1
|
Kobayashi T, Yamazaki K, Shinada J, Mizunuma M, Furukawa K, Chuman Y. Identification of Inhibitors of the Disease-Associated Protein Phosphatase Scp1 Using Antibody Mimetic Molecules. Int J Mol Sci 2024; 25:3737. [PMID: 38612548 PMCID: PMC11011526 DOI: 10.3390/ijms25073737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Protein phosphorylation is a prevalent translational modification, and its dysregulation has been implicated in various diseases, including cancer. Despite its significance, there is a lack of specific inhibitors of the FCP/SCP-type Ser/Thr protein phosphatase Scp1, characterized by high specificity and affinity. In this study, we focused on adnectin, an antibody-mimetic protein, aiming to identify Scp1-specific binding molecules with a broad binding surface that target the substrate-recognition site of Scp1. Biopanning of Scp1 was performed using an adnectin-presenting phage library with a randomized FG loop. We succeeded in identifying FG-1Adn, which showed high affinity and specificity for Scp1. Ala scanning analysis of the Scp1-binding sequence in relation to the FG-1 peptide revealed that hydrophobic residues, including aromatic amino acids, play important roles in Scp1 recognition. Furthermore, FG-1Adn was found to co-localize with Scp1 in cells, especially on the plasma membrane. In addition, Western blotting analysis showed that FG-1Adn increased the phosphorylation level of the target protein of Scp1 in cells, indicating that FG-1Adn can inhibit the function of Scp1. These results suggest that FG-1Adn can be used as a specific inhibitor of Scp1.
Collapse
Affiliation(s)
| | | | | | | | | | - Yoshiro Chuman
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan; (T.K.); (K.Y.); (J.S.); (M.M.); (K.F.)
| |
Collapse
|
2
|
Yamato E. Aberrant Expression of Rest4 Gene in Low-Functioning Pancreatic Beta Cell Line. Horm Metab Res 2023. [PMID: 36758614 DOI: 10.1055/a-2031-9803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Repressor element-1 silencing transcription factor (Rest) is not expressed in pancreatic beta cells and neuronal cells. However, Rest4, a truncated form of Rest, is expressed in high passaged MIN6 (HP-MIN6) cells, a pancreatic beta cell line that lost glucose-responsive insulin secretion. Rest4 is also expressed in injured MIN6 cells and isolated islets. Herein, the forced expression of dominant negative form of Rest in HP-MIN6 cells was subjected to microarray analysis of gene expression to investigate the role of Rest4 gene in MIN6 cells. Furthermore, the forced expression of Rest4 gene in MIN6 cells was subjected to microarray analysis of gene expression to investigate the function of Rest4 in normal insulin-producing cells. The results showed that Rest4 inhibits cell proliferation and DNA and RNA metabolism and stimulates secretory mechanisms and nervous system gene expression. These findings suggest that Rest4 may act defensively against cellular injury in pancreatic beta cells.
Collapse
Affiliation(s)
- Eiji Yamato
- Nutrition and Food Science, Mukogawa Woman's University, Nishinomiya, Japan
| |
Collapse
|
3
|
Antonova DV, Gnatenko DA, Kotova ES, Pleshkan VV, Kuzmich AI, Didych DA, Sverdlov ED, Alekseenko IV. Cell-specific expression of the FAP gene is regulated by enhancer elements. Front Mol Biosci 2023; 10:1111511. [PMID: 36825204 PMCID: PMC9941708 DOI: 10.3389/fmolb.2023.1111511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
Fibroblast activation protein (FAP) is an integral membrane serine protease that acts as both dipeptidyl peptidase and collagenase. In recent years, FAP has attracted considerable attention due to its specific upregulation in multiple types of tumor cell populations, including cancer cells in various cancer types, making FAP a potential target for therapy. However, relatively few papers pay attention to the mechanisms driving the cell-specific expression of the FAP gene. We found no correlation between the activities of the two FAP promoter variants (short and long) and the endogenous FAP mRNA expression level in several cell lines with different FAP expression levels. This suggested that other mechanisms may be responsible for specific transcriptional regulation of the FAP gene. We analyzed the distribution of known epigenetic and structural chromatin marks in FAP-positive and FAP-negative cell lines and identified two potential enhancer-like elements (E1 and E2) in the FAP gene locus. We confirmed the specific enrichment of H3K27ac in the putative enhancer regions in FAP-expressing cells. Both the elements exhibited enhancer activity independently of each other in the functional test by increasing the activity of the FAP promoter variants to a greater extent in FAP-expressing cell lines than in FAP-negative cell lines. The transcription factors AP-1, CEBPB, and STAT3 may be involved in FAP activation in the tumors. We hypothesized the existence of a positive feedback loop between FAP and STAT3, which may have implications for developing new approaches in cancer therapy.
Collapse
Affiliation(s)
- Dina V. Antonova
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Department of Genomics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry A. Gnatenko
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Department of Genomics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russia
| | - Elena S. Kotova
- Laboratory of Human Molecular Genetics, FSBI Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Victor V. Pleshkan
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Department of Genomics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russia,Gene Oncotherapy Sector, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Alexey I. Kuzmich
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Department of Genomics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russia,Gene Oncotherapy Sector, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Dmitry A. Didych
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Department of Genomics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russia,*Correspondence: Dmitry A. Didych,
| | - Eugene D. Sverdlov
- Kurchatov Center for Genome Research, National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Irina V. Alekseenko
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Department of Genomics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russia,Gene Oncotherapy Sector, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow, Russia,Laboratory of Epigenetics, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov, Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
4
|
Xue WJ, He CF, Zhou RY, Xu XD, Xiang LX, Wang JT, Wang XR, Zhou HG, Guo JC. High glucose and palmitic acid induces neuronal senescence by NRSF/REST elevation and the subsequent mTOR-related autophagy suppression. Mol Brain 2022; 15:61. [PMID: 35850767 PMCID: PMC9290252 DOI: 10.1186/s13041-022-00947-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
Cell senescence is a basic aging mechanism. Previous studies have found that the cellular senescence in adipose tissue and other tissues, such as the pancreas, muscle and liver, is associated with the pathogenesis and progression of type 2 diabetes; however, strong evidence of whether diabetes directly causes neuronal senescence in the brain is still lacking. In this study, we constructed a high glucose and palmitic acid (HGP) environment on PC12 neuronal cells and primary mouse cortical neurons to simulate diabetes. Our results showed that after HGP exposure, neurons exhibited obvious senescence-like phenotypes, including increased NRSF/REST level, mTOR activation and cell autophagy suppression. Downregulation of NRSF/REST could remarkably alleviate p16, p21 and γH2A.X upregulations induced by HGP treatment, and enhance mTOR-autophagy of neurons. Our results suggested that the diabetic condition could directly induce neuronal senescence, which is mediated by the upregulation of NRSF/REST and subsequent reduction of mTOR-autophagy.
Collapse
Affiliation(s)
- Wen-Jiao Xue
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Cheng-Feng He
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ren-Yuan Zhou
- Department of Urology, Jing'an District Central Hospital, Fudan University, Shanghai, China
| | - Xiao-Die Xu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lv-Xuan Xiang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jian-Tao Wang
- Department of Geriatric Neurology of Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Xin-Ru Wang
- Department of Geriatric Neurology of Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Hou-Guang Zhou
- Department of Geriatric Neurology of Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China.
| | - Jing-Chun Guo
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Su XJ, Shen BD, Wang K, Song QX, Yang X, Wu DS, Shen HX, Zhu C. Roles of the Neuron-Restrictive Silencer Factor in the Pathophysiological Process of the Central Nervous System. Front Cell Dev Biol 2022; 10:834620. [PMID: 35300407 PMCID: PMC8921553 DOI: 10.3389/fcell.2022.834620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 11/29/2022] Open
Abstract
The neuron-restrictive silencer factor (NRSF), also known as repressor element 1 (RE-1) silencing transcription factor (REST) or X2 box repressor (XBR), is a zinc finger transcription factor that is widely expressed in neuronal and non-neuronal cells. It is a master regulator of the nervous system, and the function of NRSF is the basis of neuronal differentiation, diversity, plasticity, and survival. NRSF can bind to the neuron-restrictive silencer element (NRSE), recruit some co-repressors, and then inhibit transcription of NRSE downstream genes through epigenetic mechanisms. In neurogenesis, NRSF functions not only as a transcriptional silencer that can mediate the transcriptional inhibition of neuron-specific genes in non-neuronal cells and thus give neuron cells specificity, but also as a transcriptional activator to induce neuronal differentiation. Many studies have confirmed the association between NRSF and brain disorders, such as brain injury and neurodegenerative diseases. Overexpression, underexpression, or mutation may lead to neurological disorders. In tumorigenesis, NRSF functions as an oncogene in neuronal tumors, such as neuroblastomas, medulloblastomas, and pheochromocytomas, stimulating their proliferation, which results in poor prognosis. Additionally, NRSF-mediated selective targets gene repression plays an important role in the development and maintenance of neuropathic pain caused by nerve injury, cancer, and diabetes. At present, several compounds that target NRSF or its co-repressors, such as REST-VP16 and X5050, have been shown to be clinically effective against many brain diseases, such as seizures, implying that NRSF and its co-repressors may be potential and promising therapeutic targets for neural disorders. In the present review, we introduced the biological characteristics of NRSF; reviewed the progress to date in understanding the roles of NRSF in the pathophysiological processes of the nervous system, such as neurogenesis, brain disorders, neural tumorigenesis, and neuropathic pain; and suggested new therapeutic approaches to such brain diseases.
Collapse
Affiliation(s)
- Xin-Jin Su
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bei-Duo Shen
- Department of Spine Surgery, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Kun Wang
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qing-Xin Song
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xue Yang
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - De-Sheng Wu
- Department of Spine Surgery, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Hong-Xing Shen
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Zhu
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Medellin B, Yang W, Konduri S, Dong J, Irani S, Wu H, Matthews WL, Zhang ZY, Siegel D, Zhang Y. Targeted Covalent Inhibition of Small CTD Phosphatase 1 to Promote the Degradation of the REST Transcription Factor in Human Cells. J Med Chem 2022; 65:507-519. [PMID: 34931516 PMCID: PMC8826594 DOI: 10.1021/acs.jmedchem.1c01655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The repressor element-1 silencing transcription factor (REST) represses neuronal gene expression, whose dysregulation is implicated in brain tumors and neurological diseases. A high level of REST protein drives the tumor growth in some glioblastoma cells. While transcription factors like REST are challenging targets for small-molecule inhibitors, the inactivation of a regulatory protein, small CTD phosphatase 1 (SCP1), promotes REST degradation and reduces transcriptional activity. This study rationally designed a series of α,β-unsaturated sulfones to serve as potent and selective covalent inhibitors against SCP1. The compounds inactivate SCP1 via covalent modification of Cys181 located at the active site entrance. Cellular studies showed that the inhibitors inactivate SCP1 in a time- and dose-dependent manner with an EC50 ∼1.5 μM, reducing REST protein levels and activating specific REST-suppressed genes. These compounds represent a promising line of small-molecule inhibitors as a novel lead for glioblastoma whose growth is driven by REST transcription activity.
Collapse
Affiliation(s)
| | | | - Srihari Konduri
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Jiajun Dong
- Department of Medicinal Chemistry and Molecular Pharmacology and Department of Chemistry, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Seema Irani
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Haoyi Wu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Wendy L. Matthews
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology and Department of Chemistry, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dionico Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Yan Zhang
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Chao CC, Shen PW, Tzeng TY, Kung HJ, Tsai TF, Wong YH. Human iPSC-Derived Neurons as A Platform for Deciphering the Mechanisms behind Brain Aging. Biomedicines 2021; 9:1635. [PMID: 34829864 PMCID: PMC8615703 DOI: 10.3390/biomedicines9111635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
With an increased life expectancy among humans, aging has recently emerged as a major focus in biomedical research. The lack of in vitro aging models-especially for neurological disorders, where access to human brain tissues is limited-has hampered the progress in studies on human brain aging and various age-associated neurodegenerative diseases at the cellular and molecular level. In this review, we provide an overview of age-related changes in the transcriptome, in signaling pathways, and in relation to epigenetic factors that occur in senescent neurons. Moreover, we explore the current cell models used to study neuronal aging in vitro, including immortalized cell lines, primary neuronal culture, neurons directly converted from fibroblasts (Fib-iNs), and iPSC-derived neurons (iPSC-iNs); we also discuss the advantages and limitations of these models. In addition, the key phenotypes associated with cellular senescence that have been observed by these models are compared. Finally, we focus on the potential of combining human iPSC-iNs with genome editing technology in order to further our understanding of brain aging and neurodegenerative diseases, and discuss the future directions and challenges in the field.
Collapse
Affiliation(s)
- Chuan-Chuan Chao
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-C.C.); (T.-F.T.)
- Department of Neurology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Po-Wen Shen
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112, Taiwan;
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Tsai-Yu Tzeng
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan;
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, CA 95817, USA
| | - Ting-Fen Tsai
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-C.C.); (T.-F.T.)
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan;
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Hui Wong
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
8
|
Transthyretin as a Biomarker to Predict and Monitor Major Depressive Disorder Identified by Whole-Genome Transcriptomic Analysis in Mouse Models. Biomedicines 2021; 9:biomedicines9091124. [PMID: 34572310 PMCID: PMC8469805 DOI: 10.3390/biomedicines9091124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Accumulations of stressful life events result in the onset of major depressive disorder (MDD). Comprehensive genomic analysis is required to elucidate pathophysiological changes and identify applicable biomarkers. Methods: Transcriptomic analysis was performed on different brain parts of a chronic mild stress (CMS)-induced MDD mouse model followed by systemic analysis. QPCR and ELISA were utilized for validation in mice and patients. Results: The highest numbers of genes with significant changes induced by CMS were 505 in the amygdala followed by 272 in the hippocampus (twofold changes; FDR, p < 0.05). Enrichment analysis indicated that the core-enriched genes in CMS-treated mice were positively enriched for IFN-γ response genes in the amygdala, and hedgehog signaling in the hippocampus. Transthyretin (TTR) was severely reduced in CMS-treated mice. In patients with diagnosed MDD, serum concentrations of TTR were reduced by 48.7% compared to controls (p = 0.0102). Paired samples from patients with MDD demonstrated a further 66.3% increase in TTR at remission compared to the acute phase (p = 0.0339). Conclusions: This study provides comprehensive information on molecular networks related to MDD as a basis for further investigation and identifies TTR for MDD monitoring and management. A clinical trial with bigger patient cohort should be conducted to validate this translational study.
Collapse
|
9
|
Mampay M, Velasco-Estevez M, Rolle SO, Chaney AM, Boutin H, Dev KK, Moeendarbary E, Sheridan GK. Spatiotemporal immunolocalisation of REST in the brain of healthy ageing and Alzheimer's disease rats. FEBS Open Bio 2020; 11:146-163. [PMID: 33185010 PMCID: PMC7780110 DOI: 10.1002/2211-5463.13036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/25/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022] Open
Abstract
In the brain, REST (Repressor Element‐1 Silencing Transcription factor) is a key regulator of neuron cell‐specific gene expression. Nuclear translocation of neuronal REST has been shown to be neuroprotective in a healthy ageing context. In contrast, inability to upregulate nuclear REST is thought to leave ageing neurons vulnerable to neurodegenerative stimuli, such as Alzheimer’s disease (AD) pathology. Hippocampal and cortical neurons are known to be particularly susceptible to AD‐associated neurodegeneration. However, REST expression has not been extensively characterised in the healthy ageing brain. Here, we examined the spatiotemporal immunolocalisation of REST in the brains of healthy ageing wild‐type Fischer‐344 and transgenic Alzheimer’s disease rats (TgF344‐AD). Nuclear expression of REST increased from 6 months to 18 months of age in the hippocampus, frontal cortex and subiculum of wild‐type rats, but not in TgF344‐AD rats. No changes in REST were measured in more posterior cortical regions or in the thalamus. Interestingly, levels of the presynaptic marker synaptophysin, a known gene target of REST, were lower in CA1 hippocampal neurons of 18‐month TgF344‐AD rats compared to 18‐month wild‐types, suggesting that elevated nuclear REST may protect against synapse loss in the CA1 of 18‐month wild‐type rats. High REST expression in ageing wild‐type rats did not, however, protect against axonal loss nor against astroglial reactivity in the hippocampus. Taken together, our data confirm that changes in nuclear REST expression are context‐, age‐ and brain region‐specific. Moreover, key brain structures involved in learning and memory display elevated REST expression in healthy ageing wild‐type rats but not TgF344‐AD rats.
Collapse
Affiliation(s)
- Myrthe Mampay
- School of Pharmacy and Biomolecular Sciences, University of Brighton, UK
| | - María Velasco-Estevez
- Drug Development, Department of Physiology, School of Medicine, Trinity College Dublin, Ireland
| | - Sara O Rolle
- The Sainsbury Welcome Centre for Neural Circuits and Behaviour, University College London, UK
| | - Aisling M Chaney
- Faculty of Biology, Medicine and Health, School of Health Sciences, Division of Informatics, Imaging and Data Sciences, University of Manchester, UK
| | - Hervé Boutin
- Wolfson Molecular Imaging Centre, University of Manchester, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK
| | - Kumlesh K Dev
- Drug Development, Department of Physiology, School of Medicine, Trinity College Dublin, Ireland
| | | | - Graham K Sheridan
- School of Life Sciences, Queens Medical Centre, University of Nottingham, UK
| |
Collapse
|
10
|
Huang D, Li Q, Wang Y, Liu Z, Wang Z, Li H, Wang J, Su J, Ma Y, Yu M, Fei J, Huang F. Brain-specific NRSF deficiency aggravates dopaminergic neurodegeneration and impairs neurogenesis in the MPTP mouse model of Parkinson's disease. Aging (Albany NY) 2020; 11:3280-3297. [PMID: 31147527 PMCID: PMC6555471 DOI: 10.18632/aging.101979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/12/2019] [Indexed: 12/13/2022]
Abstract
Degeneration of the dopaminergic neurons in the substantia nigra and the resultant dopamine depletion from the striatum are the hallmarks of Parkinson's disease (PD) and are responsible for the disease's cardinal motor symptoms. The transcriptional repressor Neuron-Restrictive Silencer Factor (NRSF), also known as RE1-Silencing Transcription Factor (REST), was originally identified as a negative regulator of neuron-specific genes in non-neuronal cells. Our previous study showed that mice deficient in neuronal NRSF/REST expression were more vulnerable to the noxious effects of the dopaminergic neurotoxin MPTP. Here, we found that brain-specific deletion of NRSF/REST led to more severe damages to the nigrostriatal pathway and long-lasting behavioral impairments in mice challenged with MPTP. Moreover, compared to wild-type controls, these mice showed increased neurogenesis shortly after MPTP exposure, but reduced neurogenesis later on. These results suggest that NRSF/REST acts as a negative modulator of neurogenesis and a pro-survival factor of neural stem cells under both normal conditions and during the course of PD.
Collapse
Affiliation(s)
- Dongping Huang
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Qing Li
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yi Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhaolin Liu
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zishan Wang
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Heng Li
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Jinghui Wang
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Jing Su
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yuanyuan Ma
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Mei Yu
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai 200092, China.,Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, Inc., Shanghai 201203, China
| | - Fang Huang
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Gene expression changes associated with trajectories of psychopathology in a longitudinal cohort of children and adolescents. Transl Psychiatry 2020; 10:99. [PMID: 32184383 PMCID: PMC7078305 DOI: 10.1038/s41398-020-0772-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 12/02/2022] Open
Abstract
We aimed to identify blood gene expression patterns associated to psychopathological trajectories retrieved from a large community, focusing on the emergence and remission of general psychiatric symptoms. Hundred and three individuals from the Brazilian High-Risk Cohort Study (BHRCS) for mental disorders were classified in four groups according to Child Behavior Checklist (CBCL) total score at the baseline (w0) and after 3 years (w1): low-high (L-H) (N = 27), high-low (H-L) (N = 12), high-high (H-H) (N = 34) and low-low (L-L) groups (N = 30). Blood gene expression profile was measured using Illumina HT-12 Beadchips, and paired analyses comparing w0 and w1 were performed for each group. Results: 98 transcripts were differentially expressed comparing w0 and w1 in the L-H, 33 in the H-L, 177 in the H-H and 273 in the L-L. Of these, 66 transcripts were differentially expressed exclusively in the L-H; and 6 only in the H-L. Cross-Lagged Panel Models analyses revealed that RPRD2 gene expression at w1 might be influenced by the CBCL score at w0. Moreover, COX5B, SEC62, and NDUFA2 were validated with another technique and were also differentially regulated in postmortem brain of subjects with mental disorders, indicating that they might be important not only to specific disorders, but also to general psychopathology and symptoms trajectories. Whereas genes related to metabolic pathways seem to be associated with the emergence of psychiatric symptoms, mitochondrial inner membrane genes might be important over the course of normal development. These results suggest that changes in gene expression can be detected in blood in different psychopathological trajectories.
Collapse
|
12
|
Zhu NW, Yin XL, Lin R, Fan XL, Chen SJ, Zhu YM, Zhao XZ. Possible mechanisms of lycopene amelioration of learning and memory impairment in rats with vascular dementia. Neural Regen Res 2020; 15:332-341. [PMID: 31552907 PMCID: PMC6905346 DOI: 10.4103/1673-5374.265565] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress is involved in the pathogenesis of vascular dementia. Studies have shown that lycopene can significantly inhibit oxidative stress; therefore, we hypothesized that lycopene can reduce the level of oxidative stress in vascular dementia. A vascular dementia model was established by permanent bilateral ligation of common carotid arteries. The dosage groups were treated with lycopene (50, 100 and 200 mg/kg) every other day for 2 months. Rats without bilateral carotid artery ligation were prepared as a sham group. To test the ability of learning and memory, the Morris water maze was used to detect the average escape latency and the change of search strategy. Hematoxylin-eosin staining was used to observe changes of hippocampal neurons. The levels of oxidative stress factors, superoxide dismutase and malondialdehyde, were measured in the hippocampus by biochemical detection. The levels of reactive oxygen species in the hippocampus were observed by dihydroethidium staining. The distribution and expression of oxidative stress related protein, neuron-restrictive silencer factor, in hippocampal neurons were detected by immunofluorescence histochemistry and western blot assays. After 2 months of drug administration, (1) in the model group, the average escape latency was longer than that of the sham group, and the proportion of straight and tend tactics was lower than that of the sham group, and the hippocampal neurons were irregularly arranged and the cytoplasm was hyperchromatic. (2) The levels of reactive oxygen species and malondialdehyde in the hippocampus of the model group rats were increased, and the activity of superoxide dismutase was decreased. (3) Lycopene (50, 100 and 200 mg/kg) intervention improved the above changes, and the lycopene 100 mg/kg group showed the most significant improvement effect. (4) Neuron-restrictive silencer factor expression in the hippocampus was lower in the sham group and the lycopene 100 mg/kg group than in the model group. (5) The above data indicate that lycopene 100 mg/kg could protect against the learning-memory ability impairment of vascular dementia rats. The protective mechanism was achieved by inhibiting oxidative stress in the hippocampus. The experiment was approved by the Animal Ethics Committee of Fujian Medical University, China (approval No. 2014-025) in June 2014.
Collapse
Affiliation(s)
- Ning-Wei Zhu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province; Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, Zhejiang Province, China
| | - Xiao-Lan Yin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Ren Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xiao-Lan Fan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Shi-Jie Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yuan-Ming Zhu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xiao-Zhen Zhao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
13
|
Garcia-Manteiga JM, D’Alessandro R, Meldolesi J. News about the Role of the Transcription Factor REST in Neurons: From Physiology to Pathology. Int J Mol Sci 2019; 21:E235. [PMID: 31905747 PMCID: PMC6982158 DOI: 10.3390/ijms21010235] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
RE-1 silencing transcription factor (REST) (known also as NRSF) is a well-known transcription repressor whose strong decrease induces the distinction of neurons with respect to the other cells. Such distinction depends on the marked increased/decreased expression of specific genes, accompanied by parallel changes of the corresponding proteins. Many properties of REST had been identified in the past. Here we report those identified during the last 5 years. Among physiological discoveries are hundreds of genes governed directly/indirectly by REST, the mechanisms of its neuron/fibroblast conversions, and the cooperations with numerous distinct factors induced at the epigenetic level and essential for REST specific functions. New effects induced in neurons during brain diseases depend on the localization of REST, in the nucleus, where functions and toxicity occur, and in the cytoplasm. The effects of REST, including cell aggression or protection, are variable in neurodegenerative diseases in view of the distinct mechanisms of their pathology. Moreover, cooperations are among the mechanisms that govern the severity of brain cancers, glioblastomas, and medulloblastomas. Interestingly, the role in cancers is relevant also for therapeutic perspectives affecting the REST cooperations. In conclusion, part of the new REST knowledge in physiology and pathology appears promising for future developments in research and brain diseases.
Collapse
Affiliation(s)
| | | | - Jacopo Meldolesi
- IRCCS San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy;
- Department of Neuroscience, San Raffaele University, via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
14
|
Zhang F, Gigout S, Liu Y, Wang Y, Hao H, Buckley NJ, Zhang H, Wood IC, Gamper N. Repressor element 1-silencing transcription factor drives the development of chronic pain states. Pain 2019; 160:2398-2408. [PMID: 31206463 PMCID: PMC6756259 DOI: 10.1097/j.pain.0000000000001633] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 11/25/2022]
Abstract
Chronic pain is an unmet clinical problem with vast individual, societal, and economic impact. Pathologic activity of the peripheral somatosensory afferents is one of the major drivers of chronic pain. This overexcitable state of somatosensory neurons is, in part, produced by the dysregulation of genes controlling neuronal excitability. Despite intense research, a unifying theory behind neuropathic remodelling is lacking. Here, we show that transcriptional suppressor, repressor element 1-silencing transcription factor (REST; neuron-restrictive silencing factor, NRSF), is necessary and sufficient for the development of hyperalgesic state after chronic nerve injury or inflammation. Viral overexpression of REST in mouse dorsal root ganglion (DRG) induced prominent mechanical and thermal hyperalgesia in vivo. Sensory neuron-specific, inducible Rest knockout prevented the development of such hyperalgesic state in 3 different chronic pain models. Genetic deletion of Rest reverted injury-induced hyperalgesia. Moreover, viral overexpression of REST in the same neurons in which its gene has been genetically deleted restored neuropathic hyperalgesia. Finally, sensory neuron specific Rest knockout prevented injury-induced downregulation of REST target genes in DRG neurons. This work identified REST as a major regulator of peripheral somatosensory neuron remodelling leading to chronic pain. The findings might help to develop a novel therapeutic approache to combat chronic pain.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei Province, China
| | - Sylvain Gigout
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Yu Liu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei Province, China
| | - Yiying Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei Province, China
| | - Han Hao
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei Province, China
| | - Noel J. Buckley
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei Province, China
| | - Ian C. Wood
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nikita Gamper
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei Province, China
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
15
|
Vanni S, Colini Baldeschi A, Zattoni M, Legname G. Brain aging: A Ianus-faced player between health and neurodegeneration. J Neurosci Res 2019; 98:299-311. [PMID: 30632202 DOI: 10.1002/jnr.24379] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/29/2022]
Abstract
Neurodegenerative diseases are incurable debilitating disorders characterized by structural and functional neuronal loss. Approximately 30 million people are affected worldwide, and this number is predicted to reach more than 150 million by 2050. Neurodegenerative disorders include Alzheimer's, Parkinson's, and prion diseases among others. These disorders are characterized by the accumulation of aggregating proteins forming amyloid, responsible for the disease-associated pathological lesions. The aggregation of amyloidogenic proteins can result either in gaining of toxic functions, derived from the damage provoked by these deposits in affected tissue, or in a loss of functions, due to the sequestration and the consequent inability of the aggregating protein to ensure its physiological role. While it is widely accepted that aging represents the main risk factor for neurodegeneration, there is still no clear cut-off line between the two conditions. Indeed, many of the pathways that are commonly altered in neurodegeneration-misfolded protein accumulation, chronic inflammation, mitochondrial dysfunction, impaired iron homeostasis, epigenetic modifications-have been often correlated also with healthy aging. This overlap could be explained by the fact that the continuous accumulation of cellular damages, together with a progressive decline in metabolic efficiency during aging, makes the neurons more vulnerable to toxic injuries. When a given threshold is exceeded, all these alterations might give rise to pathological phenotypes that ultimately lead to neurodegeneration.
Collapse
Affiliation(s)
- Silvia Vanni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Arianna Colini Baldeschi
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Marco Zattoni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| |
Collapse
|
16
|
Epigenetic regulator UHRF1 inactivates REST and growth suppressor gene expression via DNA methylation to promote axon regeneration. Proc Natl Acad Sci U S A 2018; 115:E12417-E12426. [PMID: 30530687 DOI: 10.1073/pnas.1812518115] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Injured peripheral sensory neurons switch to a regenerative state after axon injury, which requires transcriptional and epigenetic changes. However, the roles and mechanisms of gene inactivation after injury are poorly understood. Here, we show that DNA methylation, which generally leads to gene silencing, is required for robust axon regeneration after peripheral nerve lesion. Ubiquitin-like containing PHD ring finger 1 (UHRF1), a critical epigenetic regulator involved in DNA methylation, increases upon axon injury and is required for robust axon regeneration. The increased level of UHRF1 results from a decrease in miR-9. The level of another target of miR-9, the transcriptional regulator RE1 silencing transcription factor (REST), transiently increases after injury and is required for axon regeneration. Mechanistically, UHRF1 interacts with DNA methyltransferases (DNMTs) and H3K9me3 at the promoter region to repress the expression of the tumor suppressor gene phosphatase and tensin homolog (PTEN) and REST. Our study reveals an epigenetic mechanism that silences tumor suppressor genes and restricts REST expression in time after injury to promote axon regeneration.
Collapse
|
17
|
Song Z, Yang W, Cheng G, Zhou X, Yang L, Zhao D. Prion protein is essential for the RE1 silencing transcription factor (REST)-dependent developmental switch in synaptic NMDA receptors. Cell Death Dis 2018; 9:541. [PMID: 29748616 PMCID: PMC5945644 DOI: 10.1038/s41419-018-0576-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/19/2018] [Indexed: 12/11/2022]
Abstract
It is important that the correct amounts of GluN2 subunits are maintained, as they determine NMDAR functional properties, which are crucial to neuronal communication, synaptogenesis and cognitive function. The transcriptional repressor RE1 silencing transcription factor (REST) is critical for the postnatal developmental switch in NMDARs. However, the mechanisms triggering REST and the link between NMDARs and REST are unclear. Here we show a new physiological essential role for cellular prion protein (PrPC) in REST-dependent homeostasis and the developmental switch of NMDARs. REST and REST-associated proteins were overactivated in the hippocampi of Prnp knockout mice (Prnp 0/0 ) compared with wild-type Prnp (Prnp +/+ ) mice. This coincided with the disruption of the normal developmental switch from GluN2B-to-GluN2A in vivo. PrPC co-located with REST under physiological environments and mediated the translocation of REST in conditioners of NMDARs in vitro in Prnp +/+ hippocampal neurons. Regardless of whether REST was knocked down or overexpressed, deletion of PrPC not only disrupted REST-mediated distribution of mitochondria, but also prevented REST-regulated expression of GluN2B and GluN2A in Prnp 0/0 . Importantly, these effects were rescued after overexpression of full-length PrPC through restoration of NMDAR2 subunits and their distributions in dendritic processes in Prnp 0/0 . Consistently, knockdown of PrPC in Prnp +/+ had a similar effect on Prnp 0/0 . Furthermore, PrPC colocalized with both GluN2B and GluN2A in Prnp +/+ . For the first time, we demonstrate that PrPC is essential for REST-regulated NMDARs. Confirming the regulation of NMDAR-modulating mechanisms could provide novel therapeutic targets against dysfunctions of glutamatergic transmission in the nervous system.
Collapse
Affiliation(s)
- Zhiqi Song
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical Collage (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, 100021, Beijing, China
| | - Wei Yang
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
- Hebei Institute of Animal Science and Veterinary Medicine, 071000, Baoding, China
| | - Guangyu Cheng
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Xiangmei Zhou
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Lifeng Yang
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Deming Zhao
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
18
|
Lee AR, Che N, Lovnicki JM, Dong X. Development of Neuroendocrine Prostate Cancers by the Ser/Arg Repetitive Matrix 4-Mediated RNA Splicing Network. Front Oncol 2018; 8:93. [PMID: 29666783 PMCID: PMC5891588 DOI: 10.3389/fonc.2018.00093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/16/2018] [Indexed: 12/19/2022] Open
Abstract
While the use of next-generation androgen receptor pathway inhibition (ARPI) therapy has significantly increased the survival of patients with metastatic prostate adenocarcinoma (AdPC), several groups have reported a treatment-resistant mechanism, whereby cancer cells can become androgen receptor (AR) indifferent and gain a neuroendocrine (NE)-like phenotype. This subtype of castration-resistant prostate cancer has been termed "treatment-induced castration-resistant neuroendocrine prostate cancer" (CRPC-NE). Recent reports indicate that the overall genomic landscapes of castration-resistant tumors with AdPC phenotypes and CRPC-NE are not significantly altered. However, CRPC-NE tumors have been found to contain a NE-specific pattern throughout their epigenome and splicing transcriptome, which are significantly modified. The molecular mechanisms by which CRPC-NE develops remain unclear, but several factors have been implicated in the progression of the disease. Recently, Ser/Arg repetitive matrix 4 (SRRM4), a neuronal-specific RNA splicing factor that is upregulated in CRPC-NE tumors, has been shown to establish a CRPC-NE-unique splicing transcriptome, to induce a NE-like morphology in AdPC cells, and, most importantly, to transform AdPC cells into CRPC-NE xenografts under ARPI. Moreover, the SRRM4-targeted splicing genes are highly enriched in various neuronal processes, suggesting their roles in facilitating a CRPC-NE program. This article will address the importance of SRRM4-mediated alternative RNA splicing in reprogramming translated proteins to facilitate NE differentiation, survival, and proliferation of cells to establish CRPC-NE tumors. In addition, we will discuss the potential roles of SRRM4 in conjunction with other known pathways and factors important for CRPC-NE development, such as the AR pathway, TP53 and RB1 genes, the FOXA family of proteins, and environmental factors. This study aims to explore the multifaceted functions of SRRM4 and SRRM4-mediated splicing in driving a CRPC-NE program as a coping mechanism for therapy resistance, as well as define future SRRM4-targeted therapeutic approaches for treating CRPC-NE or mitigating its development.
Collapse
Affiliation(s)
- Ahn R Lee
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Nicole Che
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jessica M Lovnicki
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Xuesen Dong
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Song Z, Zhu T, Zhou X, Barrow P, Yang W, Cui Y, Yang L, Zhao D. REST alleviates neurotoxic prion peptide-induced synaptic abnormalities, neurofibrillary degeneration and neuronal death partially via LRP6-mediated Wnt-β-catenin signaling. Oncotarget 2017; 7:12035-52. [PMID: 26919115 PMCID: PMC4914267 DOI: 10.18632/oncotarget.7640] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 02/14/2016] [Indexed: 02/07/2023] Open
Abstract
Prion diseases are a group of infectious neurodegenerative diseases characterized by multiple neuropathological hallmarks including synaptic damage, spongiform degeneration and neuronal death. The factors and mechanisms that maintain cellular morphological integrity and protect against neurodegeneration in prion diseases are still unclear. Here we report that after stimulation with the neurotoxic PrP106-126 fragment in primary cortical neurons, REST translocates from the cytoplasm to the nucleus and protects neurons from harmful effects of PrP106-126. Overexpression of REST reduces pathological damage and abnormal biochemical alterations of neurons induced by PrP106-126 and maintains neuronal viability by stabilizing the level of pro-survival protein FOXO1 and inhibiting the permeability of the mitochondrial outer membrane, release of cytochrome c from mitochondria to cytoplasm and the activation of Capase3. Conversely, knockdown of REST exacerbates morphological damage and inhibits the expression of FOXO1. Additionally, by overexpression or knockdown of LRP6, we further show that LRP6-mediated Wnt-β-catenin signaling partly regulates the expression of REST. Collectively, we demonstrate for the first time novel neuroprotective function of REST in prion diseases and hypothesise that the LRP6-Wnt-β-catenin/REST signaling plays critical and collaborative roles in neuroprotection. This signaling of neuronal survival regulation could be explored as a viable therapeutic target for prion diseases and associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhiqi Song
- The State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ting Zhu
- The State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangmei Zhou
- The State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Paul Barrow
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, UK
| | - Wei Yang
- The State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongyong Cui
- The State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lifeng Yang
- The State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Deming Zhao
- The State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Song Z, Yang W, Zhou X, Yang L, Zhao D. Lithium alleviates neurotoxic prion peptide-induced synaptic damage and neuronal death partially by the upregulation of nuclear target REST and the restoration of Wnt signaling. Neuropharmacology 2017; 123:332-348. [PMID: 28545972 DOI: 10.1016/j.neuropharm.2017.05.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/30/2017] [Accepted: 05/20/2017] [Indexed: 12/17/2022]
Abstract
Prion diseases are a group of infectious neurodegenerative diseases characterized by multiple neuropathological hallmarks, including accumulation of PrPSc, synaptic damage, and neuronal death. We previously reported that the repressor element 1-silencing transcription factor (REST), a novel neuroprotective marker in neurodegeneration, protects neurons against neurotoxic peptide (PrP106-126)-induced neurotoxicity, but fails to maintain survival following prolonged exposure to PrP106-126. Because Wnt signaling partially induces REST and is activated by lithium, we investigated the effects of lithium on REST in prion diseases. Lithium restores nuclear expression of REST, which is essential for regulating survival proteins. Lithium also mimics neuroprotective functions when REST is blocked, and these beneficial effects are additive with REST overexpression under physiological conditions. Reciprocally, under PrP106-126-stimulated pathological conditions, REST plays a critical role in the neuroprotective mechanisms of lithium treatment. Although lithium recovers Wnt signaling by inhibiting glycogen synthase kinase-3β and stabilizing β-catenin, restores survival associated proteins after exposure to PrP106-126 in primary cortical neurons. Knockdown of REST significantly suppresses the neuroprotective function of lithium. Conversely, overexpression of REST partially recovers its actions. Notably, lithium directly alleviates PrP106-126-induced synaptic damage and neuronal cell death by preventing changes in presynaptic and postsynaptic marker proteins and promoting survival pathways also partially via the expression of REST. Our results suggest that REST acts as a novel and important nuclear target for lithium. We hypothesize that PrP106-126-stimulated neurotoxicity induces Wnt signaling dysfunction and lithium mimics this signaling cascade, suggesting that lithium should be considered as a potential therapeutic agent against prion diseases.
Collapse
Affiliation(s)
- Zhiqi Song
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Wei Yang
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiangmei Zhou
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lifeng Yang
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Deming Zhao
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
21
|
Song Z, Shah SZA, Yang W, Dong H, Yang L, Zhou X, Zhao D. Downregulation of the Repressor Element 1-Silencing Transcription Factor (REST) Is Associated with Akt-mTOR and Wnt-β-Catenin Signaling in Prion Diseases Models. Front Mol Neurosci 2017; 10:128. [PMID: 28515679 PMCID: PMC5413570 DOI: 10.3389/fnmol.2017.00128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/18/2017] [Indexed: 12/15/2022] Open
Abstract
Prion diseases are a group of infectious diseases characterized by multiple neuropathological changes, yet the mechanisms that preserve function and protect against prion-associated neurodegeneration are still unclear. We previously reported that the repressor element 1-silencing transcription factor (REST) alleviates neurotoxic prion peptide (PrP106-126)-induced toxicity in primary neurons. Here we confirmed the findings of the in vitro model in 263K infected hamsters, an in vivo model of prion diseases and further showed the relationships between REST and related signaling pathways. REST was depleted from the nucleus in prion infected brains and taken up by autophagosomes in the cytoplasm, co-localizing with LC3-II. Importantly, downregulation of the Akt–mTOR and at least partially inactivation of LRP6-Wnt-β-catenin signaling pathways correlated with the decreased levels of REST in vivo in the brain of 263K-infected hamsters and in vitro in PrP106-126-treated primary neurons. Overexpression of REST in primary cortical neurons alleviated PrP106-126 peptide-induced neuronal oxidative stress, mitochondrial damage and partly inhibition of the LRP6-Wnt-β-catenin and Akt–mTOR signaling. Based on our findings, a model of REST-mediated neuroprotection in prion infected animals is proposed, with Akt–mTOR and Wnt-β-catenin signaling as the key pathways. REST-mediated neuronal survival signaling could be explored as a viable therapeutic target for prion diseases and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhiqi Song
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Syed Z A Shah
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Wei Yang
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Haodi Dong
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Lifeng Yang
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Xiangmei Zhou
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Deming Zhao
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| |
Collapse
|
22
|
Interactomic analysis of REST/NRSF and implications of its functional links with the transcription suppressor TRIM28 during neuronal differentiation. Sci Rep 2016; 6:39049. [PMID: 27976729 PMCID: PMC5157023 DOI: 10.1038/srep39049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/17/2016] [Indexed: 01/06/2023] Open
Abstract
RE-1 silencing transcription factor (REST) is a transcriptional repressor that regulates gene expression by binding to repressor element 1. However, despite its critical function in physiology, little is known about its interaction proteins. Here we identified 204 REST-interacting proteins using affinity purification and mass spectrometry. The interactome included proteins associated with mRNA processing/splicing, chromatin organization, and transcription. The interactions of these REST-interacting proteins, which included TRIM28, were confirmed by co-immunoprecipitation and immunocytochemistry, respectively. Gene Ontology (GO) analysis revealed that neuronal differentiation-related GO terms were enriched among target genes that were co-regulated by REST and TRIM28, while the level of CTNND2 was increased by the knockdown of REST and TRIM28. Consistently, the level of CTNND2 increased while those of REST and TRIM28 decreased during neuronal differentiation in the primary neurons, suggesting that CTNND2 expression may be co-regulated by both. Furthermore, neurite outgrowth was increased by depletion of REST or TRIM28, implying that reduction of both REST and TRIM28 could promote neuronal differentiation via induction of CTNND2 expression. In conclusion, our study of REST reveals novel interacting proteins which could be a valuable resource for investigating unidentified functions of REST and also suggested functional links between REST and TRIM28 during neuronal development.
Collapse
|
23
|
Brain REST/NRSF Is Not Only a Silent Repressor but Also an Active Protector. Mol Neurobiol 2016; 54:541-550. [DOI: 10.1007/s12035-015-9658-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/17/2015] [Indexed: 01/04/2023]
|
24
|
Willis DE, Wang M, Brown E, Fones L, Cave JW. Selective repression of gene expression in neuropathic pain by the neuron-restrictive silencing factor/repressor element-1 silencing transcription (NRSF/REST). Neurosci Lett 2015; 625:20-5. [PMID: 26679228 DOI: 10.1016/j.neulet.2015.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/18/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023]
Abstract
Neuropathic pain often develops following nerve injury as a result of maladaptive changes that occur in the injured nerve and along the nociceptive pathways of the peripheral and central nervous systems. Multiple cellular and molecular mechanisms likely account for these changes; however, the exact nature of these mechanisms remain largely unknown. A growing number of studies suggest that alteration in gene expression is an important step in the progression from acute to chronic pain states and epigenetic regulation has been proposed to drive this change in gene expression. In this review, we discuss recent evidence that the DNA-binding protein neuron-restrictive silencing factor/repressor element-1 silencing transcription factor (NRSF/REST) is an important component in the development and maintenance of neuropathic pain through its role as a transcriptional regulator for a select subset of genes that it normally represses during development.
Collapse
Affiliation(s)
- Dianna E Willis
- Burke Medical Research Institute, 785 Mamaroneck Ave., White Plains, NY 10605, United States; Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Ave, NY, NY 10065, United States
| | - Meng Wang
- Burke Medical Research Institute, 785 Mamaroneck Ave., White Plains, NY 10605, United States
| | - Elizabeth Brown
- Burke Medical Research Institute, 785 Mamaroneck Ave., White Plains, NY 10605, United States
| | - Lilah Fones
- Burke Medical Research Institute, 785 Mamaroneck Ave., White Plains, NY 10605, United States
| | - John W Cave
- Burke Medical Research Institute, 785 Mamaroneck Ave., White Plains, NY 10605, United States; Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Ave, NY, NY 10065, United States.
| |
Collapse
|
25
|
Wang G, Wang M, Li C. The Unexposed Secrets of Prion Protein Oligomers. J Mol Neurosci 2015; 56:932-937. [PMID: 25823438 DOI: 10.1007/s12031-015-0546-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/04/2015] [Indexed: 12/16/2022]
Abstract
According to the "protein-only" hypothesis, the misfolding and conversion of host-derived cellular prion protein (PrP(C)) into pathogenically misfolded PrP are believed to be the key procedure in the pathogenesis of prion diseases. Intermediate, soluble oligomeric prion protein (PrP) aggregates were considered a critical process for prion diseases. Several independent studies on PrP oligomers gained insights into oligomers' formation, biophysical and biochemical characteristics, structure conversion, and neurotoxicity. PrP oligomers are rich in β-sheet structure and slightly resistant to proteinase K digestion. PrP oligomers exhibited more neurotoxicity and induced neuronal apoptosis in vivo and/or in vitro. In this review, we summarized recent studies regarding PrP oligomers and the relationship between misfolded PrP aggregates and neuronal death in the course of prion diseases.
Collapse
Affiliation(s)
- Gailing Wang
- Department of Bioengineering, Huanghuai University, 463000, Zhumadian, China.
| | - Mingcheng Wang
- Department of Bioengineering, Huanghuai University, 463000, Zhumadian, China
| | - Chuanfeng Li
- Department of Bioengineering, Huanghuai University, 463000, Zhumadian, China
| |
Collapse
|