1
|
Tsuji S, Brace CS, Yao R, Tanie Y, Tada H, Rensing N, Mizuno S, Almunia J, Kong Y, Nakamura K, Furukawa T, Ogiso N, Toyokuni S, Takahashi S, Wong M, Imai SI, Satoh A. Sleep-wake patterns are altered with age, Prdm13 signaling in the DMH, and diet restriction in mice. Life Sci Alliance 2023; 6:e202301992. [PMID: 37045472 PMCID: PMC10105329 DOI: 10.26508/lsa.202301992] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Old animals display significant alterations in sleep-wake patterns such as increases in sleep fragmentation and sleep propensity. Here, we demonstrated that PR-domain containing protein 13 (Prdm13)+ neurons in the dorsomedial hypothalamus (DMH) are activated during sleep deprivation (SD) in young mice but not in old mice. Chemogenetic inhibition of Prdm13+ neurons in the DMH in young mice promotes increase in sleep attempts during SD, suggesting its involvement in sleep control. Furthermore, DMH-specific Prdm13-knockout (DMH-Prdm13-KO) mice recapitulated age-associated sleep alterations such as sleep fragmentation and increased sleep attempts during SD. These phenotypes were further exacerbated during aging, with increased adiposity and decreased physical activity, resulting in shortened lifespan. Dietary restriction (DR), a well-known anti-aging intervention in diverse organisms, ameliorated age-associated sleep fragmentation and increased sleep attempts during SD, whereas these effects of DR were abrogated in DMH-Prdm13-KO mice. Moreover, overexpression of Prdm13 in the DMH ameliorated increased sleep attempts during SD in old mice. Therefore, maintaining Prdm13 signaling in the DMH might play an important role to control sleep-wake patterns during aging.
Collapse
Affiliation(s)
- Shogo Tsuji
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology (NCGG), Obu, Japan
| | - Cynthia S Brace
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ruiqing Yao
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology (NCGG), Obu, Japan
| | - Yoshitaka Tanie
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology (NCGG), Obu, Japan
| | - Hirobumi Tada
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology (NCGG), Obu, Japan
- Department of Nutrition, Faculty of Wellness, Shigakkan University, Obu, Japan
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nicholas Rensing
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Seiya Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Japan
| | - Julio Almunia
- Laboratory of Experimental Animals, NCGG, Obu, Japan
| | - Yingyi Kong
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhiro Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahisa Furukawa
- Laboratories for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Noboru Ogiso
- Laboratory of Experimental Animals, NCGG, Obu, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Japan
| | - Michael Wong
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shin-Ichiro Imai
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Gerontology, Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Kobe, Japan
| | - Akiko Satoh
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology (NCGG), Obu, Japan
- Department of Integrative Physiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
2
|
Zhang DH, Fan YH, Zhang YQ, Cao H. Neuroendocrine and neuroimmune mechanisms underlying comorbidity of pain and obesity. Life Sci 2023; 322:121669. [PMID: 37023950 DOI: 10.1016/j.lfs.2023.121669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Pain and obesity, as well as their associated impairments, are major health concerns. Understanding the relationship between the two is the focus of a growing body of research. However, early researches attribute increased mechanical stress from excessive weight as the main factor of obesity-related pain, which not only over-simplify the association, but also fail to explain some controversial outcomes arising from clinical investigations. This review focuses on neuroendocrine and neuroimmune modulators importantly involved in both pain and obesity, analyzing nociceptive and anti-nociceptive mechanisms based on neuroendocrine pathways including galanin, ghrelin, leptin and their interactions with other neuropeptides and hormone systems which have been reported to play roles in pain and obesity. Mechanisms of immune activities and metabolic alterations are also discussed, due to their intense interactions with neuroendocrine system and crucial roles in the development and maintenance of inflammatory and neuropathic pain. These findings have implications for health given rising rates of obesity and pain-related diagnoses, by providing novel weight-control and analgesic therapies targeted on specific pathways.
Collapse
Affiliation(s)
- Dao-Han Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ying-Hui Fan
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Hong Cao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Ramírez-Plascencia OD, Saderi N, Cárdenas-Romero S, García-García F, Peña-Escudero C, Flores-Sandoval O, Azuara-Álvarez L, Báez-Ruiz A, Salgado-Delgado R. Leptin and adiponectin regulate the activity of nuclei involved in sleep-wake cycle in male rats. Front Neurosci 2022; 16:907508. [PMID: 35937866 PMCID: PMC9355486 DOI: 10.3389/fnins.2022.907508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemiological and experimental evidence recognize a relationship between sleep-wake cycles and adiposity levels, but the mechanisms that link both are not entirely understood. Adipose tissue secretes adiponectin and leptin hormones, mainly involved as indicators of adiposity levels and recently associated to sleep. To understand how two of the main adipose tissue hormones could influence sleep-wake regulation, we evaluated in male rats, the effect of direct administration of adiponectin or leptin in the ventrolateral preoptic nuclei (VLPO), a major area for sleep promotion. The presence of adiponectin (AdipoR1 and AdipoR2) and leptin receptors in VLPO were confirmed by immunohistochemistry. Adiponectin administration increased wakefulness during the rest phase, reduced delta power, and activated wake-promoting neurons, such as the locus coeruleus (LC), tuberomammillary nucleus (TMN) and hypocretin/orexin neurons (OX) within the lateral hypothalamus (LH) and perifornical area (PeF). Conversely, leptin promoted REM and NREM sleep, including increase of delta power during NREM sleep, and induced c-Fos expression in VLPO and melanin concentrating hormone expressing neurons (MCH). In addition, a reduction in wake-promoting neurons activity was found in the TMN, lateral hypothalamus (LH) and perifornical area (PeF), including in the OX neurons. Moreover, leptin administration reduced tyrosine hydroxylase (TH) immunoreactivity in the LC. Our data suggest that adiponectin and leptin act as hormonal mediators between the status of body energy and the regulation of the sleep-wake cycle.
Collapse
Affiliation(s)
- Oscar Daniel Ramírez-Plascencia
- Departamento de Fisiología Celular, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Nadia Saderi
- Departamento de Fisiología Celular, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Skarleth Cárdenas-Romero
- Departamento de Fisiología Celular, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Fabio García-García
- Departamento de Biomedicina, Instituto de Ciencias de la Salud, Universidad Veracruzana, Veracruz, Mexico
| | - Carolina Peña-Escudero
- Departamento de Biomedicina, Instituto de Ciencias de la Salud, Universidad Veracruzana, Veracruz, Mexico
| | - Omar Flores-Sandoval
- Departamento de Fisiología Celular, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Lucia Azuara-Álvarez
- Departamento de Fisiología Celular, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Adrián Báez-Ruiz
- Departamento de Fisiología Celular, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Roberto Salgado-Delgado
- Departamento de Fisiología Celular, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- *Correspondence: Roberto Salgado-Delgado,
| |
Collapse
|
4
|
Abstract
Facial emotion recognition (FER) is extensively investigated in psychological sciences in healthy individuals and clinical conditions. In this paper, we analyzed those studies in which FER was assessed in the case of obesity or fibromyalgia, in relation to the levels of alexithymia. Crucially, these two conditions frequently co-occur; however, no study has explored FER considering both fibromyalgia and obesity. Studies were identified using the electronic search engine of PubMed. The last research was run on 23 July 2021. Two independent lists were generated for the two clinical conditions. Six records were reviewed about obesity, while three records about fibromyalgia. The evidence relative to FER in obesity was not conclusive, whereas the evidence about an altered FER in fibromyalgia seemed more straightforward. Moreover, the role of alexithymia on FER in these clinical conditions was not extensively investigated. In our discussion, we highlighted those factors that should be carefully addressed in investigating FER in these clinical conditions. Moreover, we underlined methodological criticisms that should be overcome in future research.
Collapse
|
5
|
Anxiogenic Potential of Experimental Sleep Fragmentation Is Duration-Dependent and Mediated via Oxidative Stress State. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2262913. [PMID: 34471462 PMCID: PMC8405322 DOI: 10.1155/2021/2262913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022]
Abstract
Sleep architecture alterations, among which sleep fragmentation is highly prevalent, represent risk factors for a variety of diseases, ranging from cardiovascular to brain disorders, including anxiety. What mediates anxiety occurrence upon sleep fragmentation is still a matter of debate. We hypothesized that the sleep fragmentation effects on anxiety are dependent on its duration and mediated by increased oxidative stress and alterations in the number of parvalbumin (PV+) interneurons in the hippocampus. Sleep was fragmented in rats by the treadmill method during a period of 14 days (SF group). Rats with undisturbed sleep in the treadmill (TC group) and those receiving equal amounts of treadmill belt motion (EC group) served as controls. To assess anxiety, we subjected rats to the open field, elevated plus maze, and light-dark tests on the 0, 7th, and 14th day. Upon the last test, brain structures were sampled for oxidative stress assessment and PV+ interneuron immunohistochemistry. The results of ethological tests of anxiety-linked behavior suggested duration-dependent anxiogenic potential of sleep fragmentation. Rats' anxiety-linked behavior upon sleep fragmentation significantly correlated with oxidative stress. The rats with fragmented sleep (SF) showed significantly higher oxidative stress in the hippocampus, thalamus, and cortex, compared to controls (TC and EC), while the antioxidant enzymes' activity was significantly decreased. No significant differences were observed in hippocampal PV+ interneurons among these groups. Our results showed that duration of sleep fragmentation is a significant determinant of anxiety-linked behavior, and these effects are mediated through oxidative distress in the brain. Herein, it is revealed that the sleep fragmentation-oxidative stress-anxiety axis contributes to our better understanding of pathophysiological processes, occurring due to disrupted sleep patterns.
Collapse
|
6
|
Chin SH, Huang WL, Akter S, Binks M. Obesity and pain: a systematic review. Int J Obes (Lond) 2019; 44:969-979. [PMID: 31848456 DOI: 10.1038/s41366-019-0505-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/04/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND/OBJECTIVES The current systematic review considered research published within the 10 years preceding June 2019, dealing with the topic of obesity and pain. Within the context of the complex biological and behavioral interrelationships among these phenomena, we sought to identify gaps in the literature and to highlight key targets for future transdisciplinary research. The overarching inclusion criteria were that the included studies could directly contribute to our understanding of these complex phenomena. METHODS We searched PubMed/Medline/Cochrane databases dating back 10 years, using the primary search terms "obesity" and "pain," and for a secondary search we used the search terms "pain" and "diet quality." RESULTS Included studies (n = 70) are primarily human; however, some animal studies were included to enhance understanding of related basic biological phenomena and/or where human data were absent or significantly limited. CONCLUSIONS Our overall conclusions highlight (1) the mechanisms of obesity-related pain (i.e., mechanical, behavioral, and physiological) and potential biological and behavioral contributors (e.g., gender, distribution of body fat, and dietary factors), (2) the requirement for accurate and reliable objective measurement, (3) the need to integrate biological and behavioral contributors into comprehensive, well-controlled prospective study designs.
Collapse
Affiliation(s)
- Shao-Hua Chin
- Texas Tech University, 1301 Akron Street, Box 41270, Lubbock, TX, 79409-1270, USA
| | - Wei-Lin Huang
- Texas Tech University, 1301 Akron Street, Box 41270, Lubbock, TX, 79409-1270, USA
| | - Sharmin Akter
- Texas Tech University, 1301 Akron Street, Box 41270, Lubbock, TX, 79409-1270, USA
| | - Martin Binks
- Texas Tech University, 1301 Akron Street, Box 41270, Lubbock, TX, 79409-1270, USA.
| |
Collapse
|
7
|
Yin JH, Chen SY, Lin CC, Sung YF, Chou CH, Chung CH, Chien WC, Yang FC, Tsai CK, Tsai CL, Lin GY, Lee JT. Increased risk of sleep apnoea among primary headache disorders: a nationwide population-based longitudinal study. Postgrad Med J 2019; 95:72-77. [PMID: 30936249 PMCID: PMC6581072 DOI: 10.1136/postgradmedj-2018-136220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/22/2018] [Accepted: 01/06/2019] [Indexed: 01/26/2023]
Abstract
Background Primary headache disorders (PHDs) are associated with sleep problems. It is suggested that headache and sleep disorder share anatomical and physiological characteristics. We hypothesised that patients with PHDs were exposed to a great risk for developing sleep apnoea (SA). Methods In this retrospective longitudinal study, the data obtained from the Longitudinal Health Insurance Database in Taiwan were analysed. The study included 1346 patients with PHDs who were initially diagnosed and 5348 patients who were randomly selected and age/sex matched with the study group as controls. PHDs, SA, comorbidities and other confounding factors were defined based on International Classification of Diseases, Ninth Revision, Clinical Modification. Cox proportional hazards regressions were employed to examine adjusted HRs after adjusting with confounding factors. Results Our data revealed that patients with PHDs had a higher risk (HR 2.17, 95% CI 1.259 to 3.739, p<0.05) to develop SA compared with matched cohorts, whereas patients with migraine exhibited a high risk (HR 2.553, 95% CI 1.460 to 4.395, p<0.01). The results showed that patients with PHDs aged 18–44 exhibited highest risk of developing SA. In addition, males with PHDs exhibited an HR 3.159 (95% CI 1.479 to 6.749, p<0.01) for developing SA, respectively. The impact of PHDs on SA risk was progressively increased by various follow-up time intervals. Conclusion Our results suggest that PHDs are linked to an increased risk for SA with sex-dependent and time-dependent characteristics.
Collapse
Affiliation(s)
- Jiu-Haw Yin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Division of Neurology, Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Shao-Yuan Chen
- Department of Neurology, Cardinal Tien Hospital, New Taipei City, Taiwan.,Department of Hyperbaric Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan.,School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Chun-Chieh Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yueh-Feng Sung
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Hsing Chou
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Hsiang Chung
- Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan.,School of Public Health, National Defense Medical Center, Taipei, Taiwan.,Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wu-Chien Chien
- School of Public Health, National Defense Medical Center, Taipei, Taiwan.,Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Lin Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Guan-Yu Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jiunn-Tay Lee
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan .,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
8
|
Dumaine JE, Ashley NT. Acute sleep fragmentation does not alter pro-inflammatory cytokine gene expression in brain or peripheral tissues of leptin-deficient mice. PeerJ 2018; 6:e4423. [PMID: 29479505 PMCID: PMC5822834 DOI: 10.7717/peerj.4423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/07/2018] [Indexed: 12/18/2022] Open
Abstract
Obesity and sleep fragmentation (SF) are often co-occurring pro-inflammatory conditions in patients with obstructive sleep apnea. Leptin is a peptide hormone produced by adipocytes that has anorexigenic effects upon appetite while regulating immunity. The role of leptin in mediating inflammatory responses to SF is incompletely understood. Male C57BL/6j (lean) and ob/ob mice (leptin-deficient mice exhibiting obese phenotype) were subjected to SF or control conditions for 24 h using an automated SF chamber. Trunk blood and tissue samples from the periphery (liver, spleen, fat, and heart) and brain (hypothalamus, prefrontal cortex, and hippocampus) were collected. Quantitative PCR was used to determine relative cytokine gene expression of pro-inflammatory (IL-1β, TNF-α) and anti-inflammatory (TGF-β1) cytokines. Enzyme-linked immunosorbent assay (ELISA) was used to determine serum corticosterone concentration. Ob/ob mice exhibited elevated cytokine gene expression in liver (TNF-α, TGF-β1), heart (TGF-β1), fat (TNF-α), and brain (hippocampus, hypothalamus, prefrontal cortex: IL-1β, TNF-α) compared with wild-type mice. Conversely, leptin deficiency decreased pro-inflammatory cytokine gene expression in heart (IL-1β, TNF-α). SF significantly increased IL-1β and TNF-α gene expression in fat and TGF-β1 expression in spleen relative to controls, but only in wild-type mice. SF increased basal serum corticosterone regardless of genotype. Taken together, these findings suggest that leptin deficiency affects cytokine gene expression differently in the brain compared to peripheral tissues with minimal interaction from acute SF.
Collapse
Affiliation(s)
- Jennifer E Dumaine
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Noah T Ashley
- Department of Biology, Western Kentucky University, Bowling Green, KY, USA
| |
Collapse
|
9
|
Sragovich S, Merenlender-Wagner A, Gozes I. ADNP Plays a Key Role in Autophagy: From Autism to Schizophrenia and Alzheimer's Disease. Bioessays 2017; 39. [PMID: 28940660 DOI: 10.1002/bies.201700054] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/13/2017] [Indexed: 12/19/2022]
Abstract
Activity-dependent neuroprotective protein (ADNP), discovered in our laboratory in 1999, has been characterized as a master gene vital for mammalian brain formation. ADNP de novo mutations in humans result in a syndromic form of autism-like spectrum disorder (ASD), including cognitive and motor deficits, the ADNP syndrome (Helsmoortel-Van Der Aa). One of the most important cellular processes associated with ADNP is the autophagy pathway, recently discovered by us as a key player in the pathophysiology of schizophrenia. In this regard, given the link between the microtubule and autophagy systems, the ADNP microtubule end binding protein motif, namely, the neuroprotective NAP (NAPVSIPQ), was found to enhance autophagy while protecting microtubules and augmenting ADNP's association with both systems. Thus, linking autophagy and ADNP is proposed as a major target for intervention in brain diseases from autism to Alzheimer's disease (AD) and our findings introduce autophagy as a possible novel target for treating schizophrenia.
Collapse
Affiliation(s)
- Shlomo Sragovich
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors The Elton Laboratory for Neuroendocrinology Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 69978, Israel
| | - Avia Merenlender-Wagner
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors The Elton Laboratory for Neuroendocrinology Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 69978, Israel
| | - Illana Gozes
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors The Elton Laboratory for Neuroendocrinology Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
10
|
Crossland RF, Balasa A, Ramakrishnan R, Mahadevan SK, Fiorotto ML, Van den Veyver IB. Chronic Maternal Low-Protein Diet in Mice Affects Anxiety, Night-Time Energy Expenditure and Sleep Patterns, but Not Circadian Rhythm in Male Offspring. PLoS One 2017; 12:e0170127. [PMID: 28099477 PMCID: PMC5242516 DOI: 10.1371/journal.pone.0170127] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/29/2016] [Indexed: 12/14/2022] Open
Abstract
Offspring of murine dams chronically fed a protein-restricted diet have an increased risk for metabolic and neurobehavioral disorders. Previously we showed that adult offspring, developmentally exposed to a chronic maternal low-protein (MLP) diet, had lower body and hind-leg muscle weights and decreased liver enzyme serum levels. We conducted energy expenditure, neurobehavioral and circadian rhythm assays in male offspring to examine mechanisms for the body-weight phenotype and assess neurodevelopmental implications of MLP exposure. C57BL/6J dams were fed a protein restricted (8%protein, MLP) or a control protein (20% protein, C) diet from four weeks before mating until weaning of offspring. Male offspring were weaned to standard rodent diet (20% protein) and single-housed until 8–12 weeks of age. We examined body composition, food intake, energy expenditure, spontaneous rearing activity and sleep patterns and performed behavioral assays for anxiety (open field activity, elevated plus maze [EPM], light/dark exploration), depression (tail suspension and forced swim test), sociability (three-chamber), repetitive (marble burying), learning and memory (fear conditioning), and circadian behavior (wheel-running activity during light-dark and constant dark cycles). We also measured circadian gene expression in hypothalamus and liver at different Zeitgeber times (ZT). Male offspring from separate MLP exposed dams had significantly greater body fat (P = 0.03), less energy expenditure (P = 0.004), less rearing activity (P = 0.04) and a greater number of night-time rest/sleep bouts (P = 0.03) compared to control. MLP offspring displayed greater anxiety-like behavior in the EPM (P<0.01) but had no learning and memory deficit in fear-conditioning assay (P = 0.02). There was an effect of time on Per1, Per 2 and Clock circadian gene expression in the hypothalamus but not on circadian behavior. Thus, transplacental and early developmental exposure of dams to chronic MLP reduces food intake and energy expenditure, increases anxiety like behavior and disturbs sleep patterns but not circadian rhythm in adult male offspring.
Collapse
Affiliation(s)
- Randy F. Crossland
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, TX, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States of America
| | - Alfred Balasa
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, TX, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States of America
| | - Rajesh Ramakrishnan
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, TX, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States of America
| | - Sangeetha K. Mahadevan
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, TX, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States of America
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Marta L. Fiorotto
- USDA/Agricultural Research Service Children’s Nutrition Research Center, Houston, TX, United States of America
| | - Ignatia B. Van den Veyver
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, TX, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States of America
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
11
|
Abstract
Sleep and its disorders are known to affect the functions of essential organs and systems in the body. However, very little is known about how the blood-brain barrier (BBB) is regulated. A few years ago, we launched a project to determine the impact of sleep fragmentation and chronic sleep restriction on BBB functions, including permeability to fluorescent tracers, tight junction protein expression and distribution, glucose and other solute transporter activities, and mediation of cellular mechanisms. Recent publications and relevant literature allow us to summarize here the sleep-BBB interactions in five sections: (1) the structural basis enabling the BBB to serve as a huge regulatory interface; (2) BBB transport and permeation of substances participating in sleep-wake regulation; (3) the circadian rhythm of BBB function; (4) the effect of experimental sleep disruption maneuvers on BBB activities, including regional heterogeneity, possible threshold effect, and reversibility; and (5) implications of sleep disruption-induced BBB dysfunction in neurodegeneration and CNS autoimmune diseases. After reading the review, the general audience should be convinced that the BBB is an important mediating interface for sleep-wake regulation and a crucial relay station of mind-body crosstalk. The pharmaceutical industry should take into consideration that sleep disruption alters the pharmacokinetics of BBB permeation and CNS drug delivery, being attentive to the chrono timing and activation of co-transporters in subjects with sleep disorders.
Collapse
Affiliation(s)
- Weihong Pan
- 1 Biopotentials Sleep Center, Baton Rouge, LA 70809
| | - Abba J Kastin
- 2 Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| |
Collapse
|
12
|
He Y, Cornelissen-Guillaume GG, He J, Kastin AJ, Harrison LM, Pan W. Circadian rhythm of autophagy proteins in hippocampus is blunted by sleep fragmentation. Chronobiol Int 2016; 33:553-60. [PMID: 27078501 DOI: 10.3109/07420528.2015.1137581] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is essential for normal cellular survival and activity. Circadian rhythms of autophagy have been studied in several peripheral organs but not yet reported in the brain. Here, we measured the circadian rhythm of autophagy-related proteins in mouse hippocampus and tested the effect of sleep fragmentation (SF). Expressions of the autophagy-related proteins microtubule-associated protein 1 light chain 3 (LC3) and beclin were determined by western blotting and immunohistochemistry. Both the hippocampal LC3 signal and the ratio of its lipid-conjugated form LC3-II to its cytosolic form LC3-I showed a 24 h rhythm. The peak was seen at ZT6 (1 pm) and the nadir at ZT16 (1 am). The LC3 immunoreactivity in hippocampal CA1 pyramidal neurons also distributed differently, with more diffuse cytoplasmic appearance at ZT16. Chronic SF had a mild effect to disrupt the 24 h rhythm of LC3 and beclin expression. Interestingly, a greater effect of SF was seen after 24 h of recovery sleep when LC3-II expression was attenuated at both the peak and trough of circadian activities. Overall, the results show for the first time that the hippocampus has a distinct rhythm of autophagy that can be altered by SF.
Collapse
Affiliation(s)
- Yi He
- a Biopotentials Sleep Center , Baton Rouge , LA , USA.,b Beijing Key Laboratory of Mental Disorders, Anding Hospital , Capitol Medical University , Beijing , China
| | | | - Junyun He
- d Blood-Brain Barrier Group , Pennington Biomedical Research Center , Baton Rouge , LA , USA
| | - Abba J Kastin
- d Blood-Brain Barrier Group , Pennington Biomedical Research Center , Baton Rouge , LA , USA
| | - Laura M Harrison
- d Blood-Brain Barrier Group , Pennington Biomedical Research Center , Baton Rouge , LA , USA
| | - Weihong Pan
- a Biopotentials Sleep Center , Baton Rouge , LA , USA
| |
Collapse
|
13
|
Pava MJ, Makriyannis A, Lovinger DM. Endocannabinoid Signaling Regulates Sleep Stability. PLoS One 2016; 11:e0152473. [PMID: 27031992 PMCID: PMC4816426 DOI: 10.1371/journal.pone.0152473] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 03/15/2016] [Indexed: 11/18/2022] Open
Abstract
The hypnogenic properties of cannabis have been recognized for centuries, but endogenous cannabinoid (endocannabinoid) regulation of vigilance states is poorly characterized. We report findings from a series of experiments in mice measuring sleep with polysomnography after various systemic pharmacological manipulations of the endocannabinoid system. Rapid, unbiased scoring of vigilance states was achieved using an automated algorithm that we devised and validated. Increasing endocannabinoid tone with a selective inhibitor of monoacyglycerol lipase (JZL184) or fatty acid amide hydrolase (AM3506) produced a transient increase in non-rapid eye movement (NREM) sleep due to an augmentation of the length of NREM bouts (NREM stability). Similarly, direct activation of type 1 cannabinoid (CB1) receptors with CP47,497 increased NREM stability, but both CP47,497 and JZL184 had a secondary effect that reduced NREM sleep time and stability. This secondary response to these drugs was similar to the early effect of CB1 blockade with the antagonist/inverse agonist AM281, which fragmented NREM sleep. The magnitude of the effects produced by JZL184 and AM281 were dependent on the time of day this drug was administered. While activation of CB1 resulted in only a slight reduction in gamma power, CB1 blockade had dramatic effects on broadband power in the EEG, particularly at low frequencies. However, CB1 blockade did not significantly reduce the rebound in NREM sleep following total sleep deprivation. These results support the hypothesis that endocannabinoid signaling through CB1 is necessary for NREM stability but it is not necessary for sleep homeostasis.
Collapse
MESH Headings
- Algorithms
- Amidohydrolases/antagonists & inhibitors
- Amidohydrolases/metabolism
- Animals
- Benzodioxoles/pharmacology
- Drug Inverse Agonism
- Electrodes, Implanted
- Electroencephalography
- Male
- Mice
- Mice, Inbred C57BL
- Monoacylglycerol Lipases/antagonists & inhibitors
- Monoacylglycerol Lipases/metabolism
- Morpholines/pharmacology
- Piperidines/pharmacology
- Pyrazoles/pharmacology
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Signal Transduction/drug effects
- Sleep/drug effects
- Sleep/physiology
- Sleep Deprivation/physiopathology
- Sleep, REM/drug effects
- Sleep, REM/physiology
Collapse
Affiliation(s)
- Matthew J. Pava
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, Division of Intramural Biological and Clinical Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States of America
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States of America
| | - David M. Lovinger
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, Division of Intramural Biological and Clinical Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States of America
| |
Collapse
|
14
|
Abstract
Obesity and pain present serious public health concerns in our society. Evidence strongly suggests that comorbid obesity is common in chronic pain conditions, and pain complaints are common in obese individuals. In this paper, we review the association between obesity and pain in the general population as well as chronic pain patients. We also review the relationship between obesity and pain response to noxious stimulation in animals and humans. Based upon the existing research, we present several potential mechanisms that may link the two phenomena, including mechanical/structural factors, chemical mediators, depression, sleep, and lifestyle. We discuss the clinical implications of obesity and pain, focusing on the effect of weight loss, both surgical and noninvasive, on pain. The literature suggests that the two conditions are significant comorbidities, adversely impacting each other. The nature of the relationship however is not likely to be direct, but many interacting factors appear to contribute. Weight loss for obese pain patients appears to be an important aspect of overall pain rehabilitation, although more efforts are needed to determine strategies to maintain long-term benefit.
Collapse
Affiliation(s)
- Akiko Okifuji
- Pain Research and Management Center, Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Bradford D Hare
- Pain Research and Management Center, Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
15
|
He J, Hsuchou H, He Y, Kastin AJ, Mishra PK, Fang J, Pan W. Leukocyte infiltration across the blood-spinal cord barrier is modulated by sleep fragmentation in mice with experimental autoimmune encephalomyelitis. Fluids Barriers CNS 2014; 11:27. [PMID: 25601899 PMCID: PMC4298076 DOI: 10.1186/2045-8118-11-27] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/11/2014] [Indexed: 11/23/2022] Open
Abstract
Background We have recently shown that mice with experimental autoimmune encephalomyelitis (EAE) have increased sleep fragmentation (SF) and reduced sleep efficiency, and that the extent of SF correlates with the severity of disease. It is not yet clear whether and how sleep promotes recovery from autoimmune attacks. We hypothesized that SF promotes leukocyte infiltration across the blood-spinal cord barrier, impairs immune regulation, and thus worsens EAE. Methods Three groups of C57 mice were studied: Resting EAE; SF EAE with the mice subjected to the SF maneuver 12 h /day during zeitgeber time (ZT) 0–12 h; and naïve controls with neither EAE nor SF. Besides monitoring of the incidence and severity of EAE, the immune profiles of leukocytes in the spinal cord as well as those in the spleen were determined. Results When analyzed 16 days after EAE induction, at which time the SF was terminated, the SF group had a greater number of CD4+ T cells and a higher percent of CD4+ cells among all leukocytes in the spinal cord than the resting EAE group. When allowed to recover to 28 days after EAE induction, the SF mice had lower EAE scores than the resting EAE group. EAE induced splenomegaly and an increase of Gr1+CD11b+ myeloid-derived suppressor cells in the splenocytes. However, SF treatment had no additional effect on either peripheral splenocytes or granulocytes that reached the spinal cord. Conclusion The SF maneuver facilitated the migration of encephalopathic lymphocytes into the spinal cord. Paradoxically, these mice had a better EAE score after cessation of SF compared with mice without SF.
Collapse
Affiliation(s)
- Junyun He
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, LA 70808 USA
| | - Hung Hsuchou
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, LA 70808 USA
| | - Yi He
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, LA 70808 USA
| | - Abba J Kastin
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, LA 70808 USA
| | - Pramod K Mishra
- Department of Biology, University of Texas, San Antonio, TX 78249 USA
| | - Jidong Fang
- Department of Psychiatry, Pennsylvania State University, Hershey, PA 17033 USA
| | - Weihong Pan
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, LA 70808 USA ; BioPotentials Sleep Center, 8032 Summa Ave, Ste A, Baton Rouge, LA 70809 USA
| |
Collapse
|