1
|
Wang J, Liu M, Zhao J, Hu P, Gao L, Tian S, Zhang J, Liu H, Xu X, He Z. Oxidative stress and dysregulated long noncoding RNAs in the pathogenesis of Parkinson's disease. Biol Res 2025; 58:7. [PMID: 39871377 PMCID: PMC11770960 DOI: 10.1186/s40659-025-00585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/07/2025] [Indexed: 01/29/2025] Open
Abstract
Parkinson's disease (PD) is a progressive age-related neurodegenerative disease whose annual incidence is increasing as populations continue to age. Although its pathogenesis has not been fully elucidated, oxidative stress has been shown to play an important role in promoting the occurrence and development of the disease. Long noncoding RNAs (lncRNAs), which are more than 200 nucleotides in length, are also involved in the pathogenesis of PD at the transcriptional level via epigenetic regulation, or at the post-transcriptional level by participating in physiological processes, including aggregation of the α-synuclein, mitochondrial dysfunction, oxidative stress, calcium stabilization, and neuroinflammation. LncRNAs and oxidative stress are correlated during neurodegenerative processes: oxidative stress affects the expression of multiple lncRNAs, while lncRNAs regulate many genes involved in oxidative stress responses. Oxidative stress and lncRNAs also affect other processes associated with neurodegeneration, including mitochondrial dysfunction and increased neuroinflammation that lead to neuronal death. Therefore, modulating the levels of specific lncRNAs may alleviate pathological oxidative damage and have neuroprotective effects. This review discusses the general mechanisms of oxidative stress, pathological mechanism underlying the role of oxidative stress in the pathogenesis of PD, and teases out the mechanisms through which lncRNAs regulate oxidative stress during PD pathogenesis, as well as identifies the possible neuroprotective mechanisms of lncRNAs. Reviewing published studies will help us further understand the mechanisms underlying the role of lncRNAs in the oxidative stress process in PD and to identify potential therapeutic strategies for PD.
Collapse
Affiliation(s)
- Jialu Wang
- Department of Neurology, First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Neurological Disease Big Data of Liaoning Province, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Meitong Liu
- Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Jiuhan Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Neurological Disease Big Data of Liaoning Province, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Pan Hu
- Department of Neurology, First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Neurological Disease Big Data of Liaoning Province, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Lianbo Gao
- Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Shen Tian
- Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Jin Zhang
- Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Huayan Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Neurological Disease Big Data of Liaoning Province, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Xiaoxue Xu
- Department of Neurology, First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Neurological Disease Big Data of Liaoning Province, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.
| | - Zhenwei He
- Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China.
| |
Collapse
|
2
|
Clarke BE, Ziff OJ, Tyzack G, Petrić Howe M, Wang Y, Klein P, Smith CA, Hall CA, Helmy A, Howell M, Kelly G, Patani R. Human VCP mutant ALS/FTD microglia display immune and lysosomal phenotypes independently of GPNMB. Mol Neurodegener 2024; 19:90. [PMID: 39593143 PMCID: PMC11590569 DOI: 10.1186/s13024-024-00773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Microglia play crucial roles in maintaining neuronal homeostasis but have been implicated in contributing to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, the role of microglia in ALS/FTD remains incompletely understood. METHODS Here, we generated highly enriched cultures of VCP mutant microglia derived from human induced pluripotent stem cells (hiPSCs) to investigate their cell autonomous and non-cell autonomous roles in ALS pathogenesis. We used RNA-sequencing, proteomics and functional assays to study hiPSC derived VCP mutant microglia and their effects on hiPSC derived motor neurons and astrocytes. RESULTS Transcriptomic, proteomic and functional analyses revealed immune and lysosomal dysfunction in VCP mutant microglia. Stimulating healthy microglia with the inflammatory inducer lipopolysaccharide (LPS) showed partial overlap with VCP mutant microglia in their reactive transformation. LPS-stimulated VCP mutant microglia displayed differential activation of inflammatory pathways compared with LPS-stimulated healthy microglia. Conserved gene expression changes were identified between VCP mutant microglia, SOD1 mutant mice microglia, and postmortem ALS spinal cord microglial signatures, including increased expression of the transmembrane glycoprotein GPNMB. While knockdown of GPNMB affected inflammatory and phagocytosis processes in microglia, this was not sufficient to ameliorate cell autonomous phenotypes in VCP mutant microglia. Secreted factors from VCP mutant microglia were sufficient to activate the JAK-STAT pathway in hiPSC derived motor neurons and astrocytes. CONCLUSIONS VCP mutant microglia undergo cell autonomous reactive transformation involving immune and lysosomal dysfunction that partially recapitulate key phenotypes of microglia from other ALS models and post mortem tissue. These phenotypes occur independently of GPNMB. Additionally, VCP mutant microglia elicit non cell autonomous responses in motor neurons and astrocytes involving the JAK-STAT pathway.
Collapse
Affiliation(s)
- Benjamin E Clarke
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Oliver J Ziff
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK.
| | - Giulia Tyzack
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Marija Petrić Howe
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Yiran Wang
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Pierre Klein
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Claudia A Smith
- Division of Neurosurgery and Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Cameron A Hall
- Division of Neurosurgery and Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery and Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Michael Howell
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Gavin Kelly
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Rickie Patani
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK.
| |
Collapse
|
3
|
Yu X, Li M, Wang C, Guan X. Glycoprotein non-metastatic melanoma protein B (GPNMB): An attractive target in atherosclerosis. Biochem Biophys Res Commun 2024; 732:150386. [PMID: 39024681 DOI: 10.1016/j.bbrc.2024.150386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Atherosclerosis (AS), the leading cause of cardiovascular diseases, is heavily influenced by inflammation, lipid accumulation, autophagy, and aging. The expression of glycoprotein non-metastatic melanoma B (GPNMB) has been observed to correlate with lipid content, inflammation, and aging, progressively increasing as atherosclerosis advances through its various stages, from baseline to early and advanced phases. However, the interaction between GPNMB and AS is controversial. Knockout of GPNMB has been shown to increase atherosclerotic plaque burden in mice. Conversely, targeted elimination of GPNMB-positive cells reduced atherosclerotic burden. These seemingly contradictory findings underscore the complexity of the issue and highlight the need for further research to reconcile these discrepancies and to elucidate the precise role of GPNMB in the pathogenesis of AS.
Collapse
Affiliation(s)
- Xiaochen Yu
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China
| | - Min Li
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China
| | - Chao Wang
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China
| | - Xiuru Guan
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China.
| |
Collapse
|
4
|
Yu J, Fu R, Buhe A, Xu B. Quercetin attenuates lipopolysaccharide-induced hepatic inflammation by modulating autophagy and necroptosis. Poult Sci 2024; 103:103719. [PMID: 38603936 PMCID: PMC11017357 DOI: 10.1016/j.psj.2024.103719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/25/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024] Open
Abstract
Lipopolysaccharide (LPS) from Gram-negative bacteria initially induces liver inflammation with proinflammatory cytokines expressions. However, the underlying hepatoprotective mechanism of quercetin on LPS-induced hepatic inflammation remains unclear. Specific pathogen-free chicken embryos (n = 120) were allocated control vehicle, PBS with or without ethanol vehicle, LPS (125 ng/egg) with or without quercetin treatment (10, 20, or 40 nmol/egg, respectively), quercetin groups (10, 20, or 40 nmol/egg). Fifteen-day-old embryonated eggs were inoculated abovementioned solutions via the allantoic cavity. At embryonic d 19, the livers of the embryos were collected for histopathological examination, RNA extraction, real-time polymerase chain reaction, and immunohistochemistry investigation. We found that the liver presented inflammatory response (heterophils infiltration) after LPS induction. The LPS-induced mRNA expressions of inflammation-related factors (TLR4, TNFα, IL-1β, IL-10, IL-6, MYD88, NF-κB1, p38, and MMP3) were upregulated after LPS induction when compared with the PBS group, while quercetin could downregulate these expressions as compared with the LPS group. Quercetin significantly decreased the immunopositivity to TLR4 and MMP3 in the treatment group when compared with the LPS group. Quercetin could significantly downregulate the mRNA expressions of autophagy-related genes (ATG5, ATG7, Beclin-1, LC3A, and LC3B) and necroptosis-related genes (Fas, Bcl-2, Drp1, and RIPK1) after LPS induction. Quercetin significantly decreased the immunopositivity to LC3 in the treatment group when compared with the LPS group; meanwhile, quercetin significantly decreased the protein expressions of LC3-I, LC3-II, and the rate of LC3-II/LC3-I. In conclusions, quercetin can alleviate hepatic inflammation induced by LPS through modulating autophagy and necroptosis.
Collapse
Affiliation(s)
- Jinhai Yu
- Camellia Research Institute, The Innovation Institute of Agricultural Technology, Department of Life Science, Shangrao Normal University, Shangrao 334001, China.
| | - Rong Fu
- Department of Literature and Media, Shangrao Normal University, Shangrao 334001, China
| | - Amin Buhe
- Department of Cancer Surgery, Beijing Shijitan Hospital Affiliated with Capital Medical University, Beijing 100038, China
| | - Bing Xu
- Camellia Research Institute, The Innovation Institute of Agricultural Technology, Department of Life Science, Shangrao Normal University, Shangrao 334001, China
| |
Collapse
|
5
|
Yalcin F, Haneke H, Efe IE, Kuhrt LD, Motta E, Nickl B, Flüh C, Synowitz M, Dzaye O, Bader M, Kettenmann H. Tumor associated microglia/macrophages utilize GPNMB to promote tumor growth and alter immune cell infiltration in glioma. Acta Neuropathol Commun 2024; 12:50. [PMID: 38566120 PMCID: PMC10985997 DOI: 10.1186/s40478-024-01754-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Tumor-associated microglia and blood-derived macrophages (TAMs) play a central role in modulating the immune suppressive microenvironment in glioma. Here, we show that GPNMB is predominantly expressed by TAMs in human glioblastoma multiforme and the murine RCAS-PDGFb high grade glioma model. Loss of GPNMB in the in vivo tumor microenvironment results in significantly smaller tumor volumes and generates a pro-inflammatory innate and adaptive immune cell microenvironment. The impact of host-derived GPNMB on tumor growth was confirmed in two distinct murine glioma cell lines in organotypic brain slices from GPNMB-KO and control mice. Using published data bases of human glioma, the elevated levels in TAMs could be confirmed and the GPNMB expression correlated with a poorer survival.
Collapse
Affiliation(s)
- Fatih Yalcin
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Institute of Pathology, Christian-Albrecht University of Kiel, Kiel, Germany
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Hannah Haneke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ibrahim E Efe
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Leonard D Kuhrt
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Edyta Motta
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Bernadette Nickl
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Charlotte Flüh
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Michael Synowitz
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Omar Dzaye
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Helmut Kettenmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
6
|
Gillett DA, Wallings RL, Uriarte Huarte O, Tansey MG. Progranulin and GPNMB: interactions in endo-lysosome function and inflammation in neurodegenerative disease. J Neuroinflammation 2023; 20:286. [PMID: 38037070 PMCID: PMC10688479 DOI: 10.1186/s12974-023-02965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Alterations in progranulin (PGRN) expression are associated with multiple neurodegenerative diseases (NDs), including frontotemporal dementia (FTD), Alzheimer's disease (AD), Parkinson's disease (PD), and lysosomal storage disorders (LSDs). Recently, the loss of PGRN was shown to result in endo-lysosomal system dysfunction and an age-dependent increase in the expression of another protein associated with NDs, glycoprotein non-metastatic B (GPNMB). MAIN BODY It is unclear what role GPNMB plays in the context of PGRN insufficiency and how they interact and contribute to the development or progression of NDs. This review focuses on the interplay between these two critical proteins within the context of endo-lysosomal health, immune function, and inflammation in their contribution to NDs. SHORT CONCLUSION PGRN and GPNMB are interrelated proteins that regulate disease-relevant processes and may have value as therapeutic targets to delay disease progression or extend therapeutic windows.
Collapse
Affiliation(s)
- Drew A Gillett
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Rebecca L Wallings
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Oihane Uriarte Huarte
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Malú Gámez Tansey
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
7
|
Huang YH, Chu PY, Chen JL, Huang CT, Huang CC, Tsai YF, Wang YL, Lien PJ, Tseng LM, Liu CY. Expression pattern and prognostic impact of glycoprotein non-metastatic B (GPNMB) in triple-negative breast cancer. Sci Rep 2021; 11:12171. [PMID: 34108545 PMCID: PMC8190094 DOI: 10.1038/s41598-021-91588-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 05/28/2021] [Indexed: 12/31/2022] Open
Abstract
Glycoprotein non-metastatic B (GPNMB) is a transmembrane protein overexpressed in numerous cancers including triple-negative breast cancers (TNBC). It has been linked to promote cancer aggressiveness and implicated as a novel target for GPNMB-expressing cancers. In current study, we aimed to explore the clinical significance of GPNMB in TNBC. Among 759 specimens, immunohistochemistry (IHC) exhibited GPNMB expressions were variable in different subtypes and significantly higher in TNBC. Kaplan-Meier analysis revealed GPNMB overexpression in TNBC was associated with worse prognosis especially distant metastasis (P = 0.020, HR = 2.515, CI 1.154-5.480). Multivariate analysis showed GPNMB expression was an independent prognostic factor in terms of recurrence and distant metastasis (P = 0.008, HR = 3.22, CI 1.36-7.61; P = 0.017, HR = 3.08, CI 1.22-7.74). In silico analysis showed high mRNA expression of GPNMB was associated with distant metastasis and GPNMB was overexpressed in TNBC. Furthermore, GPNMB positively correlated with epithelial-mesenchymal transition (EMT) regulators, mesenchymal marker vimentin, MMP and integrins. The protein levels of Twist and MMP2 were upregulated by GPNMB overexpression in TNBC cells. GPNMB-enhanced cell invasion was attenuated by broad spectrum MMP inhibitor (GM 6001) and the selective inhibitor of MMP-2 (ARP100). In summary, GPNMB expression is prevalent in TNBC and may be implicated as a prognostic biomarker in patients with TNBC.
Collapse
Affiliation(s)
- Yu-Hsiang Huang
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Ji-Lin Chen
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Teng Huang
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Division of Hematology & Oncology, Department of Medicine, Yang-Ming Branch of Taipei City Hospital, Taipei, Taiwan
| | - Chi-Cheng Huang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yi-Fang Tsai
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Ling Wang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Experimental Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Ju Lien
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Nursing, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ling-Ming Tseng
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Experimental Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Yu Liu
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan. .,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan. .,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan. .,Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan.
| |
Collapse
|
8
|
Functional Domains and Evolutionary History of the PMEL and GPNMB Family Proteins. Molecules 2021; 26:molecules26123529. [PMID: 34207849 PMCID: PMC8273697 DOI: 10.3390/molecules26123529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
The ancient paralogs premelanosome protein (PMEL) and glycoprotein nonmetastatic melanoma protein B (GPNMB) have independently emerged as intriguing disease loci in recent years. Both proteins possess common functional domains and variants that cause a shared spectrum of overlapping phenotypes and disease associations: melanin-based pigmentation, cancer, neurodegenerative disease and glaucoma. Surprisingly, these proteins have yet to be shown to physically or genetically interact within the same cellular pathway. This juxtaposition inspired us to compare and contrast this family across a breadth of species to better understand the divergent evolutionary trajectories of two related, but distinct, genes. In this study, we investigated the evolutionary history of PMEL and GPNMB in clade-representative species and identified TMEM130 as the most ancient paralog of the family. By curating the functional domains in each paralog, we identified many commonalities dating back to the emergence of the gene family in basal metazoans. PMEL and GPNMB have gained functional domains since their divergence from TMEM130, including the core amyloid fragment (CAF) that is critical for the amyloid potential of PMEL. Additionally, the PMEL gene has acquired the enigmatic repeat domain (RPT), composed of a variable number of imperfect tandem repeats; this domain acts in an accessory role to control amyloid formation. Our analyses revealed the vast variability in sequence, length and repeat number in homologous RPT domains between craniates, even within the same taxonomic class. We hope that these analyses inspire further investigation into a gene family that is remarkable from the evolutionary, pathological and cell biology perspectives.
Collapse
|
9
|
Saade M, Araujo de Souza G, Scavone C, Kinoshita PF. The Role of GPNMB in Inflammation. Front Immunol 2021; 12:674739. [PMID: 34054862 PMCID: PMC8149902 DOI: 10.3389/fimmu.2021.674739] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a response to a lesion in the tissue or infection. This process occurs in a specific manner in the central nervous system and is called neuroinflammation, which is involved in neurodegenerative diseases. GPNMB, an endogenous glycoprotein, has been recently related to inflammation and neuroinflammation. GPNMB is highly expressed in macrophages and microglia, which are cells involved with innate immune response in the periphery and the brain, respectively. Some studies have shown increased levels of GPNMB in pro-inflammatory conditions, such as LPS treatment, and in pathological conditions, such as neurodegenerative diseases and cancer. However, the role of GPNMB in inflammation is still not clear. Even though most studies suggest that GPNMB might have an anti-inflammatory role by promoting inflammation resolution, there is evidence that GPNMB could be pro-inflammatory. In this review, we gather and discuss the published evidence regarding this interaction.
Collapse
Affiliation(s)
- Marina Saade
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Giovanna Araujo de Souza
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Paula Fernanda Kinoshita
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Tsou PS, Sawalha AH. Glycoprotein nonmetastatic melanoma protein B: A key mediator and an emerging therapeutic target in autoimmune diseases. FASEB J 2020; 34:8810-8823. [PMID: 32445534 DOI: 10.1096/fj.202000651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
The glycoprotein nonmetastatic melanoma protein B (GPNMB, also known as osteoactivin) is highly expressed in many cell types and regulates the homeostasis in various tissues. In different physiological contexts, it functions as a melanosome-associated protein, membrane-bound surface receptor, soluble ligand, or adhesion molecule. Therefore, GPNMB is involved in cell differentiation, migration, inflammation, metabolism, and neuroprotection. Because of its various involvement in different physiological conditions, GPNMB has been implicated in many diseases, including cancer, neurological disorders, and more recently immune-mediated diseases. This review summarizes the regulation and function of GPNMB in normal physiology, and discusses the involvement of GPNMB in disease conditions with a particular focus on its potential role and therapeutic implications in autoimmunity.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.,Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Seasonal adaptations of the hypothalamo-neurohypophyseal system of the dromedary camel. PLoS One 2019; 14:e0216679. [PMID: 31211771 PMCID: PMC6581255 DOI: 10.1371/journal.pone.0216679] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
The “ship” of the Arabian and North African deserts, the one-humped dromedary camel (Camelus dromedarius) has a remarkable capacity to survive in conditions of extreme heat without needing to drink water. One of the ways that this is achieved is through the actions of the antidiuretic hormone arginine vasopressin (AVP), which is made in a specialised part of the brain called the hypothalamo-neurohypophyseal system (HNS), but exerts its effects at the level of the kidney to provoke water conservation. Interestingly, our electron microscopy studies have shown that the ultrastructure of the dromedary HNS changes according to season, suggesting that in the arid conditions of summer the HNS is in an activated state, in preparation for the likely prospect of water deprivation. Based on our dromedary genome sequence, we have carried out an RNAseq analysis of the dromedary HNS in summer and winter. Amongst the 171 transcripts found to be significantly differentially regulated (>2 fold change, p value <0.05) there is a significant over-representation of neuropeptide encoding genes, including that encoding AVP, the expression of which appeared to increase in summer. Identification of neuropeptides in the HNS and analysis of neuropeptide profiles in extracts from individual camels using mass spectrometry indicates that overall AVP peptide levels decreased in the HNS during summer compared to winter, perhaps due to increased release during periods of dehydration in the dry season.
Collapse
|
12
|
Satoh JI, Kino Y, Yanaizu M, Ishida T, Saito Y. Microglia express GPNMB in the brains of Alzheimer's disease and Nasu-Hakola disease. Intractable Rare Dis Res 2019; 8:120-128. [PMID: 31218162 PMCID: PMC6557242 DOI: 10.5582/irdr.2019.01049] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Glycoprotein non-metastatic melanoma protein B (GPNMB) is a type I transmembrane glycoprotein first identified in low-metastatic human melanoma cell lines as a regulator of tumor growth. GPNMB is widely expressed in various tissues, where it is involved in cell differentiation, migration, inflammation/anti-inflammation, tissue regeneration, and neuroprotection. GPNMB is identified in microglia of adult rat brains, neurons and astrocytes of GPNMB transgenic (Tg) mouse brains, and motor neurons of amyotrophic lateral sclerosis (ALS) patients. Nasu-Hakola disease (NHD) is a rare autosomal recessive disorder, characterized by progressive presenile dementia and formation of multifocal bone cysts, caused by genetic mutations of either TYROBP (DAP12) or TREM2. TREM2 and DAP12 constitute a receptor/adaptor signaling complex expressed exclusively on osteoclasts, dendritic cells, macrophages, and microglia. Pathologically, the brains of NHD patients exhibit leukoencephalopathy, astrogliosis, accumulation of axonal spheroids, and remarkable activation of microglia predominantly in the white matter of frontal and temporal lobes and the basal ganglia. At present, molecular mechanisms responsible for development of leukoencephaolpathy in NHD brains remain totally unknown. Recent evidence indicates that disease-associated microglia (DAM) that cluster around amyloid plaques express high levels of GPNMB in Alzheimer's disease (AD) brains. Because microglia act as a key regulator of leukoencephalopathy in NHD brains, it is proposed that GPNMB expressed on microglia might play a protective role in progression of leukoencephalopathy possibly via active phagocytosis of myelin debris. In the present study using immunohistochemistry, we have attempted to clarify the expression of GPNMB in NHD brains, compared with AD brains. We found that microglia accumulating in the white matter express an intense GPNMB immunoreactivity in both NHD and AD brains, suggesting that the accumulation of GPNMB-immunoreactive microglia is a general phenomenon in neurodegenerative brains.
Collapse
Affiliation(s)
- Jun-ichi Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan
- Address correspondence to:Dr. Jun-ichi Satoh, Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan. E-mail:
| | - Yoshihiro Kino
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Motoaki Yanaizu
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Tsuyoshi Ishida
- Department of Pathology and Laboratory Medicine, Kohnodai Hospital, NCGM, Chiba, Japan
| | - Yuko Saito
- Department of Laboratory Medicine, National Center Hospital, NCNP, Tokyo, Japan
| |
Collapse
|
13
|
van der Lienden MJC, Gaspar P, Boot R, Aerts JMFG, van Eijk M. Glycoprotein Non-Metastatic Protein B: An Emerging Biomarker for Lysosomal Dysfunction in Macrophages. Int J Mol Sci 2018; 20:E66. [PMID: 30586924 PMCID: PMC6337583 DOI: 10.3390/ijms20010066] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022] Open
Abstract
Several diseases are caused by inherited defects in lysosomes, the so-called lysosomal storage disorders (LSDs). In some of these LSDs, tissue macrophages transform into prominent storage cells, as is the case in Gaucher disease. Here, macrophages become the characteristic Gaucher cells filled with lysosomes laden with glucosylceramide, because of their impaired enzymatic degradation. Biomarkers of Gaucher cells were actively searched, particularly after the development of costly therapies based on enzyme supplementation and substrate reduction. Proteins selectively expressed by storage macrophages and secreted into the circulation were identified, among which glycoprotein non-metastatic protein B (GPNMB). This review focusses on the emerging potential of GPNMB as a biomarker of stressed macrophages in LSDs as well as in acquired pathologies accompanied by an excessive lysosomal substrate load in macrophages.
Collapse
Affiliation(s)
| | - Paulo Gaspar
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands.
| | - Rolf Boot
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands.
| | - Johannes M F G Aerts
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands.
| | - Marco van Eijk
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
14
|
Moloney EB, Moskites A, Ferrari EJ, Isacson O, Hallett PJ. The glycoprotein GPNMB is selectively elevated in the substantia nigra of Parkinson's disease patients and increases after lysosomal stress. Neurobiol Dis 2018; 120:1-11. [PMID: 30149180 PMCID: PMC6748034 DOI: 10.1016/j.nbd.2018.08.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/01/2018] [Accepted: 08/23/2018] [Indexed: 01/24/2023] Open
Abstract
GPNMB is a glycoprotein observed upon tissue damage and inflammation and is associated with astrocytes, microglia, and macrophages. Gene variations in GPNMB are linked with Parkinson's disease (PD) risk, and changes in protein levels of GPNMB have been found in lysosomal storage disorders, including Gaucher's disease with glucocerebrosidase (GCase) deficiency. In the current study, GPNMB increases were seen in the substantia nigra (SN) of PD patients compared to age-matched controls. Such PD patients have a decrease in GCase activity and corresponding elevation of glycosphingolipids in the SN (Rocha et al., 2015a). Interestingly, transgenic mice modelling synucleinopathy did not show GPNMB elevations or altered GCase activity levels compared to wild-type mice. However, upon CBE-induced GCase lysosomal dysfunction with elevated glycosphingolipids in wild-type mice, there were similar changes in GPNMB levels in the brain as seen in PD patient brains. These results indicate that GPNMB levels do not depend on alpha-synuclein load per se but relate directly to the lipidopathy changes induced by CBE-mediated GCase inhibition. The experimental modelling of elevating glycolipids resulted in GPNMB elevations with glial activation in several brain regions in mice. This is the first demonstration of region-specific elevations of GPNMB protein in Parkinson's disease. The presence of GPNMB in PD patient substantia nigra, the induction of GPNMB after experimental glycosphingolipid increases, but not with pure alpha-synucleinopathy, point towards the potential for primary lipid-induced degeneration in PD.
Collapse
Affiliation(s)
- Elizabeth B Moloney
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont 02478, USA
| | - Alyssa Moskites
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont 02478, USA
| | - Eliza J Ferrari
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont 02478, USA
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont 02478, USA.
| | - Penelope J Hallett
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont 02478, USA.
| |
Collapse
|
15
|
Xu S, Fan Y, Li D, Liu Y, Chen X. Glycoprotein nonmetastatic melanoma protein B accelerates tumorigenesis of cervical cancer in vitro by regulating the Wnt/β-catenin pathway. ACTA ACUST UNITED AC 2018; 52:e7567. [PMID: 30484490 PMCID: PMC6262743 DOI: 10.1590/1414-431x20187567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/01/2018] [Indexed: 11/28/2022]
Abstract
Cervical cancer is one of the most common cancers among women around the world. However, the underlying mechanism involved in cervical cancer progression is incompletely known. In the present study, we determined the role of glycoprotein nonmetastatic melanoma protein B (GPNMB) in tumorigenesis of cervical cancer. According to the GEO database, we found that GPNMB expression was significantly higher in cervical cancer than in normal cervix epithelium. A similar pattern was observed in GPNMB expression in cultured cervical cancer cells and normal cervical epithelial cells. Compared with the control, GPNMB knockdown significantly decreased the proliferation and migration capacity, but enhanced the apoptosis capacity of SiHa and HeLa cells. Additionally, the activity of MMP-2 and MMP-9 were aberrantly increased in SiHa and HeLa cells compared with normal cervical epithelial cells, whereas their activities were strongly inhibited by GPNMB siRNA. Furthermore, Wnt/β-catenin signaling was activated by GPNMB in SiHa and HeLa cells. Increased MMP-2/MMP-9 expression was suppressed by Dkk-1, inhibitor of Wnt/β-catenin signaling, while it was enhanced by stimulator BIO. The proliferation, migration, and apoptosis capacity of HeLa cells were found to be affected by Dkk-1 and BIO to different extents. In conclusion, we demonstrated that GPNMB contributed to the tumorigenesis of cervical cancer, at least in part, by regulating MMP-2/MMP-9 activity in tumor cells via activation of canonical Wnt/β-catenin signaling. This might be a potential therapeutic target for treating human cervical cancer.
Collapse
Affiliation(s)
- Shuxiang Xu
- Department of Obstetrics and Gynecology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Yingying Fan
- Department of Obstetrics and Gynecology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Dongping Li
- Department of Obstetrics and Gynecology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Yan Liu
- Department of Obstetrics and Gynecology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Xu Chen
- Department of Obstetrics and Gynecology, Huashan Hospital North, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Taya M, Hammes SR. Glycoprotein Non-Metastatic Melanoma Protein B (GPNMB) and Cancer: A Novel Potential Therapeutic Target. Steroids 2018; 133:102-107. [PMID: 29097143 PMCID: PMC6166407 DOI: 10.1016/j.steroids.2017.10.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022]
Abstract
Glycoprotein non-metastatic melanoma protein B (GPNMB) is a transmembrane protein enriched on the cell surface of cancer cells, including melanoma, glioblastoma, and triple-negative breast cancer. There is growing evidence identifying GPNMB as a tumor-promoter; however, despite its biological and clinical significance, the molecular mechanisms engaged by GPNMB to promote tumorigenesis are not well understood. GPNMB promotes aggressive behaviors such as tumor cell proliferation, migration, and invasion. The extracellular domain of GPNMB shed from the cell surface interacts with integrins to facilitate in the recruitment of immune-suppressive and pro-angiogenic cells to the tumor microenvironment, thereby enhancing tumor migration and invasion. GPNMB also modulates receptor tyrosine kinases and integrin signaling in a cell autonomous fashion, leading to downstream kinase signaling that in turn triggers the expression and secretion of tumorigenic factors such as matrix metalloproteinases (MMPs) and cytokines. Therefore, GPNMB exerts its pro-tumorigenic role both intracellularly and in a paracrine fashion through shedding its extracellular domain. This review highlights the importance of GPNMB in cancer progression and discusses molecular mediators of GPNMB-induced tumor growth and invasion.
Collapse
Affiliation(s)
- Manisha Taya
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | - Stephen R Hammes
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
17
|
Rose AAN, Biondini M, Curiel R, Siegel PM. Targeting GPNMB with glembatumumab vedotin: Current developments and future opportunities for the treatment of cancer. Pharmacol Ther 2017; 179:127-141. [PMID: 28546082 DOI: 10.1016/j.pharmthera.2017.05.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GPNMB has emerged as an immunomodulator and an important positive mediator of tumor progression and metastasis in numerous solid cancers. Tumor intrinsic GPNMB-mediated effects on cellular signaling, coupled with the ability of GPNMB to influence the primary tumor and metastatic microenvironments in a non-cell autonomous fashion, combine to augment malignant cancer phenotypes. In addition, GPNMB is often overexpressed in a variety of cancers, making it an attractive therapeutic target. In this regard, glembatumumab vedotin, an antibody-drug conjugate (ADC) that targets GPNMB, is currently in clinical trials as a single agent in multiple cancers. In this review, we will describe the physiological functions of GPNMB in normal tissues and summarize the processes through which GPNMB augments tumor growth and metastasis. We will review the pre-clinical and clinical development of glembatumumab vedotin, evaluate on-going clinical trials, explore emerging opportunities for this agent in new disease indications and discuss exciting possibilities for this ADC in the context of combination therapies.
Collapse
Affiliation(s)
- April A N Rose
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Marco Biondini
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada
| | | | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada; Department of Biochemistry, McGill University, Montréal, Québec, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada; Department of Oncology, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
18
|
Van Hove I, Lefevere E, De Groef L, Sergeys J, Salinas-Navarro M, Libert C, Vandenbroucke R, Moons L. MMP-3 Deficiency Alleviates Endotoxin-Induced Acute Inflammation in the Posterior Eye Segment. Int J Mol Sci 2016; 17:ijms17111825. [PMID: 27809288 PMCID: PMC5133826 DOI: 10.3390/ijms17111825] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 01/04/2023] Open
Abstract
Matrix metalloproteinase-3 (MMP-3) is known to mediate neuroinflammatory processes by activating microglia, disrupting blood-central nervous system barriers and supporting neutrophil influx into the brain. In addition, the posterior part of the eye, more specifically the retina, the retinal pigment epithelium (RPE) and the blood-retinal barrier, is affected upon neuroinflammation, but a role for MMP-3 during ocular inflammation remains elusive. We investigated whether MMP-3 contributes to acute inflammation in the eye using the endotoxin-induced uveitis (EIU) model. Systemic administration of lipopolysaccharide induced an increase in MMP-3 mRNA and protein expression level in the posterior part of the eye. MMP-3 deficiency or knockdown suppressed retinal leukocyte adhesion and leukocyte infiltration into the vitreous cavity in mice subjected to EIU. Moreover, retinal and RPE mRNA levels of intercellular adhesion molecule 1 (Icam1), interleukin 6 (Il6), cytokine-inducible nitrogen oxide synthase (Nos2) and tumor necrosis factor α (Tnfα), which are key molecules involved in EIU, were clearly reduced in MMP-3 deficient mice. In addition, loss of MMP-3 repressed the upregulation of the chemokines monocyte chemoattractant protein (MCP)-1 and (C-X-C motif) ligand 1 (CXCL1). These findings suggest a contribution of MMP-3 during EIU, and its potential use as a therapeutic drug target in reducing ocular inflammation.
Collapse
Affiliation(s)
- Inge Van Hove
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Laboratory of Experimental Ophthalmology, Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium.
| | - Evy Lefevere
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Laboratory of Experimental Ophthalmology, Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium.
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Laboratory of Experimental Ophthalmology, Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium.
| | - Jurgen Sergeys
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Laboratory of Experimental Ophthalmology, Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium.
| | - Manuel Salinas-Navarro
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
| | - Claude Libert
- Inflammation Research Center, VIB, B-9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | - Roosmarijn Vandenbroucke
- Inflammation Research Center, VIB, B-9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
| |
Collapse
|
19
|
Järve A, Mühlstedt S, Qadri F, Nickl B, Schulz H, Hübner N, Özcelik C, Bader M. Adverse left ventricular remodeling by glycoprotein nonmetastatic melanoma protein B in myocardial infarction. FASEB J 2016; 31:556-568. [DOI: 10.1096/fj.201600613r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/11/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Anne Järve
- Max Delbrück Center for Molecular MedicineBerlinGermany
- Berlin‐Brandenburg School of Regenerative TherapiesBerlinGermany
| | - Silke Mühlstedt
- Max Delbrück Center for Molecular MedicineBerlinGermany
- Faculty of Mathematics and Natural Sciences IHumboldt‐University BerlinGermany
- Berlin Institute of HealthBerlinGermany
| | | | - Bernadette Nickl
- Max Delbrück Center for Molecular MedicineBerlinGermany
- Berlin Institute of HealthBerlinGermany
| | | | | | | | - Michael Bader
- Max Delbrück Center for Molecular MedicineBerlinGermany
- Berlin Institute of HealthBerlinGermany
- Charité‐University MedicineBerlinGermany
- German Center for Cardiovascular Research (DZHK)BerlinGermany
- Institute for BiologyUniversity of LübeckLübeckGermany
| |
Collapse
|
20
|
Bao G, Wang N, Li R, Xu G, Liu P, He B. Glycoprotein non-metastaticmelanoma protein B promotes glioma motility and angiogenesis through the Wnt/β-catenin signaling pathway. Exp Biol Med (Maywood) 2016; 241:1968-1976. [PMID: 27334625 DOI: 10.1177/1535370216654224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/11/2016] [Indexed: 02/03/2023] Open
Abstract
Glioma is a common tumor with high mortality and poor overall survival. However, the regulatory mechanisms of glioma tumorigenesis and glioma cell motility are completely unknown. Here, we investigated the role of glycoprotein non-metastatic melanoma protein B in glioma. The expression of glycoprotein non-metastatic melanoma protein B is observed to be aberrantly regulated in glioma tissues and cells, and high levels of glycoprotein non-metastatic melanoma protein B present an inverse correlation with the survival of glioma patients. Compared with the control, glycoprotein non-metastatic melanoma protein B inhibition significantly retarded the proliferation and migration of human glioma cells. The tube formation ability of HBMECs induced by glioma cells was also remarkably reduced by glycoprotein non-metastatic melanoma protein B silencing. Increased levels of VEGF-C and TEM7 were down-regulated by the suppression of glycoprotein non-metastatic melanoma protein B in glioma cells. Additionally, the activity of MMP-2/3/9 was assessed in glioma cells using Western blotting and gelatin zymography assay; their activities were strongly decreased following the suppression of glycoprotein non-metastatic melanoma protein B. Further studies suggested that canonical Wnt/β-catenin pathway was activated, but was inactivated by glycoprotein non-metastatic melanoma protein B suppression in glioma cells. In conclusion, we demonstrate that glycoprotein non-metastatic melanoma protein B might be an inducer for glioma and could enhance matrix metalloproteinase activity through Wnt/β-catenin pathway to contribute to glioma tumorigenesis. This may represent a new understanding for malignant glioma.
Collapse
Affiliation(s)
- Gang Bao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ning Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruichun Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Gaofeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Peijun Liu
- Centre for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Baixiang He
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
21
|
Xu Y, Chen Y, Ou R, Wei QQ, Cao B, Chen K, Shang HF. No association of GPNMB rs156429 polymorphism with Parkinson's disease, amyotrophic lateral sclerosis and multiple system atrophy in Chinese population. Neurosci Lett 2016; 622:113-7. [PMID: 27132081 DOI: 10.1016/j.neulet.2016.04.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/08/2016] [Accepted: 04/26/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND The rs156429 polymorphism in the glycoprotein nonmetastatic melanoma protein B (GPNMB) gene was found to be associated with the risk for Parkinson disease (PD) in Caucasian population by genome-wide association studies (GWAS). Recently, encoded protein, GPNMB, was identified as a novel neuro-protective factor in amyotrophic lateral sclerosis (ALS). The overlapping of clinical manifestations and pathologic characteristics among PD, ALS, and multiple system atrophy (MSA) are observed. OBJECT This study aimed at investigating the possible associations of the polymorphism and the three neurodegenerative diseases: PD, ALS and MSA in a Chinese population. METHODS All of the subjects, including PD (n=1096), sporadic ALS (SALS) (n=876) and MSA (n=356) patients, and 829 health controls (HCs) were included. All subjects were genotyped for this polymorphism using Sequenom iPLEX Assay technology. RESULTS No differences were found in the genotype distributions and minor allele frequency of GPNMB rs156429 between PD patients and HCs, between SALS patients and HCs, between MSA patients and HCs, and between subgroups of PD, ALS and MSA patients with regard to clinical features such as sex, age of onset, presence or absence of cognitive abnormality, depression and anxiety. CONCLUSION Lack of association identified in our study suggests that it may be premature to conclude associations between GPNMB rs156429 and SALS, PD and MSA. More studies on such an association involving a larger number of participants are needed to confirm the present findings.
Collapse
Affiliation(s)
- YaQian Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - YongPing Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - RuWei Ou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qian-Qian Wei
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Bei Cao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ke Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
22
|
Kumaran R, Cookson MR. Pathways to Parkinsonism Redux: convergent pathobiological mechanisms in genetics of Parkinson's disease. Hum Mol Genet 2015; 24:R32-44. [PMID: 26101198 PMCID: PMC4571999 DOI: 10.1093/hmg/ddv236] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 12/19/2022] Open
Abstract
In the past few years, there have been a large number of genes identified that contribute to the lifetime risk of Parkinson's disease (PD). Some genes follow a Mendelian inheritance pattern, but others are risk factors for apparently sporadic PD. Here, we will focus on those genes nominated by genome-wide association studies (GWAS) in sporadic PD, with a particular emphasis on genes that overlap between familial and sporadic disease such as those encoding a-synuclein (SNCA), tau (MAPT), and leucine-rich repeat kinase 2 (LRRK2). We will advance the view that there are likely relationships between these genes that map not only to neuronal processes, but also to neuroinflammation. We will particularly discuss evidence for a role of PD proteins in microglial activation and regulation of the autophagy-lysosome system that is dependent on microtubule transport in neurons. Thus, there are at least two non-mutually exclusive pathways that include both non-cell-autonomous and cell-autonomous mechanisms in the PD brain. Collectively, these data have highlighted the amount of progress made in understanding PD and suggest ways forward to further dissect this disorder.
Collapse
Affiliation(s)
- Ravindran Kumaran
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, 35 Convent Drive, Bethesda, MD 20892-3707, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, 35 Convent Drive, Bethesda, MD 20892-3707, USA
| |
Collapse
|
23
|
Zantomio D, Chana G, Laskaris L, Testa R, Everall I, Pantelis C, Skafidas E. Convergent evidence for mGluR5 in synaptic and neuroinflammatory pathways implicated in ASD. Neurosci Biobehav Rev 2015; 52:172-7. [PMID: 25704074 DOI: 10.1016/j.neubiorev.2015.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/25/2015] [Accepted: 02/07/2015] [Indexed: 01/05/2023]
Abstract
The pathogenesis of Autism Spectrum Disorder (ASD), a serious neurodevelopmental disorder, is poorly understood. We review evidence for alterations in glutamatergic signalling in the aetiology of ASD, with a focus on the metabotropic glutamate receptor-5 (mGluR5). mGluR5 signalling is important for synapse formation, neuroplasticity and long term potentiation as well as neuroprotection and has been shown to have a regulatory role in neuroinflammation. Evidence for neuroinflammation in ASD is supported by increase in pro-inflammatory cytokines in the blood and cerebrospinal fluid (CSF) and increased number and activation of microglia in postmortem dorsolateral prefrontal cortex (DLPFC). mGlur5 signalling has also been shown to downregulate microglial activation. Therefore, we focus on mGluR5 as a potential unifying explanation for synapse alteration and neuroinflammation seen in ASD. Data from mGluR5 knockout mouse models, and syndromic and non syndromic forms of ASD are discussed in relation to how alterations in mGluR5 are associated with ASD symptoms. This review supports altered mGluR5 functioning as a convergent point in ASD pathogenesis and indicates more research is warranted into mGluR5 as a potential therapeutic target.
Collapse
Affiliation(s)
- Daniela Zantomio
- Department of Haematology, Austin Health, Heidelberg, VIC, Australia; Centre for Neural Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Gursharan Chana
- Centre for Neural Engineering, The University of Melbourne, Parkville, Victoria, Australia; Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Australia
| | - Liliana Laskaris
- Centre for Neural Engineering, The University of Melbourne, Parkville, Victoria, Australia; Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Renee Testa
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, Victoria, Australia; Department of Psychology, Monash University, Clayton, Vic, Australia
| | - Ian Everall
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Australia
| | - Christos Pantelis
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Australia
| | - Efstratios Skafidas
- Centre for Neural Engineering, The University of Melbourne, Parkville, Victoria, Australia; Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Australia; Centre for Integrative Brain Function, Australia.
| |
Collapse
|
24
|
Dzamko N, Geczy CL, Halliday GM. Inflammation is genetically implicated in Parkinson's disease. Neuroscience 2014; 302:89-102. [PMID: 25450953 DOI: 10.1016/j.neuroscience.2014.10.028] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/11/2014] [Accepted: 10/14/2014] [Indexed: 12/16/2022]
Abstract
Inflammation has long been associated with the pathogenesis of Parkinson's disease (PD) but the extent to which it is a cause or consequence is sill debated. Over the past decade a number of genes have been implicated in PD. Relatively rare missense mutations in genes such as LRRK2, Parkin, SNCA and PINK1 are causative for familial PD whereas more common variation in genes, including LRRK2, SNCA and GBA, comprise risk factors for sporadic PD. Determining how the function of these genes and the proteins they encode are altered in PD has become a priority, as results will likely provide much needed insights into contributing causes. Accumulating evidence indicates that many of these genes function in pathways that regulate aspects of immunity, particularly inflammation, suggesting close associations between PD and immune homeostasis.
Collapse
Affiliation(s)
- N Dzamko
- School of Medical Sciences, University of NSW, Sydney, NSW 2052, Australia; Neuroscience Research Australia, Randwick, NSW 2031, Australia.
| | - C L Geczy
- School of Medical Sciences, University of NSW, Sydney, NSW 2052, Australia
| | - G M Halliday
- School of Medical Sciences, University of NSW, Sydney, NSW 2052, Australia; Neuroscience Research Australia, Randwick, NSW 2031, Australia.
| |
Collapse
|
25
|
Hou L, Zhang Y, Yang Y, Xiang K, Tan Q, Guo Q. Intrathecal siRNA Against GPNMB Attenuates Nociception in a Rat Model of Neuropathic Pain. J Mol Neurosci 2014; 55:533-40. [DOI: 10.1007/s12031-014-0379-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/07/2014] [Indexed: 01/08/2023]
|