, Soto-Beasley AI, Walton RL, Koga S, Uitti RJ, Wszolek ZK, Dickson DW, Ross OA. Associations of mitochondrial genomic variation with corticobasal degeneration, progressive supranuclear palsy, and neuropathological tau measures. Acta Neuropathol Commun 2020; 8:162. [PMID: 32943110 PMCID: PMC7495714 DOI: 10.1186/s40478-020-01035-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/06/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial health is important in ageing and dysfunctional oxidative phosphorylation (OXPHOS) accelerates ageing and influences neurodegeneration. Mitochondrial DNA (mtDNA) codes for vital OXPHOS subunits and mtDNA background has been associated with neurodegeneration; however, no study has characterised mtDNA variation in Progressive supranuclear palsy (PSP) or Corticobasal degeneration (CBD) risk or pathogenesis. In this case-control study, 910 (42.6% male) neurologically-healthy controls, 1042 (54.1% male) pathologically-confirmed PSP cases, and 171 (52.0% male) pathologically-confirmed CBD cases were assessed to determine how stable mtDNA polymorphisms, in the form of mtDNA haplogroups, were associated with risk of PSP, risk of CBD, age of PSP onset, PSP disease duration, and neuropathological tau pathology measures for neurofibrillary tangles (NFT), neuropil threads (NT), tufted astrocytes (TA), astrocytic plaques (AP), and oligodendroglial coiled bodies (CB). 764 PSP cases and 150 CBD cases had quantitative tau pathology scores. mtDNA was genotyped for 39 unique SNPs using Agena Bioscience iPlex technologies and mitochondrial haplogroups were defined to mitochondrial phylogeny. After adjustment for multiple testing, we observed an association with risk of CBD for mtDNA sub-haplogroup H4 (OR = 4.51, P = 0.001) and the HV/HV0a haplogroup was associated with a decreased severity of NT tau pathology in PSP cases (P = 0.0023). Our study reports that mitochondrial genomic background may be associated with risk of CBD and may be influencing tau pathology measures in PSP. Replication of these findings will be important.
Collapse
Affiliation(s)
| | - Nikoleta Tamvaka
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- SURF Program Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Patrick W Johnson
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Ronald L Walton
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Neuroscience Track, Mayo Graduate School, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
9
|
Apetauerova D, Scala SA, Hamill RW, Simon DK, Pathak S, Ruthazer R, Standaert DG, Yacoubian TA. CoQ10 in progressive supranuclear palsy: A randomized, placebo-controlled, double-blind trial. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2016; 3:e266. [PMID: 27583276 PMCID: PMC4990260 DOI: 10.1212/nxi.0000000000000266] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/15/2016] [Indexed: 11/23/2022]
Abstract
Objective: An investigator-initiated, multicenter, randomized, placebo-controlled, double-blind clinical trial to determine whether coenzyme Q10 (CoQ10) is safe, well tolerated, and effective in slowing functional decline in progressive supranuclear palsy (PSP). Methods: Sixty-one participants received CoQ10 (2,400 mg/d) or placebo for up to 12 months. Progressive Supranuclear Palsy Rating Scale (PSPRS), Unified Parkinson's Disease Rating Scale, activities of daily living, Mini-Mental State Examination, the 39-item Parkinson's Disease Questionnaire, and 36-item Short Form Health Survey were monitored at baseline and months 3, 6, 9, and 12. The safety profile of CoQ10 was determined by adverse events, vital signs, and clinical laboratory values. Primary outcome measures were changes in PSPRS and Unified Parkinson's Disease Rating Scale scores from baseline to month 12. Results: CoQ10 was well tolerated. No statistically significant differences were noted between CoQ10 and placebo groups in primary or secondary outcome measures. A nonsignificant difference toward slower clinical decline in the CoQ10 group was observed in total PSPRS among those participants who completed the trial. Before the final study visit at 12 months, 41% of participants withdrew because of travel distance, lack of perceived benefit, comorbidities, or caregiver issues. Conclusions: High doses of CoQ10 did not significantly improve PSP symptoms or disease progression. The high withdrawal rate emphasizes the difficulty of conducting clinical trials in patients with PSP. ClinicalTrials.gov identifier: NCT00382824. Classification of evidence: This study provides Class II evidence that CoQ10 does not significantly slow functional decline in PSP. The study lacks the precision to exclude a moderate benefit of CoQ10.
Collapse
Affiliation(s)
- Diana Apetauerova
- Department of Neurology (D.A., S.A.S.), Lahey Hospital & Medical Center, Burlington, MA; Department of Neurology and Neurobiology (D.G.S., T.A.Y.), University of Alabama Hospital, Birmingham; Department of Neurology (R.W.H.), University of Vermont College of Medicine, Burlington; Department of Neurology (D.K.S.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; and Research Design Center/Biostatistics Research Center (S.P., R.R.), Tufts Clinical & Translational Science Institute, Boston, MA
| | - Stephanie A Scala
- Department of Neurology (D.A., S.A.S.), Lahey Hospital & Medical Center, Burlington, MA; Department of Neurology and Neurobiology (D.G.S., T.A.Y.), University of Alabama Hospital, Birmingham; Department of Neurology (R.W.H.), University of Vermont College of Medicine, Burlington; Department of Neurology (D.K.S.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; and Research Design Center/Biostatistics Research Center (S.P., R.R.), Tufts Clinical & Translational Science Institute, Boston, MA
| | - Robert W Hamill
- Department of Neurology (D.A., S.A.S.), Lahey Hospital & Medical Center, Burlington, MA; Department of Neurology and Neurobiology (D.G.S., T.A.Y.), University of Alabama Hospital, Birmingham; Department of Neurology (R.W.H.), University of Vermont College of Medicine, Burlington; Department of Neurology (D.K.S.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; and Research Design Center/Biostatistics Research Center (S.P., R.R.), Tufts Clinical & Translational Science Institute, Boston, MA
| | - David K Simon
- Department of Neurology (D.A., S.A.S.), Lahey Hospital & Medical Center, Burlington, MA; Department of Neurology and Neurobiology (D.G.S., T.A.Y.), University of Alabama Hospital, Birmingham; Department of Neurology (R.W.H.), University of Vermont College of Medicine, Burlington; Department of Neurology (D.K.S.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; and Research Design Center/Biostatistics Research Center (S.P., R.R.), Tufts Clinical & Translational Science Institute, Boston, MA
| | - Subash Pathak
- Department of Neurology (D.A., S.A.S.), Lahey Hospital & Medical Center, Burlington, MA; Department of Neurology and Neurobiology (D.G.S., T.A.Y.), University of Alabama Hospital, Birmingham; Department of Neurology (R.W.H.), University of Vermont College of Medicine, Burlington; Department of Neurology (D.K.S.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; and Research Design Center/Biostatistics Research Center (S.P., R.R.), Tufts Clinical & Translational Science Institute, Boston, MA
| | - Robin Ruthazer
- Department of Neurology (D.A., S.A.S.), Lahey Hospital & Medical Center, Burlington, MA; Department of Neurology and Neurobiology (D.G.S., T.A.Y.), University of Alabama Hospital, Birmingham; Department of Neurology (R.W.H.), University of Vermont College of Medicine, Burlington; Department of Neurology (D.K.S.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; and Research Design Center/Biostatistics Research Center (S.P., R.R.), Tufts Clinical & Translational Science Institute, Boston, MA
| | - David G Standaert
- Department of Neurology (D.A., S.A.S.), Lahey Hospital & Medical Center, Burlington, MA; Department of Neurology and Neurobiology (D.G.S., T.A.Y.), University of Alabama Hospital, Birmingham; Department of Neurology (R.W.H.), University of Vermont College of Medicine, Burlington; Department of Neurology (D.K.S.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; and Research Design Center/Biostatistics Research Center (S.P., R.R.), Tufts Clinical & Translational Science Institute, Boston, MA
| | - Talene A Yacoubian
- Department of Neurology (D.A., S.A.S.), Lahey Hospital & Medical Center, Burlington, MA; Department of Neurology and Neurobiology (D.G.S., T.A.Y.), University of Alabama Hospital, Birmingham; Department of Neurology (R.W.H.), University of Vermont College of Medicine, Burlington; Department of Neurology (D.K.S.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; and Research Design Center/Biostatistics Research Center (S.P., R.R.), Tufts Clinical & Translational Science Institute, Boston, MA
| |
Collapse
|
10
|
Abstract
Progressive supranuclear palsy (PSP) is an atypical parkinsonian condition characterized by a symmetric akinetic-rigid syndrome, early falls, supranuclear gaze palsy, and a frontotemporal behavioral syndrome. The typical phenotype is termed Richardson's syndrome, but numerous other phenotypes have been described. The pathophysiology of PSP is not fully understood, but dysfunction of the tau protein seems to play a central role. Despite exciting new knowledge on the pathophysiology of PSP, there is still no highly effective symptomatic or disease-modifying treatment. We review the evidence on pharmacotherapy and experimental therapies in PSP and provide levels of recommendation for the off-label use of commonly used drugs in this disorder.
Collapse
|
11
|
Villoslada P. Neuroprotective therapies for multiple sclerosis and other demyelinating diseases. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s40893-016-0004-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Schottlaender LV, Bettencourt C, Kiely AP, Chalasani A, Neergheen V, Holton JL, Hargreaves I, Houlden H. Coenzyme Q10 Levels Are Decreased in the Cerebellum of Multiple-System Atrophy Patients. PLoS One 2016; 11:e0149557. [PMID: 26894433 PMCID: PMC4760984 DOI: 10.1371/journal.pone.0149557] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/01/2016] [Indexed: 11/25/2022] Open
Abstract
Background The objective of this study was to evaluate whether the levels of coenzyme Q10 (CoQ10) in brain tissue of multiple system atrophy (MSA) patients differ from those in elderly controls and in patients with other neurodegenerative diseases. Methods Flash frozen brain tissue of a series of 20 pathologically confirmed MSA patients [9 olivopontocerebellar atrophy (OPCA) type, 6 striatonigral degeneration (SND) type, and 5 mixed type] was used for this study. Elderly controls (n = 37) as well as idiopathic Parkinson's disease (n = 7), dementia with Lewy bodies (n = 20), corticobasal degeneration (n = 15) and cerebellar ataxia (n = 18) patients were used as comparison groups. CoQ10 was measured in cerebellar and frontal cortex tissue by high performance liquid chromatography. Results We detected a statistically significant decrease (by 3–5%) in the level of CoQ10 in the cerebellum of MSA cases (P = 0.001), specifically in OPCA (P = 0.001) and mixed cases (P = 0.005), when compared to controls as well as to other neurodegenerative diseases [dementia with Lewy bodies (P<0.001), idiopathic Parkinson's disease (P<0.001), corticobasal degeneration (P<0.001), and cerebellar ataxia (P = 0.001)]. Conclusion Our results suggest that a perturbation in the CoQ10 biosynthetic pathway is associated with the pathogenesis of MSA but the mechanism behind this finding remains to be elucidated.
Collapse
Affiliation(s)
- Lucia V Schottlaender
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Conceição Bettencourt
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Aoife P Kiely
- Reta Lila Weston Institute for Neurological Studies and The Queen Square Brain Bank, London, United Kingdom
| | | | | | - Janice L Holton
- Reta Lila Weston Institute for Neurological Studies and The Queen Square Brain Bank, London, United Kingdom
| | - Iain Hargreaves
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- Neurometabolic Unit, National Hospital, London, United Kingdom
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- Neurogenetics Laboratory, The National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
- The MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| |
Collapse
|
13
|
Abnormal Paraplegin Expression in Swollen Neurites, τ- and α-Synuclein Pathology in a Case of Hereditary Spastic Paraplegia SPG7 with an Ala510Val Mutation. Int J Mol Sci 2015; 16:25050-66. [PMID: 26506339 PMCID: PMC4632789 DOI: 10.3390/ijms161025050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/05/2015] [Accepted: 10/15/2015] [Indexed: 12/15/2022] Open
Abstract
Mutations in the SPG7 gene are the most frequent cause of autosomal recessive hereditary spastic paraplegias and spastic ataxias. Ala510Val is the most common SPG7 mutation, with a frequency of up to 1% in the general population. Here we report the clinical, genetic, and neuropathological findings in a homozygous Ala510Val SPG7 case with spastic ataxia. Neuron loss with associated gliosis was found in the inferior olivary nucleus, the dentate nucleus of the cerebellum, the substantia nigra and the basal nucleus of Meynert. Neurofilament and/or paraplegin accumulation was observed in swollen neurites in the cerebellar and cerebral cortex. This case also showed subcortical τ-pathology in an unique distribution pattern largely restricted to the brainstem. α-synuclein containing Lewy bodies (LBs) were observed in the brainstem and the cortex, compatible with a limbic pattern of Braak LB-Disease stage 4. Taken together, this case shows that the spectrum of pathologies in SPG7 can include neuron loss of the dentate nucleus and the inferior olivary nucleus as well as neuritic pathology. The progressive supranuclear palsy-like brainstem predominant pattern of τ pathology and α-synuclein containing Lewy bodies in our SPG7 cases may be either coincidental or related to SPG7 in addition to neuron loss and neuritic pathology.
Collapse
|
14
|
Gray LR, Tompkins SC, Taylor EB. Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci 2013; 71:2577-604. [PMID: 24363178 PMCID: PMC4059968 DOI: 10.1007/s00018-013-1539-2] [Citation(s) in RCA: 588] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 11/24/2013] [Accepted: 12/02/2013] [Indexed: 12/31/2022]
Abstract
Pyruvate is a keystone molecule critical for numerous aspects of eukaryotic and human metabolism. Pyruvate is the end-product of glycolysis, is derived from additional sources in the cellular cytoplasm, and is ultimately destined for transport into mitochondria as a master fuel input undergirding citric acid cycle carbon flux. In mitochondria, pyruvate drives ATP production by oxidative phosphorylation and multiple biosynthetic pathways intersecting the citric acid cycle. Mitochondrial pyruvate metabolism is regulated by many enzymes, including the recently discovered mitochondria pyruvate carrier, pyruvate dehydrogenase, and pyruvate carboxylase, to modulate overall pyruvate carbon flux. Mutations in any of the genes encoding for proteins regulating pyruvate metabolism may lead to disease. Numerous cases have been described. Aberrant pyruvate metabolism plays an especially prominent role in cancer, heart failure, and neurodegeneration. Because most major diseases involve aberrant metabolism, understanding and exploiting pyruvate carbon flux may yield novel treatments that enhance human health.
Collapse
Affiliation(s)
- Lawrence R Gray
- Department of Biochemistry, Fraternal Order of the Eagles Diabetes Research Center, and François M. Abboud Cardiovascular Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd, 4-403 BSB, Iowa City, IA, 52242, USA
| | | | | |
Collapse
|
15
|
Esteves AR, Gozes I, Cardoso SM. The rescue of microtubule-dependent traffic recovers mitochondrial function in Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2013; 1842:7-21. [PMID: 24120997 DOI: 10.1016/j.bbadis.2013.10.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/30/2013] [Accepted: 10/04/2013] [Indexed: 11/25/2022]
Abstract
In Parkinson's disease mitochondrial dysfunction can lead to a deficient ATP supply to microtubule protein motors leading to mitochondrial axonal transport disruption. Compromised axonal transport will then lead to a disorganized distribution of mitochondria and other organelles in the cell, as well as, the accumulation of aggregated proteins like alpha-synuclein. Moreover, axonal transport disruption can trigger synaptic accumulation of autophagosomes packed with damaged mitochondria and protein aggregates promoting synaptic failure. We previously observed that neuronal-like cells with an inherent mitochondrial impairment derived from PD patients contain a disorganized microtubule network, as well as, alpha-synuclein oligomer accumulation. In this work we provide new evidence that an agent that promotes microtubule network assembly, NAP (davunetide), improves microtubule-dependent traffic, restores the autophagic flux and potentiates autophagosome-lysosome fusion leading to autophagic vacuole clearance in Parkinson's disease cells. Moreover, NAP is capable of efficiently reducing alpha-synuclein oligomer content and its sequestration by the mitochondria. Most interestingly, NAP decreases mitochondrial ubiquitination levels, as well as, increases mitochondrial membrane potential indicating a rescue in mitochondrial function. Overall, we demonstrate that by improving microtubule-mediated traffic, we can avoid mitochondrial-induced damage and thus recover cell homeostasis. These results prove that NAP may be a promising therapeutic lead candidate for neurodegenerative diseases that involve axonal transport failure and mitochondrial impairment as hallmarks, like Parkinson's disease and related disorders.
Collapse
Affiliation(s)
- A R Esteves
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | | | | |
Collapse
|
16
|
Abstract
Currently, all treatment of mitochondrial disorders is performed with dietary supplements or by off-label use of drugs approved for other indications. The present challenge is translation of our collective knowledge of the molecular details underlying the pathophysiology of mitochondrial disorders into safe and effective therapies that are approved by the regulatory authorities. Molecular details permit precise diagnoses, but homogeneity is gained at the expense of limiting numbers of subjects for clinical trials and of small markets from which to recoup the considerable expense of drug discovery and development. The Food and Drug Administration recognizes that trial designs suitable for common diseases are often not feasible for rare disorders. They have developed a number of programs to facilitate development of novel therapies for such rare diseases, without compromise of regulatory standards. With advances in technology, including the use of biomarkers, replacement therapies and sophisticated trial designs, both biotechnology firms and, increasingly, large integrated pharmaceutical companies, are taking advantage of the opportunities in rare disorders. Precise molecular delineation of pathophysiology and of responsive patients has led to success rates with rare diseases that are significantly greater than those for common disorders. It appears likely, but not yet proven, that this may now be the case for rare mitochondrial disorders as well.
Collapse
Affiliation(s)
- Orest Hurko
- Clinical Translational Medicine, 19 Sugar Knoll Drive, Suite 203, Devon, PA 19333-1558, USA.
| |
Collapse
|
17
|
Piaceri I, Rinnoci V, Bagnoli S, Failli Y, Sorbi S. Mitochondria and Alzheimer's disease. J Neurol Sci 2012; 322:31-4. [PMID: 22694975 DOI: 10.1016/j.jns.2012.05.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 05/07/2012] [Accepted: 05/12/2012] [Indexed: 01/24/2023]
Abstract
Reductions in cerebral metabolism sufficient to impair cognition in normal individuals also occur in Alzheimer's disease (AD). FDG PET studies have shown that decreased glucose metabolism in AD precedes clinical diagnosis and the degree of clinical disability in AD correlates closely to the magnitude of the reduction in brain metabolism. This suggests that the clinical deterioration and metabolic impairment in AD are related closely. Diminished metabolism can lead to the hyperphosphorylation of tau and increased production of amyloid beta peptide, hallmarks of AD. These observations suggest also that early mitochondrially therapeutic interventions may be an important target in delaying AD progression in elderly individuals and in treating AD patients.
Collapse
Affiliation(s)
- Irene Piaceri
- Department of Neurological and Psychiatric Sciences, DENOTHE Excellence Centre, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | | | | | | | | |
Collapse
|