1
|
Lv X, Zhang R, Li S, Jin X. tRNA Modifications and Dysregulation: Implications for Brain Diseases. Brain Sci 2024; 14:633. [PMID: 39061374 PMCID: PMC11274612 DOI: 10.3390/brainsci14070633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Transfer RNAs (tRNAs) are well-known for their essential function in protein synthesis. Recent research has revealed a diverse range of chemical modifications that tRNAs undergo, which are crucial for various cellular processes. These modifications are necessary for the precise and efficient translation of proteins and also play important roles in gene expression regulation and cellular stress response. This review examines the role of tRNA modifications and dysregulation in the pathophysiology of various brain diseases, including epilepsy, stroke, neurodevelopmental disorders, brain tumors, Alzheimer's disease, and Parkinson's disease. Through a comprehensive analysis of existing research, our study aims to elucidate the intricate relationship between tRNA dysregulation and brain diseases. This underscores the critical need for ongoing exploration in this field and provides valuable insights that could facilitate the development of innovative diagnostic tools and therapeutic approaches, ultimately improving outcomes for individuals grappling with complex neurological conditions.
Collapse
Affiliation(s)
- Xinxin Lv
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| | - Ruorui Zhang
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - Shanshan Li
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| | - Xin Jin
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| |
Collapse
|
2
|
Zhu G, Zhang H, Xia M, Liu Y, Li M. EH domain-containing protein 2 (EHD2): Overview, biological function, and therapeutic potential. Cell Biochem Funct 2024; 42:e4016. [PMID: 38613224 DOI: 10.1002/cbf.4016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
EH domain-containing protein 2 (EHD2) is a member of the EHD protein family and is mainly located in the plasma membrane, but can also be found in the cytoplasm and endosomes. EHD2 is also a nuclear-cytoplasmic shuttle protein. After entering the cell nuclear, EHD2 acts as a corepressor of transcription to inhibit gene transcription. EHD2 regulates a series of biological processes. As a key regulator of endocytic transport, EHD2 is involved in the formation and maintenance of endosomal tubules and vesicles, which are critical for the intracellular transport of proteins and other substances. The N-terminal of EHD2 is attached to the cell membrane, while its C-terminal binds to the actin-binding protein. After binding, EHD2 connects with the actin cytoskeleton, forming the curvature of the membrane and promoting cell endocytosis. EHD2 is also associated with membrane protein trafficking and receptor signaling, as well as in glucose metabolism and lipid metabolism. In this review, we highlight the recent advances in the function of EHD2 in various cellular processes and its potential implications in human diseases such as cancer and metabolic disease. We also discussed the prospects for the future of EHD2. EHD2 has a broad prospect as a therapeutic target for a variety of diseases. Further research is needed to explore its mechanism, which could pave the way for the development of targeted treatments.
Collapse
Affiliation(s)
- Guoqiang Zhu
- Department of Urology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Hu Zhang
- Department of Urology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Min Xia
- Hengyang Medical School, Institute of Clinical Medicine, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
- Hengyang Medical School, Cancer Research Institute, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Yiqi Liu
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Mingyong Li
- Department of Urology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Shi J, Li X, Ding J, Lian J, Zhong Y, Li H, Shen H, You W, Fu X, Chen G. Transient Receptor Potential Mucolipin-1 Participates in Intracerebral Hemorrhage-Induced Secondary Brain Injury by Inducing Neuroinflammation and Neuronal Cell Death. Neuromolecular Med 2023:10.1007/s12017-023-08734-5. [PMID: 36737508 DOI: 10.1007/s12017-023-08734-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/05/2023] [Indexed: 02/05/2023]
Abstract
Transient receptor potential mucolipin-1 (TRPML1) is the most abundantly and widely expressed channel protein in the TRP family. While numerous studies have been conducted involving many aspects of TRPML1, such as its role in cell biology, oncology, and neurodegenerative diseases, there are limited reports about what role it plays in intracerebral hemorrhage (ICH)-induced secondary brain injury (SBI). Here we examined the function of TRPML1 in ICH-induced SBI. The caudal arterial blood of rats was injected into the caudate nucleus of basal ganglia to establish an experimental ICH model. We observed that lentivirus downregulated the expression level of TRPML1 and chemical agonist promoted the enzyme activity of TRPML1. The results indicated that the protein levels of TRPML1 in brain tissues increased 24 h after ICH. These results suggested that downregulated TRPML1 could significantly reduce inflammatory cytokines, and ICH induced the production of LDH and ROS. Furthermore, TRPML1 knockout relieved ICH-induced neuronal cell death and degeneration, and declines in learning and memory after ICH could be improved by downregulating the expression of TRPML1. In addition, chemical agonist-expressed TRPML1 showed the opposite effect and exacerbated SBI after ICH. In summary, this study demonstrated that TRPML1 contributed to brain injury after ICH, and downregulating TRPML1 could improve ICH-induced SBI, suggesting a potential target for ICH therapy.
Collapse
Affiliation(s)
- Jinzhao Shi
- Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215008, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.,Institute of Stroke Research, Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - Jiasheng Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.,Institute of Stroke Research, Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - Jinrong Lian
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.,Institute of Stroke Research, Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - Yi Zhong
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.,Institute of Stroke Research, Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.,Institute of Stroke Research, Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.,Institute of Stroke Research, Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - Wanchun You
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China. .,Institute of Stroke Research, Soochow University, Suzhou, 215006, Jiangsu Province, China.
| | - Xi'an Fu
- Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215008, Jiangsu Province, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.,Institute of Stroke Research, Soochow University, Suzhou, 215006, Jiangsu Province, China
| |
Collapse
|
4
|
Mathew BA, Katta M, Ludhiadch A, Singh P, Munshi A. Role of tRNA-Derived Fragments in Neurological Disorders: a Review. Mol Neurobiol 2023; 60:655-671. [PMID: 36348262 DOI: 10.1007/s12035-022-03078-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022]
Abstract
tRFs are small tRNA derived fragments that are emerging as novel therapeutic targets and regulatory molecules in the pathophysiology of various neurological disorders. These are derived from precursor or mature tRNA, forming different subtypes that have been reported to be involved in neurological disorders like stroke, Alzheimer's, epilepsy, Parkinson's, MELAS, autism, and Huntington's disorder. tRFs were earlier believed to be random degradation debris of tRNAs. The significant variation in the expression level of tRFs in disease conditions indicates their salient role as key players in regulation of these disorders. Various animal studies are being carried out to decipher their exact role; however, more inputs are required to transform this research knowledge into clinical application. Future investigations also call for high-throughput technologies that could help to bring out the other hidden aspects of these entities. However, studies on tRFs require further research efforts to overcome the challenges posed in quantifying tRFs, their interactions with other molecules, and the exact mechanism of function. In this review, we are abridging the current understanding of tRFs, including their biogenesis, function, relevance in clinical therapies, and potential as diagnostic and prognostic biomarkers of these neurological disorders.
Collapse
Affiliation(s)
- Blessy Aksa Mathew
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India, 151401
| | - Madhumitha Katta
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India, 151401
| | - Abhilash Ludhiadch
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India, 151401
| | - Paramdeep Singh
- Department of Radiology, All India Institute of Medical Sciences, Bathinda, Punjab, India, 151001
| | - Anjana Munshi
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India, 151401.
| |
Collapse
|
5
|
Li Z, Lin Y, Mao L, Zhang L. Expression characteristics of circular RNA in human traumatic brain injury. Front Neurol 2023; 13:1086553. [PMID: 36712438 PMCID: PMC9874311 DOI: 10.3389/fneur.2022.1086553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Traumatic brain injury (TBI) causes high rates of worldwide mortality and morbidity due to the complex secondary injury cascade. Recently, circular ribonucleic acids (circRNAs) have attracted significant attention in a variety of diseases. However, their expression characteristics in human TBI are still unclear. In this study, we examined brain injury tissues from six severe TBI patients in Jinling Hospital. The TBI tissues and adjacent brain contusion tissues were used to analyze differential expression signatures of circRNAs through full-length transcriptome sequencing, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and ceRNA network construction. Our results found that there were 126 differently expressed circRNAs in TBI. Among them, 64 circRNAs were up-regulated and 62 circRNAs were down-regulated. Moreover, GO and KEGG analyses revealed that the aberrantly expressed circRNAs participated in many pathophysiological processes of TBI, especially regarding microglial cell activation, protein transport, protein processing and inflammation. Furthermore, the ceRNA (circRNA-miRNA-mRNA) network predicted that there existed strong relationship among circRNA, miRNA and mRNA. Taken together, our results indicated for the first time that the expression profiles of circRNAs were different after human TBI. In addition, we found the signaling pathways that were related to circRNAs and predicted a ceRNA network, which provided new insight of circRNAs in human TBI.
Collapse
|
6
|
Gong Y, Wu M, Gao F, Shi M, Gu H, Gao R, Dang BQ, Chen G. Inhibition of the p‑SPAK/p‑NKCC1 signaling pathway protects the blood‑brain barrier and reduces neuronal apoptosis in a rat model of surgical brain injury. Mol Med Rep 2021; 24:717. [PMID: 34396440 DOI: 10.3892/mmr.2021.12356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/07/2021] [Indexed: 11/06/2022] Open
Abstract
Surgical brain injury (SBI) can disrupt the function of the blood‑brain barrier (BBB), leading to brain edema and neurological dysfunction. Thus, protecting the BBB and mitigating cerebral edema are key factors in improving the neurological function and prognosis of patients with SBI. The inhibition of WNK lysine deficient protein kinase/STE20/SPS1‑related proline/alanine‑rich kinase (SPAK) signaling ameliorates cerebral edema, and this signaling pathway regulates the phosphorylation of the downstream Na+‑K+‑Cl‑ cotransporter 1 (NKCC1). Therefore, the purpose of the present study was to investigate the role of SPAK in SBI‑induced cerebral edema and to determine whether the SPAK/NKCC1 signaling pathway was involved in SBI via regulating phosphorylation. An SBI model was established in male Sprague‑Dawley rats, and the effects of SPAK on the regulation of the NKCC1 signaling pathway on BBB permeability and nerve cell apoptosis by western blotting analysis, immunofluorescence staining, TUNEL staining, Fluoro‑Jade C staining, and brain edema and nervous system scores. The results demonstrated that, compared with those in the sham group, phosphorylated (p)‑SPAK and p‑NKCC1 protein expression levels were significantly increased in the SBI model group. After inhibiting p‑SPAK, the expression level of p‑NKCC1, neuronal apoptosis and BBB permeability were significantly reduced in SBI model rats. Taken together, these findings suggested that SBI‑induced increases in p‑SPAK and p‑NKCC1 expression exacerbated post‑traumatic neural and BBB damage, which may be mediated via the ion‑transport‑induced regulation of cell edema.
Collapse
Affiliation(s)
- Yating Gong
- Department of Rehabilitation, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Muyao Wu
- Department of Rehabilitation, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Fan Gao
- Department of Rehabilitation, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Mengying Shi
- Department of Anesthesiology, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Haiping Gu
- Department of Neurology, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Rong Gao
- Department of Neurosurgery, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Bao-Qi Dang
- Department of Rehabilitation, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Gang Chen
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
7
|
Li PF, Guo SC, Liu T, Cui H, Feng D, Yang A, Cheng Z, Luo J, Tang T, Wang Y. Integrative analysis of transcriptomes highlights potential functions of transfer-RNA-derived small RNAs in experimental intracerebral hemorrhage. Aging (Albany NY) 2020; 12:22794-22813. [PMID: 33203799 PMCID: PMC7746353 DOI: 10.18632/aging.103938] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/01/2020] [Indexed: 12/16/2022]
Abstract
Transfer-RNA-derived small RNAs (tsRNAs) are a novel class of short non-coding RNAs, that possess regulatory functions. However, their biological roles in hemorrhagic stroke are not understood. In this study, by RNA sequencing, we investigated the tsRNA expression profiles of intracerebral hemorrhagic rat brains in the chronic phase. A total of 331 tsRNAs were identified (308 in sham and 309 in intracerebral hemorrhage). Among them, the validation revealed that 7 tsRNAs (1 up-regulated and 6 down-regulated) were significantly changed. Subsequently, we predicted the target mRNAs of the 7 tsRNAs. Through integrative analysis, the predicted targets were validated by mRNA microarray data. Moreover, we confirmed the functions of tsRNAs targeting mRNAs in vitro. Furthermore, using bioinformatics tools and databases, we developed a tsRNA-mRNA-pathway interaction network to visualize their potential functions. Bioinformatics analyses and confirmatory experiments indicated that the altered genes were mainly enriched in several signaling pathways. These pathways were interrelated with intracerebral hemorrhage, such as response to oxidative stress, endocytosis, and regulation of G protein-coupled receptor signaling pathway. In summary, this study systematically revealed the profiles of tsRNAs after an experimental intracerebral hemorrhage. These results may provide novel therapeutic targets following a hemorrhagic stroke in the chronic phase.
Collapse
Affiliation(s)
- Peng-Fei Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.,Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Shi-Chao Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Tao Liu
- Department of Gerontology, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi 830011, China
| | - Hanjin Cui
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dandan Feng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ali Yang
- Department of Neurology, Henan Province People’s Hospital, Zhengzhou 450003, China
| | - Zhe Cheng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.,Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Jiekun Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
8
|
Guo S, Li Y, Wei B, Liu W, Li R, Cheng W, Zhang X, He X, Li X, Duan C. Tim-3 deteriorates neuroinflammatory and neurocyte apoptosis after subarachnoid hemorrhage through the Nrf2/HMGB1 signaling pathway in rats. Aging (Albany NY) 2020; 12:21161-21185. [PMID: 33168786 PMCID: PMC7695377 DOI: 10.18632/aging.103796] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
Inflammation is known to play an important role in early brain injury (EBI) after subarachnoid hemorrhage (SAH). T cell immunoglobulin and mucin domain-3 (Tim-3) has emerged as a critical regulator of adaptive and innate immune responses, and has been identified to play a vital role in certain inflammatory diseases; The present study explored the effect of Tim-3 on inflammatory responses and detailed mechanism in EBI following SAH. We investigated the effects of Tim-3 on SAH models established by endovascular puncture method in Sprague–Dawley rats. The present studies revealed that SAH induced a significant inflammatory response and significantly increased Tim-3 expression. Tim-3-AAV administration aggravated neurocyte apoptosis, brain edema, blood-brain barrier permeability, and neurological dysfunction; significantly inhibited Nrf2 expression; and increased HMGB1 expression and secretion of pro-inflammatory cytokines, such as tumor necrosis factor alpha, interleukin (IL)-1 beta, IL-17, and IL-18. However, Tim-3 siRNA or NK252 administration abolished the pro-inflammatory effects of Tim-3. Our results indicate a function for Tim-3 as a molecular player that links neuroinflammation and brain damage after SAH. We reveal that Tim-3 overexpression deteriorates neuroinflammatory and neurocyte apoptosis after subarachnoid hemorrhage through the Nrf2/HMGB1 signaling pathway in rats.
Collapse
Affiliation(s)
- Shenquan Guo
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanzhi Li
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, China
| | - Boyang Wei
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenchao Liu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ran Li
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenping Cheng
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xuying He
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xifeng Li
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chuanzhi Duan
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Wu D, Lai N, Deng R, Liang T, Pan P, Yuan G, Li X, Li H, Shen H, Wang Z, Chen G. Activated WNK3 induced by intracerebral hemorrhage deteriorates brain injury maybe via WNK3/SPAK/NKCC1 pathway. Exp Neurol 2020; 332:113386. [PMID: 32589890 DOI: 10.1016/j.expneurol.2020.113386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/22/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is the common brain diseases in middle-aged and elderly people, with high disability and/or mortality rate, and is a serious public health concern. Both WNK3 kinase and the WNK3/SPAK/NKCC1 signaling pathway play an integral role in maintaining normal cell homeostasis. However, their role and underlying mechanisms in ICH-induced secondary brain injury (SBI) have yet to be elucidated. METHODS We established an ICH model using male Sprague-Dawley (SD) rats by injecting autologous arterial blood into the unilateral basal ganglia. To establish ICH model in vitro, oxyhemoglobin (OxyHb; 20 μM) and neurons were cultured for 6 h at 37 °C, 5% CO2 atmosphere. To investigate the role of WNK3 and the WNK3/SPAK/NKCC1 signaling pathway in SBI, after genetic interventions, rotation and water maze test, brain edema and neuroinflammation were detected, and terminal-deoxynucleoitidyl transferase mediated dUTP nick end labeling (TUNEL), Fluoro-Jade C (FJC), and Nissl staining were performed. RESULTS Our data showed that WNK3 expression in brain tissue were upregulated after ICH induction. In addition, silencing of WNK3 reduced neuronal apoptosis, and inflammatory responses in rats that underwent ICH. Inhibition of WNK3 expression reduced the damaged blood-brain barrier (BBB), alleviated the impaired degree of cerebral edema, and improved disruptive neurobehavioral cognition caused by ICH. Moreover, overexpression of WNK3 had the opposite effects. Finally, WNK3/SPAK/NKCC1 signaling pathway may be involved in the above-mentioned processes. CONCLUSIONS In conclusion, our findings showed that WNK3 and WNK3/SPAK/NKCC1 signaling pathway play a vital biological function in ICH-induced SBI. Depletion of WNK3 attenuated brain injury after ICH both in vivo and in vitro. Thus, WNK3 and WNK3/SPAK/NKCC1 signaling pathway are potential targets for treating SBI after ICH.
Collapse
Affiliation(s)
- Degang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China; Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College, 2 West Zheshan Road, Wuhu, Anhui Province, China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, Anhui Province, China
| | - Niansheng Lai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China; Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College, 2 West Zheshan Road, Wuhu, Anhui Province, China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, Anhui Province, China
| | - Ruming Deng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China; Department of Neurosurgery, The people's Hospital of Bozhou, Bozhou, Anhui Province, China
| | - Tianyu Liang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Pengjie Pan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Guiqiang Yuan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
10
|
Tao C, Keep RF, Xi G, Hua Y. CD47 Blocking Antibody Accelerates Hematoma Clearance After Intracerebral Hemorrhage in Aged Rats. Transl Stroke Res 2019; 11:541-551. [PMID: 31664629 DOI: 10.1007/s12975-019-00745-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 02/05/2023]
Abstract
Both experimental studies and surgical clinical trials suggest that hematoma clearance is a therapeutic target in intracerebral hemorrhage (ICH). We have investigated effects of CD47, a "don't eat me" signal expressed on erythrocytes, on hematoma resolution after ICH in young mice. This study expands those findings by examining the effects on a CD47 blocking antibody in aged rats. First, male Fischer 344 rats (18 months old) received an intracaudate injection of 50 μL autologous whole blood or saline. Hematoma features of magnetic resonance imaging (MRI) and neurological deficits were evaluated within 3 days. Second, rats had an intracaudate co-injection of 50 μL autologous blood with either CD47 blocking antibody or IgG. MRI was used to quantify hematoma/iron volume, hemolysis, brain swelling, and atrophy at different time points, behavioral tests to assess neurological deficits, and immunohistochemistry to assess brain injury and neuroinflammation. The CD47 blocking antibody significantly promoted hematoma clearance, attenuated brain swelling, hemolysis, and neuronal loss and increased the number of phagocytic macrophages in and around hematoma 3 days after ICH. Moreover, CD47 blockade reduced neuronal loss, brain atrophy, and neurobehavioral deficits at day 28. These results indicate that a CD47 blocking antibody can accelerate hematoma clearance and alleviate short- and long-term brain injury after ICH in aged rats and that it might be a therapeutic strategy for ICH.
Collapse
Affiliation(s)
- Chuanyuan Tao
- Department of Neurosurgery, R5018 BSRB, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.,Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Richard F Keep
- Department of Neurosurgery, R5018 BSRB, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Guohua Xi
- Department of Neurosurgery, R5018 BSRB, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Ya Hua
- Department of Neurosurgery, R5018 BSRB, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
11
|
Zhang P, Wang T, Zhang D, Zhang Z, Yuan S, Zhang J, Cao J, Li H, Li X, Shen H, Chen G. Exploration of MST1-Mediated Secondary Brain Injury Induced by Intracerebral Hemorrhage in Rats via Hippo Signaling Pathway. Transl Stroke Res 2019; 10:729-743. [PMID: 30941717 DOI: 10.1007/s12975-019-00702-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 01/28/2023]
Abstract
Intracerebral hemorrhage (ICH) is a serious public health problem which causes high rates of disability and mortality in adults. Cell apoptosis is a sign of secondary brain injury (SBI) following ICH. Mammalian sterile 20-like kinase-1 (MST1), an apoptosis-promoting kinase, is a part of the Hippo signaling pathway and involved in cell death, oxidative stress, and inflammation. However, the role and underlying mechanism of MST1 in SBI induced by ICH have not yet been fully explained. The main purpose of present research was to explore the role of MST1 and its potential mechanism in SBI after ICH. An ICH model was established by injecting autologous blood into the right basal ganglia in male SD rats. We found that MST1 phosphorylation was significantly increased in brain tissues of rats after ICH. Additionally, inhibition of MST1 phosphorylation by a chemical inhibitor (Xmu-mp-1) and genetic knockdown could effectively reduce the activation of P-LATS1 and P-YAP which are downstream proteins of MST1 and decrease neuronal cell death and inflammation reaction in ICH rats. Furthermore, the decreased of MST1 phosphorylation reduced brain edema, blood-brain barrier (BBB) damage, and neurobehavioral impairment during ICH. Over-expression of MST1 resulted in opposite effects. Finally, deletion of MST1 significantly reduced neuronal apoptosis in vitro. In summary, our study revealed that MST1 played an important role in the SBI following ICH, and inhibition of MST1 could alleviate ICH-induced SBI. Therefore, MST1 may be considered as a potential therapeutic target for SBI following ICH.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Tianyi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Dongping Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Zhuwei Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Shuai Yuan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Juyi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Jie Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
12
|
Yu A, Zhang X, Li M, Ye P, Duan H, Zhang T, Yang Z. Tim-3 enhances brain inflammation by promoting M1 macrophage polarization following intracerebral hemorrhage in mice. Int Immunopharmacol 2018; 53:143-148. [PMID: 29107214 DOI: 10.1016/j.intimp.2017.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/06/2017] [Accepted: 10/18/2017] [Indexed: 10/18/2022]
Abstract
Macrophage polarization contributes to brain inflammation following spontaneous intracerebral hemorrhage (ICH). T cell immunoglobulin and mucin domain-3 (Tim-3) has been identified to induce macrophage mediated inflammation following ICH. However, the regulation of Tim-3 on macrophage polarization following ICH has not been fully studied. In current experiment, we explored Tim-3 expression, macrophage polarization, brain water content and neurological function in WT and Tim-3-/- ICH mice. In addition, downstream transcriptional factor TRIF and IRF3 were also analyzed. We found that ICH promoted Tim-3 expression and M1 polarization in the perihematomal region of WT mice, leading to increased brain water content and neurological impairment. However, deletion of Tim-3 expression attenuated M1 polarization, decreased rain water content and improved neurological function of ICH mice. Furthermore, Tim-3 signal promoted transcriptional factors TRIF and IRF3 levels, regulating macrophage polarization. The data suggested that Tim-3 played a crucial role in the macrophage polarization and brain inflammation following ICH, and might represent a promising way in ICH therapy.
Collapse
Affiliation(s)
- Anyong Yu
- Department of Emergency, The First Affiliated Hospital of Zunyi Medical College, Guizhou 563003, China
| | - Xiaojun Zhang
- Department of Emergency, The First Affiliated Hospital of Zunyi Medical College, Guizhou 563003, China
| | - Mo Li
- Department of Emergency, The First Affiliated Hospital of Zunyi Medical College, Guizhou 563003, China
| | - Peng Ye
- Department of Emergency, The First Affiliated Hospital of Zunyi Medical College, Guizhou 563003, China
| | - Haizhen Duan
- Department of Emergency, The First Affiliated Hospital of Zunyi Medical College, Guizhou 563003, China
| | - Tianxi Zhang
- Department of Emergency, The First Affiliated Hospital of Zunyi Medical College, Guizhou 563003, China
| | - Zhao Yang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China.
| |
Collapse
|
13
|
Ereifej ES, Rial GM, Hermann JK, Smith CS, Meade SM, Rayyan JM, Chen K, Feng H, Capadona JR. Implantation of Neural Probes in the Brain Elicits Oxidative Stress. Front Bioeng Biotechnol 2018; 6:9. [PMID: 29487848 PMCID: PMC5816578 DOI: 10.3389/fbioe.2018.00009] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
Clinical implantation of intracortical microelectrodes has been hindered, at least in part, by the perpetual inflammatory response occurring after device implantation. The neuroinflammatory response observed after device implantation has been correlated to oxidative stress that occurs due to neurological injury and disease. However, there has yet to be a definitive link of oxidative stress to intracortical microelectrode implantation. Thus, the objective of this study is to give direct evidence of oxidative stress following intracortical microelectrode implantation. This study also aims to identify potential molecular targets to attenuate oxidative stress observed postimplantation. Here, we implanted adult rats with silicon non-functional microelectrode probes for 4 weeks and compared the oxidative stress response to no surgery controls through postmortem gene expression analysis and qualitative histological observation of oxidative stress markers. Gene expression analysis results at 4 weeks postimplantation indicated that EH domain-containing 2, prion protein gene (Prnp), and Stearoyl-Coenzyme A desaturase 1 (Scd1) were all significantly higher for animals implanted with intracortical microelectrode probes compared to no surgery control animals. To the contrary, NADPH oxidase activator 1 (Noxa1) relative gene expression was significantly lower for implanted animals compared to no surgery control animals. Histological observation of oxidative stress showed an increased expression of oxidized proteins, lipids, and nucleic acids concentrated around the implant site. Collectively, our results reveal there is a presence of oxidative stress following intracortical microelectrode implantation compared to no surgery controls. Further investigation targeting these specific oxidative stress linked genes could be beneficial to understanding potential mechanisms and downstream therapeutics that can be utilized to reduce oxidative stress-mediated damage following microelectrode implantation.
Collapse
Affiliation(s)
- Evon S. Ereifej
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Griffin M. Rial
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - John K. Hermann
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Cara S. Smith
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Seth M. Meade
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Jacob M. Rayyan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Keying Chen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - He Feng
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Jeffrey R. Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| |
Collapse
|
14
|
Zhang R, Yang J, Yuan J, Song B, Wang Y, Xu Y. The Therapeutic Value of Bone Marrow-Derived Endothelial Progenitor Cell Transplantation after Intracerebral Hemorrhage in Rats. Front Neurol 2017; 8:174. [PMID: 28512445 PMCID: PMC5411418 DOI: 10.3389/fneur.2017.00174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/13/2017] [Indexed: 01/30/2023] Open
Abstract
Aims To study the effect of endothelial progenitor cell (EPC) treatment on intracerebral hemorrhage (ICH) in rats and elucidate possible mechanisms. Methods The rats were randomly divided into three groups: (1) EPC group: ICH + EPC, (2) phosphate-buffered saline group: ICH + PBS, and (3) sham group. EPCs were transplanted intravenously 6 h after ICH. Modified neurological severity score was used to evaluate neurological function. Blood–brain barrier (BBB) integrity was evaluated. Dead cells, inflammatory cytokines, and neuroprotective cytokines were assessed to investigate possible mechanisms. Results The animals in the EPC group showed significant improvement in neurological function at 48 h, 72 h, and 7 days after ICH, compared with those in the PBS group. EPC transplantation significantly reduced brain edema and the number of dead cells in the hematoma boundary areas. The intensity of Evans Blue was decreased, and expression levels of zonula occluden-1 and claudin-5 were increased in the EPC group. Proinflammatory cytokines, including interferon-γ, IL-6, and TNF-α, were decreased, whereas anti-inflammatory cytokines, including transforming growth factor-β1 and IL-10, were increased in the EPC group. In addition, expression levels of brain-derived neurotrophic factor, vascular endothelial growth factor, and neurotrophic growth factor were increased following transplantation of EPCs. Conclusion EPC transplantation could improve neurological function of ICH rats. The protective effect may be mediated by promotion of neuroprotective cytokine secretion, restoration of the BBB, reduction of cell death, and the decrease in inflammation.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingjing Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Song
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Shen H, Liu C, Zhang D, Yao X, Zhang K, Li H, Chen G. Role for RIP1 in mediating necroptosis in experimental intracerebral hemorrhage model both in vivo and in vitro. Cell Death Dis 2017; 8:e2641. [PMID: 28252651 PMCID: PMC5386555 DOI: 10.1038/cddis.2017.58] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/28/2016] [Accepted: 01/03/2017] [Indexed: 01/02/2023]
Abstract
Cell death is a hallmark of second brain injury after intracerebral hemorrhage (ICH); however, the mechanism still has not been fully illustrated. In this study, we explored whether necroptosis, a type of regulated necrosis, has an essential role in brain injury after ICH. We found that inhibiting receptor-interacting protein 1 (RIP1) – a core element of the necroptotic pathway – by a specific chemical inhibitor or genetic knockdown attenuated brain injury in a rat model of ICH. Furthermore, necroptosis of cultured neurons could be induced by conditioned medium from microglia stimulated with oxygen hemoglobin, and this effect could be inhibited by TNF-α inhibitor, indicating that TNF-α secreted from activated microglia is an important factor in inducing necroptosis of neurons. Undoubtedly, overexpression of RIP1 increased conditioned medium-induced necroptosis in vitro, but this effect was partially diminished in mutation of serine kinase phosphorylation site of RIP1, showing that phosphorylation of RIP1 is the essential molecular mechanism of necroptosis, which was activated in the in vitro model of ICH. Collectively, our investigation identified that necroptosis is an important mechanism of cell death in brain injury after ICH, and inhibition of necroptosis may be a potential therapeutic intervention of ICH.
Collapse
Affiliation(s)
- Haitao Shen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Chenglin Liu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Dongping Zhang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiyang Yao
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Kai Zhang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
16
|
Chen M, Li X, Zhang X, He X, Lai L, Liu Y, Zhu G, Li W, Li H, Fang Q, Wang Z, Duan C. The inhibitory effect of mesenchymal stem cell on blood-brain barrier disruption following intracerebral hemorrhage in rats: contribution of TSG-6. J Neuroinflammation 2015; 12:61. [PMID: 25890011 PMCID: PMC4392640 DOI: 10.1186/s12974-015-0284-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/17/2015] [Indexed: 12/20/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are well known having beneficial effects on intracerebral hemorrhage (ICH) in previous studies. The therapeutic mechanisms are mainly to investigate proliferation, differentiation, and immunomodulation. However, few studies have used MSCs to treat blood–brain barrier (BBB) leakage after ICH. The influence of MSCs on the BBB and its related mechanisms were investigated when MSCs were transplanted into rat ICH model in this study. Methods Adult male Sprague–Dawley (SD) rats were randomly divided into sham-operated group, PBS-treated (ICH + PBS) group, and MSC-treated (ICH + MSC) group. ICH was induced by injection of IV collagenase into the rats’ brains. MSCs were transplanted intravenously into the rats 2 h after ICH induction in MSC-treated group. The following factors were compared: inflammation, apoptosis, behavioral changes, inducible nitric oxide synthase (iNOS), matrix metalloproteinase 9 (MMP-9), peroxynitrite (ONOO−), endothelial integrity, brain edema content, BBB leakage, TNF-α stimulated gene/protein 6 (TSG-6), and nuclear factor-κB (NF-κB) signaling pathway. Results In the ICH + MSC group, MSCs decreased the levels of proinflammatory cytokines and apoptosis, downregulated the density of microglia/macrophages and neutrophil infiltration at the ICH site, reduced the levels of iNOS and MMP-9, attenuated ONOO− formation, and increased the levels of zonula occludens-1 (ZO-1) and claudin-5. MSCs also improved the degree of brain edema and BBB leakage. The protective effect of MSCs on the BBB in ICH rats was possibly invoked by increased expression of TSG-6, which may have suppressed activation of the NF-κB signaling pathway. The levels of iNOS and ONOO−, which played an important role in BBB disruption, decreased due to the inhibitory effects of TSG-6 on the NF-κB signaling pathway. Conclusions Our results demonstrated that intravenous transplantation of MSCs decreased the levels of ONOO− and degree of BBB leakage and improved neurological recovery in a rat ICH model. This strategy may provide a new insight for future therapies that aim to prevent breakdown of the BBB in patients with ICH and eventually offer therapeutic options for ICH.
Collapse
Affiliation(s)
- Min Chen
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Xifeng Li
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Xin Zhang
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Xuying He
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Lingfeng Lai
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Yanchao Liu
- Department of Neurosurgery, The First People's Hospital of Foshan and Foshan Hospital of Sun Yat Sen University, Foshan, Guangdong, 528000, China.
| | - Guohui Zhu
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Wei Li
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Hui Li
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Qinrui Fang
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Zequn Wang
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Chuanzhi Duan
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|