1
|
Bdeir R, Al-Keilani MS, Khamaiseh K. Effects of the Neuropeptides Pituitary Adenylate Cyclase Activating Polypeptide and Vasoactive Intestinal Peptide in Male Fertility. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:652. [PMID: 38674298 PMCID: PMC11052015 DOI: 10.3390/medicina60040652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Background and Objectives: The neuroendocrine system plays a crucial role in regulating various bodily functions, including reproduction, with evidence suggesting its significant involvement in male fertility and sperm development. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) are expressed in both male and female reproductive tissues, influencing penile erection and regulating steroidogenesis in males. Therefore, our study aimed to compare the protein levels of VIP and PACAP in seminal plasma between healthy controls and sub-fertile patients. Additionally, we sought to correlate the levels of these biomarkers with clinical, functional, and laboratory findings in the participants. Materials and Methods: The study included a total of 163 male participants for analysis. The participants were further stratified into subgroups of fertile and sub-fertile men of four subgroups according to the 2021 WHO guidelines. Seminal plasma concentrations of the neuropeptides VIP and PACAP were measured using human enzyme-linked immunosorbent assay technique. Results: The findings showed statistically significant differences in total sperm count, sperm concentration, total motility, and vitality (p < 0.001) between the fertile group and the sub-fertile group. Specifically, significant differences found between healthy males and oligoasthenospermic patients (p = 0.002), and between asthenospermic and oligoasthenospermic patients (p = 0.039). An ROC analysis showed associated sensitivity and specificity values of 62.2% and 55.6%, respectively, to PACAP seminal levels differentiated between sub-fertile patients from fertile males (p = 0.028). No significant difference in seminal levels of VIP was found between the sub-fertile and fertile groups. Conclusions: Previous research leads to the point of PACAP active involvement in spermatogenesis. In accordance to our study, in human semen samples, we have seen a significance change in PACAP levels amongst patients with low sperm count or with both low sperm count and low motility, hinting at its contribution and acting as a possible factor in this complex process. Thus, alterations in the levels or actions of these neuropeptides have been associated with certain reproductive disorders in males.
Collapse
Affiliation(s)
- Roba Bdeir
- Department of Allied Health Sciences, Faculty of Nursing, Al-Balqa Applied University, P.O. Box 206, Al-Salt 19117, Jordan
| | - Maha S. Al-Keilani
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan;
| | - Khaldoun Khamaiseh
- Department of Obstetrics & Gynecology, Faculty of Medicine, Al-Balqa Applied University, P.O. Box 206, Al-Salt 19117, Jordan;
- Faculty of Medicine, Al-Balqa University, P.O. Box 206, Al-Salt 19117, Jordan
| |
Collapse
|
2
|
Koppan M, Nagy Z, Bosnyak I, Reglodi D. Female reproductive functions of the neuropeptide PACAP. Front Endocrinol (Lausanne) 2022; 13:982551. [PMID: 36204113 PMCID: PMC9531758 DOI: 10.3389/fendo.2022.982551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 12/28/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide originally isolated as a hypothalamic peptide. It has a widespread distribution in the body and has a diverse spectrum of actions. Among other processes, PACAP has been shown to be involved in reproduction. In this review we summarize findings related to the entire spectrum of female reproduction. PACAP is a regulatory factor in gonadal hormone production, influences follicular development and plays a role in fertilization and embryonic/placental development. Furthermore, PACAP is involved in hormonal changes during and after birth and affects maternal behavior. Although most data come from cell cultures and animal experiments, increasing number of evidence suggests that similar effects of PACAP can be found in humans. Among other instances, PACAP levels show changes in the serum during pregnancy and birth. PACAP is also present in the human follicular and amniotic fluids and in the milk. Levels of PACAP in follicular fluid correlate with the number of retrieved oocytes in hyperstimulated women. Human milk contains very high levels of PACAP compared to plasma levels, with colostrum showing the highest concentration, remaining steady thereafter for the first 7 months of lactation. All these data imply that PACAP has important functions in reproduction both under physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Zsuzsanna Nagy
- Department of Physiology, University of Pecs Medical School, Pécs, Hungary
| | - Inez Bosnyak
- Department of Anatomy, ELKH-PTE PACAP Research Group and Szentagothai Research Center, University of Pecs Medical School, Pécs, Hungary
| | - Dora Reglodi
- Department of Anatomy, ELKH-PTE PACAP Research Group and Szentagothai Research Center, University of Pecs Medical School, Pécs, Hungary
| |
Collapse
|
3
|
Tang Z, Yuan X, Bai Y, Guo Y, Zhang H, Han Y, Yuan Z, Weng Q. Seasonal changes in the expression of PACAP, VPAC1, VPAC2, PAC1 and testicular activity in the testis of the muskrat (<em>Ondatra zibethicus</em>). Eur J Histochem 2022; 66:3398. [PMID: 35502591 PMCID: PMC9119148 DOI: 10.4081/ejh.2022.3398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 11/22/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) plays an important role in the steroidogenesis and spermatogenesis in the testis through its receptors PAC1, VPAC1, and VPAC2. In this study, we investigated the seasonal expressions of PACAP, PAC1, VPAC1, VPAC2, luteinizing hormone receptor (LHR), follicle stimulating hormone receptor (FSHR), steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD), and CYP17A1 in the testis of the male muskrat during the breeding season and the non-breeding season. Histologically, we found the presence of Leydig cells, Sertoli cells and all kinds of germ cells in the testis during the breeding season but only Leydig cells, Sertoli cells, spermatogonia and primary spermatocyte during the non-breeding season. The immunohistochemical localizations of PACAP and VPAC1 were identified in the Leydig cells, spermatogonia and spermatozoa during the breeding season while only in Leydig cells and spermatogonia during the non-breeding season, and PAC1 and VPAC2 were localized in the Leydig cells in both seasons, in which LHR, StAR, 3β-HSD and CYP17A1 were also expressed. Meanwhile, protein and mRNA expression levels of PACAP, PAC1, VPAC1, VPAC2, LHR, FSHR, StAR, 3β-HSD and CYP17A1 in the testis during the breeding season were significantly higher than those during the non-breeding season. These results suggested that PACAP may involve in the regulation of, steroidogenesis and spermatogenesis via an endocrine, autocrine or paracrine manner in the testis of the muskrat.
Collapse
Affiliation(s)
- Zeqi Tang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Xiaojie Yuan
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Yuming Bai
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Yiming Guo
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Yingying Han
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Zhengrong Yuan
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| |
Collapse
|
4
|
Winters SJ, Moore JP. PACAP: A regulator of mammalian reproductive function. Mol Cell Endocrinol 2020; 518:110912. [PMID: 32561449 PMCID: PMC7606562 DOI: 10.1016/j.mce.2020.110912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/14/2020] [Accepted: 06/06/2020] [Indexed: 12/19/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is an ancestral molecule that was isolated from sheep hypothalamic extracts based on its action to stimulate cAMP production by pituitary cell cultures. PACAP is one of a number of ligands that coordinate with GnRH to control reproduction. While initially viewed as a hypothalamic releasing factor, PACAP and its receptors are widely distributed, and there is growing evidence that PACAP functions as a paracrine/autocrine regulator in the CNS, pituitary, gonads and placenta, among other tissues. This review will summarize current knowledge concerning the expression and function of PACAP in the hypothalamic-pituitary-gonadal axis with special emphasis on its role in pituitary function in the fetus and newborn.
Collapse
Affiliation(s)
- Stephen J Winters
- Division of Endocrinology, Metabolism and Diabetes, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Joseph P Moore
- Division of Endocrinology, Metabolism and Diabetes, University of Louisville School of Medicine, Louisville, KY, 40202, USA; Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| |
Collapse
|
5
|
Akmal M, Gholib G, Nasution MK, Wahyuni S, Rinidar R, Masyitha D, Yaman MA. The concentration of androgen receptor and protein kinase A in male chicken following the administration of a combination of the epididymis and testicular extracts. Vet World 2020; 13:1594-1598. [PMID: 33061232 PMCID: PMC7522948 DOI: 10.14202/vetworld.2020.1594-1598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/23/2020] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Testis (T) and epididymis (E) are waste from the abattoir that is rarely used. In fact, both organs contain important chemicals needed for spermatogenesis (e.g., hormones, proteins, and other molecules). Therefore, administration of a combination of testis and epididymis (CTE) extracts may activate androgen receptors (AR) and protein kinase A (PKA) molecules that play a prominent role in spermatogenesis. We, therefore, aimed at investigating the influence of the CTE extracts on the concentration of AR and PKA in male chicken. Materials and Methods This study used a completely randomized design with four treatment groups (K0, K1, K2, and K3) and five replications per group. K0 is a control group that received 1 mL normal saline, whereas K1, K2, and K3 are the test groups that received 1, 2, and 3 mL of CET extracts, respectively. Twenty male chickens (strain: broiler Mb 89), 3 weeks of age, weighing 500-700 g were used. We administered the injections in a 13-day period and on the 14th day; we collected and processed blood samples as serum to measure the AR and PKA concentrations using commercial chicken AR and PKA enzyme-linked immunosorbent assay kits, respectively. We performed analyses by analysis of variance using SPSS 20.0. Results The AR concentrations in K1, K2, and K3 groups increased by 4.26%, 10.97%, and 28.04%, respectively, compared to the K0 (control group). However, this increase was not significantly different between the groups (p>0.05). Moreover, the PKA concentrations increased by 2.97%, 2.60%, and 4.08% in K1, K2, and K3 groups, respectively, compared to the control group. However, this increase was not significantly different between the groups as well (p>0.05). Conclusion The CTE extracts tended to increase the AR and PKA concentrations even though it is not significant. Therefore, it needs further study when using the CTE extracts for spermatogenesis in male chicken.
Collapse
Affiliation(s)
- Muslim Akmal
- Laboratory of Histology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Gholib Gholib
- Laboratory of Physiology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Mustafa Kamal Nasution
- Department of PGMI, Faculty of Tarbiyah, STAIN Gajah Putih Takengon, Aceh Tengah, Aceh, Indonesia
| | - Sri Wahyuni
- Laboratory of Anatomy, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Rinidar Rinidar
- Laboratory of Pharmacology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Dian Masyitha
- Laboratory of Histology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - M Aman Yaman
- Field Laboratory of Animal Sciences, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| |
Collapse
|
6
|
Alzheimer's Disease Mouse as a Model of Testis Degeneration. Int J Mol Sci 2020; 21:ijms21165726. [PMID: 32785075 PMCID: PMC7460847 DOI: 10.3390/ijms21165726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with protective functions in the central nervous system and various peripheral organs. PACAP has the highest expression level in the testes, among the peripheral organs, and has a positive regulative role in spermatogenesis and in sperm motility. In the present study, we explored testicular degenerative alterations in a mouse model of Alzheimer’s disease (AD) (B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J) and demonstrated changes in PACAP-regulated signaling pathways. In addition, the effects of increased physical activity of AD (trained AD (TAD)) mice on testis were also followed. Reduced cell number and decreased thickness of basement membrane were detected in AD samples. These changes were compensated by physical activity. Expression of PACAP receptors and canonical signaling elements such as PKA, P-PKA, PP2A significantly decreased in AD mice, and altered Sox transcription factor expression was also detected. Via this signaling mechanism, physical activity compensated the negative effects of AD on the expression of type IV collagen. Our findings suggest that the testes of AD mice can be a good model of testis degeneration. Moreover, it can be an appropriate organ to follow the effects of various interventions such as physical activity on tissue regeneration and signaling alterations.
Collapse
|
7
|
Yan Q, Huang H, Lu S, Ou B, Feng J, Shan W, Li H, Wang Z, Hong A, Ma Y. PACAP ameliorates fertility in obese male mice via PKA/CREB pathway‐dependent Sirt1 activation and p53 deacetylation. J Cell Physiol 2020; 235:7465-7483. [DOI: 10.1002/jcp.29651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/04/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Qiuxia Yan
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
- Center for Reproductive Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's HospitalQingyuan China
| | - Hongke Huang
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
| | - Shiyin Lu
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
| | - Biqian Ou
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
| | - Jia Feng
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
| | - Wailan Shan
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
| | - Huixian Li
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
| | - Zixian Wang
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
| | - An Hong
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
| | - Yi Ma
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
| |
Collapse
|
8
|
Rosati L, Prisco M, Di Lorenzo M, De Falco M, Andreuccetti P. Immunolocalization of aromatase P450 in the epididymis of Podarcis sicula and Rattus rattus. Eur J Histochem 2020; 64:3080. [PMID: 31988532 PMCID: PMC7029622 DOI: 10.4081/ejh.2020.3080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/08/2020] [Indexed: 02/08/2023] Open
Abstract
The goal of this study was to evaluate P450 aromatase localization in the epididymis of two different vertebrates: the lizard Podarcis sicula, a seasonal breeder, and Rattus rattus, a continuous breeder. P450 aromatase is a key enzyme involved in the local control of spermatogenesis and steroidogenesis and we proved for the first time that this enzyme is represented in the epididymis of both P. sicula and R. rattus. In details, P450 aromatase was well represented in epithelial and myoid cells and in the connective tissue of P. sicula epididymis during the reproductive period; instead, during autumnal resumption this enzyme was absent in the connective tissue. During the non-reproductive period, P450 aromatase was localized only in myoid cells of P. sicula epididymis, whereas in R. rattus it was localized both in myoid cells and connective tissue. Our findings, the first on the epididymis aromatase localization in the vertebrates, suggest a possible role of P450 aromatase in the control of male genital tract function, particularly in sperm maturation.
Collapse
Affiliation(s)
- Luigi Rosati
- Department of Biology, University of Naples Federico II.
| | | | | | | | | |
Collapse
|
9
|
Prisco M, Rosati L, Morgillo E, Mollica MP, Agnese M, Andreuccetti P, Valiante S. Pituitary adenylate cyclase-activating peptide (PACAP) and its receptors in Mus musculus testis. Gen Comp Endocrinol 2020; 286:113297. [PMID: 31604076 DOI: 10.1016/j.ygcen.2019.113297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/25/2019] [Accepted: 10/04/2019] [Indexed: 11/26/2022]
Abstract
To enlighten the involvement of PACAP/receptors system in the control of mammal testis, we investigated the expression of PACAP and the localization of PACAP and its receptors PAC1, VPAC1, and VPAC2 in the testis of Mus musculus. By molecular and immunohistochemical investigations, we highlighted that PACAP and its receptors are widely represented in germ cells of Mus testis, particularly in spermatocytes I, spermatids, and spermatozoa, strongly suggesting their involvement in spermatogenesis process. Moreover, for the first time in the adult mouse testis we highlighted that PACAP is present within Leydig cells, as PACAP receptors, confirming its involvement in the control of steroidogenesis in mouse.
Collapse
Affiliation(s)
- Marina Prisco
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Eliana Morgillo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Marisa Agnese
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | | |
Collapse
|
10
|
Meggyes M, Lajko A, Fulop BD, Reglodi D, Szereday L. Phenotypic characterization of testicular immune cells expressing immune checkpoint molecules in wild-type and pituitary adenylate cyclase-activating polypeptide-deficient mice. Am J Reprod Immunol 2019; 83:e13212. [PMID: 31758623 DOI: 10.1111/aji.13212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/17/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
PROBLEM Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide having several regulatory functions in the nervous system and in peripheral organs including those of the reproductive system. PACAP-deficient male mice have several morphological, biochemical, behavioral defects and show disturbed signaling in spermatogenesis affecting fertility in PACAP KO mice. Reproductive functions such as fertility, mating, and maternal behaviors have been widely investigated, but no immune analyses are available regarding the testicular immune-privileged environment in male PACAP-deficient mice. METHOD OF STUDY We performed detailed immunophenotyping of testicular immune cells and investigated the expression of TIM-3 and PD-1 Immune checkpoint molecules of immune cells together with the detection of galectin-9 and perforin. We investigated the percentage of numerous immune cell populations in the testis of wild-type and PACAP-deficient mice. RESULTS We demonstrated a significant increase in the frequency of testicular CD8+ T cells together with the decrease in Treg cell number obtained from PACAP KO mice compared with wild-type mice. Investigating Immune checkpoint receptors, only PD-1 showed a significantly decreased expression in CD8+ T cells in PACAP KO mice compared with wild-type suggesting an impaired PD-1/PD-L1 pathway. Regarding TIM-3 expression, we did not find any significant difference between the investigated groups. CONCLUSION We hypothesize that these local changes may result in an immune activation with disturbed testicular immunoregulation in PACAP KO mice; however, determining the exact function requires further investigations. Our data further support the view that besides a systemic immune tolerance, localized active immunosuppression is involved in the regulation of testicular immune privilege.
Collapse
Affiliation(s)
- Matyas Meggyes
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, Pecs, Hungary.,Janos Szentagothai Research Center, Pecs, Hungary
| | - Adrienn Lajko
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, Pecs, Hungary
| | - Balazs Daniel Fulop
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pecs, Pecs, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pecs, Pecs, Hungary
| | - Laszlo Szereday
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, Pecs, Hungary.,Janos Szentagothai Research Center, Pecs, Hungary
| |
Collapse
|
11
|
Peris-Frau P, Martín-Maestro A, Iniesta-Cuerda M, Sánchez-Ajofrín I, Mateos-Hernández L, Garde JJ, Villar M, Soler AJ. Freezing-Thawing Procedures Remodel the Proteome of Ram Sperm before and after In Vitro Capacitation. Int J Mol Sci 2019; 20:E4596. [PMID: 31533312 PMCID: PMC6769739 DOI: 10.3390/ijms20184596] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 02/07/2023] Open
Abstract
Mammalian sperm must undergo a set of structural and functional changes collectively termed as capacitation to ensure a successful oocyte fertilization. However, capacitation can be compromised by cryopreservation procedures, which alter the proteome and longevity of sperm. To date, how the protein changes induced by cryopreservation could affect the acquisition of sperm fertilizing potential remains unexplored. The present study investigated the protein profile of ram sperm during in vitro capacitation before and after cryopreservation to elucidate the impact of cryopreservation on sperm capacitation at a molecular level. Fresh and cryopreserved ram sperm were incubated under capacitating (CAP) and non-capacitating (NC) conditions for 240 min. The sperm proteome of these four treatments was analyzed and compared at different incubation times using reverse phase liquid chromatography coupled to mass spectrometry (RP-LC-MS/MS). The comparison between fresh and cryopreserved sperm suggested that cryopreservation facilitated an apoptosis-stress response and redox process, while the comparison between sperm incubated in CAP and NC conditions showed that capacitation increased those biological processes associated with signaling, metabolism, motility, and reproductive processes. In addition, 14 proteins related to mitochondrial activity, sperm motility, oocyte recognition, signaling, spermatogenesis, and the apoptosis-stress response underwent significant changes in abundance over time when fresh and cryopreserved sperm incubated in CAP and NC conditions were compared. Our results indicate that disturbances in a ram sperm proteome after cryopreservation may alter the quality of sperm and its specific machinery to sustain capacitation under in vitro conditions.
Collapse
Affiliation(s)
- Patricia Peris-Frau
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Alicia Martín-Maestro
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario s/n, 02071 Albacete, Spain.
| | - María Iniesta-Cuerda
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Irene Sánchez-Ajofrín
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Lourdes Mateos-Hernández
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario s/n, 02071 Albacete, Spain.
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France.
| | - J Julián Garde
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Margarita Villar
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Ana Josefa Soler
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario s/n, 02071 Albacete, Spain.
| |
Collapse
|
12
|
Akmal M, Gholib G, Rinidar R, Fitriani F, Helmi TZ, Sugito S, Isa M, Nurliana N, Wahyuni S, Dasrul D, Yaman MA. The concentration of testosterone, pituitary adenylate cyclase-activating polypeptide, and protamine 1 in the serum of male chicken following administration of epididymis and testicular extracts and their combination. Vet World 2019; 12:1101-1107. [PMID: 31528039 PMCID: PMC6702581 DOI: 10.14202/vetworld.2019.1101-1107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/12/2019] [Indexed: 01/16/2023] Open
Abstract
Bakcground and Aim Testis and epididymis are male reproductive organs that play an important role in spermatogenesis. These two organs are rich in the content of hormones and other molecules needed in the process of spermatogenesis which affect the quality of the spermatozoa. The objective of this study was to examine the effect of the administration of epididymis and testicular extracts and their combination on testosterone, pituitary adenylate cyclase-activating polypeptide (PACAP), and protamine 1 (PRM1) concentrations in the serum of male chicken. Materials and Methods Twenty male chickens (broiler strain Cp707), aged 3 weeks and weighing 800-1000 g, were randomly divided into four different groups including a control group (T0) = injected with 1 ml normal saline and treatment groups: T1 = injected with 1 ml epididymis extract, T2 = injected with 1 ml testicular extract, and T3 = injected with a combination of 1 ml epididymis + 1 ml testicular extract. The experiment was conducted for 13 days and at the end of the study (day 14), the chickens were sacrificed to obtain the serum. Furthermore, the concentrations of testosterone, PACAP, and PRM1 were then measured by using an enzyme-linked immunosorbent assay technique. Results The concentrations of PACAP and PRM1 did not show a significant difference between treatment groups (T1, T2, and T3) and control group (T0) (p>0.05). However, the concentration of testosterone showed a significantly higher difference in a group injected with a combination of 1 ml epididymis and 1 ml testicular extracts (T3) compared to the control group (T0) (p<0.05). Conclusion The administration of epididymis and testicular extracts and their combination did not affect the increase of PACAP and PRM1 concentration. However, a combination of these extracts significantly affects the increase of testosterone concentration in the serum of male chicken.
Collapse
Affiliation(s)
- Muslim Akmal
- Laboratory of Histology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Gholib Gholib
- Laboratory of Physiology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Rinidar Rinidar
- Laboratory of Pharmacology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Fitriani Fitriani
- Laboratory of Histology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - T Zahrial Helmi
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Sugito Sugito
- Laboratory of Clinic, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - M Isa
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Nurliana Nurliana
- Laboratory of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Sri Wahyuni
- Laboratory of Anatomy, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Dasrul Dasrul
- Laboratory of Reproduction, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - M Aman Yaman
- Field Laboratory of Animal Sciences, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| |
Collapse
|
13
|
Reglodi D, Cseh S, Somoskoi B, Fulop BD, Szentleleky E, Szegeczki V, Kovacs A, Varga A, Kiss P, Hashimoto H, Tamas A, Bardosi A, Manavalan S, Bako E, Zakany R, Juhasz T. Disturbed spermatogenic signaling in pituitary adenylate cyclase activating polypeptide-deficient mice. Reproduction 2017; 155:129-139. [PMID: 29101268 DOI: 10.1530/rep-17-0470] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/18/2017] [Accepted: 11/03/2017] [Indexed: 12/20/2022]
Abstract
PACAP is a neuropeptide with diverse functions in various organs, including reproductive system. It is present in the testis in high concentrations, and in addition to the stage-specific expression within the seminiferous tubules, PACAP affects spermatogenesis and the functions of Leydig and Sertoli cells. Mice lacking endogenous PACAP show reduced fertility, but the possibility of abnormalities in spermatogenic signaling has not yet been investigated. Therefore, we performed a detailed morphological analysis of spermatozoa, sperm motility and investigated signaling pathways that play a role during spermatogenesis in knockout mice. No significant alterations were found in testicular morphology or motility of sperm in homozygous and heterozygous PACAP-deficient mice in spite of the moderately increased number of severely damaged sperms. However, we found robust changes in mRNA and/or protein expression of several factors that play an important role in spermatogenesis. Protein kinase A expression was markedly reduced, while downstream phospho-ERK and p38 were elevated in knockout animals. Expression of major transcription factors, such as Sox9 and phospho-Sox9, was decreased, while that of Sox10, as a redundant factor, was increased in PACAP-deficient mice. The reduced phospho-Sox9 expression was partly due to increased expression and activity of phosphatase PP2A in knockout mice. Targets of Sox transcription factors, such as collagen type IV, were reduced in knockout mice. In summary, our results show that lack of PACAP leads to disturbed signaling in spermatogenesis, which could be a factor responsible for reduced fertility in PACAP knockout mice, and further support the role of PACAP in reproduction.
Collapse
Affiliation(s)
- D Reglodi
- Department of AnatomyMTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs, Pecs, Hungary
| | - S Cseh
- Department and Clinic of ReproductionUniversity of Veterinary Medicine, Budapest, Hungary
| | - B Somoskoi
- Department and Clinic of ReproductionUniversity of Veterinary Medicine, Budapest, Hungary
| | - B D Fulop
- Department of AnatomyMTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs, Pecs, Hungary
| | - E Szentleleky
- Department of AnatomyHistology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - V Szegeczki
- Department of AnatomyHistology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - A Kovacs
- Department of AnatomyMTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs, Pecs, Hungary
| | - A Varga
- Department of AnatomyMTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs, Pecs, Hungary
| | - P Kiss
- Department of AnatomyMTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs, Pecs, Hungary
| | - H Hashimoto
- Laboratory of Molecular NeuropharmacologyGraduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Molecular Research Center for Children's Mental DevelopmentUnited Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan.,Division of BioscienceInstitute for Datability Science, Osaka University, Suita, Osaka, Japan
| | - A Tamas
- Department of AnatomyMTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs, Pecs, Hungary
| | - A Bardosi
- MVZ für HistologieZytologie und Molekulare Diagnostik, Trier, Germany
| | - S Manavalan
- Department of Basic SciencesNational University of Health Sciences, Pinellas Park, Florida, USA
| | - E Bako
- Cell Biology and Signalling Research Group of the Hungarian Academy of SciencesDepartment of Medical Chemistry, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - R Zakany
- Department of AnatomyHistology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - T Juhasz
- Department of AnatomyHistology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
14
|
Rosati L, Andreuccetti P, Prisco M. Vasoactive intestinal peptide (VIP) localization in the epididymis of two vertebrate species. C R Biol 2017; 340:379-385. [DOI: 10.1016/j.crvi.2017.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/09/2017] [Accepted: 07/10/2017] [Indexed: 10/19/2022]
|
15
|
Horvath G, Nemeth J, Brubel R, Opper B, Koppan M, Tamas A, Szereday L, Reglodi D. Occurrence and Functions of PACAP in the Placenta. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-35135-3_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
16
|
|
17
|
Tamas A, Javorhazy A, Reglodi D, Sarlos DP, Banyai D, Semjen D, Nemeth J, Lelesz B, Fulop DB, Szanto Z. Examination of PACAP-Like Immunoreactivity in Urogenital Tumor Samples. J Mol Neurosci 2015; 59:177-83. [DOI: 10.1007/s12031-015-0652-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/07/2015] [Indexed: 11/25/2022]
|
18
|
Juhász T, Helgadottir SL, Tamás A, Reglődi D, Zákány R. PACAP and VIP signaling in chondrogenesis and osteogenesis. Peptides 2015; 66:51-7. [PMID: 25701761 DOI: 10.1016/j.peptides.2015.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 02/07/2023]
Abstract
Skeletal development is a complex process regulated by multifactorial signaling cascades that govern proper tissue specific cell differentiation and matrix production. The influence of certain regulatory peptides on cartilage or bone development can be predicted but are not widely studied. In this review, we aimed to assemble and overview those signaling pathways which are modulated by PACAP and VIP neuropeptides and are involved in cartilage and bone formation. We discuss recent experimental data suggesting broad spectrum functions of these neuropeptides in osteogenic and chondrogenic differentiation, including the canonical downstream targets of PACAP and VIP receptors, PKA or MAPK pathways, which are key regulators of chondro- and osteogenesis. Recent experimental data support the hypothesis that PACAP is a positive regulator of chondrogenesis, while VIP has been reported playing an important role in the inflammatory reactions of surrounding joint tissues. Regulatory function of PACAP and VIP in bone development has also been proved, although the source of the peptides is not obvious. Crosstalk and collateral connections of the discussed signaling mechanisms make the system complicated and may obscure the pure effects of VIP and PACAP. Chondro-protective properties of PACAP during oxidative stress observed in our experiments indicate a possible therapeutic application of this neuropeptide.
Collapse
Affiliation(s)
- Tamás Juhász
- Department of Anatomy, Histology and Embryology, University of Debrecen, Faculty of Medicine, Nagyerdei krt. 98, H-4032 Debrecen, Hungary.
| | - Solveig Lind Helgadottir
- Department of Anatomy, Histology and Embryology, University of Debrecen, Faculty of Medicine, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Andrea Tamás
- Department of Anatomy MTA-PTE "Lendület" PACAP Research Team, University of Pécs, Medical School, Szigeti út 12, H-7624 Pécs, Hungary
| | - Dóra Reglődi
- Department of Anatomy MTA-PTE "Lendület" PACAP Research Team, University of Pécs, Medical School, Szigeti út 12, H-7624 Pécs, Hungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, University of Debrecen, Faculty of Medicine, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| |
Collapse
|
19
|
Rosati L, Prisco M, Coraggio F, Valiante S, Scudiero R, Laforgia V, Andreuccetti P, Agnese M. PACAP and PAC₁ receptor in the reproductive cycle of male lizard Podarcis sicula. Gen Comp Endocrinol 2014; 205:102-8. [PMID: 24852351 DOI: 10.1016/j.ygcen.2014.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/25/2014] [Accepted: 05/06/2014] [Indexed: 01/01/2023]
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide involved in multiple functions, including vertebrate reproduction. Recently, we reported the presence of PACAP in the testis of Italian wall lizard Podarcis sicula during reproductive period (May-June). Herein we investigated the PACAP mRNA expression and the localization of PACAP/PACAP receptor system, in the other periods of the Podarcis reproductive cycle, namely in summer stasis, early autumnal resumption, mid-autumnal resumption, winter stasis, and spring resumption. Using biomolecular and immunohistochemical investigations, we demonstrated that PACAP mRNA was widely expressed in all germ and somatic cells; in summer stasis (July-August) and early autumnal resumption (September) in particular, the mRNA was always found in Sertoli cells while was transiently expressed in germ and in Leydig cells. Differently from the mRNA, the protein was always present in germ and somatic cells independently from the reproductive cycle phase. As PACAP, the PAC1 receptor was always present in the testis, except for the summer stasis (July-August) and the early autumnal resumption (September), when PACAP was lacking in germ and somatic cells (Leydig and Sertoli cells). The present results strongly suggest that PACAP/PAC1 receptor system is widely represented during the reproductive cycle of male lizard. The possible involvement of PACAP/PACAP receptor system in the control of spermatogenesis is discussed.
Collapse
Affiliation(s)
- Luigi Rosati
- University of Naples Federico II, Department of Biology, Italy
| | - Marina Prisco
- University of Naples Federico II, Department of Biology, Italy
| | | | | | | | | | | | - Marisa Agnese
- University of Naples Federico II, Department of Biology, Italy
| |
Collapse
|
20
|
Shpakov AO, Derkach KV, Chistyakova OV, Moyseyuk IV, Bondareva VM. The effect of long-term diabetes mellitus induced by treatment with streptozotocin in 6-week-old rats on functional activity of the adenylyl cyclase system. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s1990519x14010118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Nakamura K, Nakamachi T, Endo K, Ito K, Machida T, Oka T, Hori M, Ishizaka K, Shioda S. Distribution of pituitary adenylate cyclase-activating polypeptide (PACAP) in the human testis and in testicular germ cell tumors. Andrologia 2013; 46:465-71. [PMID: 23621806 DOI: 10.1111/and.12102] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2013] [Indexed: 11/28/2022] Open
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide expressed in the central nervous system and peripheral organs. Previous studies revealed the role and distribution of PACAP in the rodent testis, however, its presence in the human testis and in testicular germ cell tumors is not known. We used RT-PCR and immunohistological observations to investigate whether human testicular tissue and testicular germ cell tumors contain PACAP. The mRNAs for PACAP and its receptors were detected in total RNA extracted from human testes. PACAP immunoreactivity was observed in spermatogonia and spermatids from normal testes. In contrast, diffuse PACAP immunopositivity was observed in seminoma tumor cells, while only faint immunoreactivity was observed in embryonal carcinoma cells. Our data suggest that PACAP may play a role in human spermatogenesis and in testicular germ cell tumor development.
Collapse
Affiliation(s)
- K Nakamura
- Department of Anatomy, Showa University School of Medicine, Shinagawaku, Tokyo, Japan; Department of Urology, Kanto Central Hospital, Setagayaku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Expression of VIP and its Receptors in the Testis of the Spotted Ray Torpedo marmorata (Risso 1880). J Mol Neurosci 2012; 48:638-46. [DOI: 10.1007/s12031-012-9857-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/10/2012] [Indexed: 10/28/2022]
|