1
|
Hamadmad S, Heisler-Taylor T, Goswami S, Hawthorn E, Chaurasia S, Martini D, Summitt D, Zaatari A, Urbanski EG, Bernstein K, Racine J, Satoskar A, El-Hodiri HM, Fischer AJ, Cebulla CM. Ibudilast Protects Retinal Bipolar Cells from Excitotoxic Retinal Damage and Activates the mTOR Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585556. [PMID: 38562805 PMCID: PMC10983953 DOI: 10.1101/2024.03.18.585556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Ibudilast, an inhibitor of macrophage migration inhibitory factor (MIF) and phosphodiesterase (PDE), has been recently shown to have neuroprotective effects in a variety of neurologic diseases. We utilize a chick excitotoxic retinal damage model to investigate ibudilast's potential to protect retinal neurons. Using single cell RNA-sequencing (scRNA-seq), we find that MIF, putative MIF receptors CD74 and CD44, and several PDEs are upregulated in different retinal cells during damage. Intravitreal ibudilast is well tolerated in the eye and causes no evidence of toxicity. Ibudilast effectively protects neurons in the inner nuclear layer from NMDA-induced cell death, restores retinal layer thickness on spectral domain optical coherence tomography, and preserves retinal neuron function, particularly for the ON bipolar cells, as assessed by electroretinography. PDE inhibition seems essential for ibudilast's neuroprotection, as AV1013, the analogue that lacks PDE inhibitor activity, is ineffective. scRNA-seq analysis reveals upregulation of multiple signaling pathways, including mTOR, in damaged Müller glia (MG) with ibudilast treatment compared to AV1013. Components of mTORC1 and mTORC2 are upregulated in both bipolar cells and MG with ibudilast. The mTOR inhibitor rapamycin blocked accumulation of pS6 but did not reduce TUNEL positive dying cells. Additionally, through ligand-receptor interaction analysis, crosstalk between bipolar cells and MG may be important for neuroprotection. We have identified several paracrine signaling pathways that are known to contribute to cell survival and neuroprotection and might play essential roles in ibudilast function. These findings highlight ibudilast's potential to protect inner retinal neurons during damage and show promise for future clinical translation.
Collapse
|
2
|
Ma D, Deng W, Khera Z, Sajitha TA, Wang X, Wollstein G, Schuman JS, Lee S, Shi H, Ju MJ, Matsubara J, Beg MF, Sarunic M, Sappington RM, Chan KC. Early inner plexiform layer thinning and retinal nerve fiber layer thickening in excitotoxic retinal injury using deep learning-assisted optical coherence tomography. Acta Neuropathol Commun 2024; 12:19. [PMID: 38303097 PMCID: PMC10835918 DOI: 10.1186/s40478-024-01732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/14/2024] [Indexed: 02/03/2024] Open
Abstract
Excitotoxicity from the impairment of glutamate uptake constitutes an important mechanism in neurodegenerative diseases such as Alzheimer's, multiple sclerosis, and Parkinson's disease. Within the eye, excitotoxicity is thought to play a critical role in retinal ganglion cell death in glaucoma, diabetic retinopathy, retinal ischemia, and optic nerve injury, yet how excitotoxic injury impacts different retinal layers is not well understood. Here, we investigated the longitudinal effects of N-methyl-D-aspartate (NMDA)-induced excitotoxic retinal injury in a rat model using deep learning-assisted retinal layer thickness estimation. Before and after unilateral intravitreal NMDA injection in nine adult Long Evans rats, spectral-domain optical coherence tomography (OCT) was used to acquire volumetric retinal images in both eyes over 4 weeks. Ten retinal layers were automatically segmented from the OCT data using our deep learning-based algorithm. Retinal degeneration was evaluated using layer-specific retinal thickness changes at each time point (before, and at 3, 7, and 28 days after NMDA injection). Within the inner retina, our OCT results showed that retinal thinning occurred first in the inner plexiform layer at 3 days after NMDA injection, followed by the inner nuclear layer at 7 days post-injury. In contrast, the retinal nerve fiber layer exhibited an initial thickening 3 days after NMDA injection, followed by normalization and thinning up to 4 weeks post-injury. Our results demonstrated the pathological cascades of NMDA-induced neurotoxicity across different layers of the retina. The early inner plexiform layer thinning suggests early dendritic shrinkage, whereas the initial retinal nerve fiber layer thickening before subsequent normalization and thinning indicates early inflammation before axonal loss and cell death. These findings implicate the inner plexiform layer as an early imaging biomarker of excitotoxic retinal degeneration, whereas caution is warranted when interpreting the ganglion cell complex combining retinal nerve fiber layer, ganglion cell layer, and inner plexiform layer thicknesses in conventional OCT measures. Deep learning-assisted retinal layer segmentation and longitudinal OCT monitoring can help evaluate the different phases of retinal layer damage upon excitotoxicity.
Collapse
Affiliation(s)
- Da Ma
- Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA.
- Wake Forest University Health Sciences, Winston-Salem, NC, USA.
- Translational Eye and Vision Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada.
| | - Wenyu Deng
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
- Department of Ophthalmology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Zain Khera
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Thajunnisa A Sajitha
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Xinlei Wang
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Gadi Wollstein
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
- Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, USA
| | - Joel S Schuman
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
- Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, USA
- Wills Eye Hospital, Philadelphia, PA, USA
- Department of Biomedical Engineering, Drexel University, Philadelphia, PA, USA
- Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Sieun Lee
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
- Department of Ophthalmology and Visual Sciences, The University of British Columbia, Vancouver, BC, Canada
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Haolun Shi
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, Canada
| | - Myeong Jin Ju
- Department of Ophthalmology and Visual Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Joanne Matsubara
- Department of Ophthalmology and Visual Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Mirza Faisal Beg
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Marinko Sarunic
- Institute of Ophthalmology, University College London, London, UK
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Rebecca M Sappington
- Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA
- Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Translational Eye and Vision Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kevin C Chan
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA.
- Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA.
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, USA.
- Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA.
- Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA.
| |
Collapse
|
3
|
Tsai T, Reinehr S, Deppe L, Strubbe A, Kluge N, Dick HB, Joachim SC. Glaucoma Animal Models beyond Chronic IOP Increase. Int J Mol Sci 2024; 25:906. [PMID: 38255979 PMCID: PMC10815097 DOI: 10.3390/ijms25020906] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Glaucoma is a complex and multifactorial disease defined as the loss of retinal ganglion cells (RGCs) and their axons. Besides an elevated intraocular pressure (IOP), other mechanisms play a pivotal role in glaucoma onset and progression. For example, it is known that excitotoxicity, immunological alterations, ischemia, and oxidative stress contribute to the neurodegeneration in glaucoma disease. To study these effects and to discover novel therapeutic approaches, appropriate animal models are needed. In this review, we focus on various glaucoma animal models beyond an elevated IOP. We introduce genetically modified mice, e.g., the optineurin E50K knock-in or the glutamate aspartate transporter (GLAST)-deficient mouse. Excitotoxicity can be mimicked by injecting the glutamate analogue N-methyl-D-aspartate intravitreally, which leads to rapid RGC degeneration. To explore the contribution of the immune system, the experimental autoimmune glaucoma model can serve as a useful tool. Here, immunization with antigens led to glaucoma-like damage. The ischemic mechanism can be mimicked by inducing a high IOP for a certain amount of time in rodents, followed by reperfusion. Thereby, damage to the retina and the optic nerve occurs rapidly after ischemia/reperfusion. Lastly, we discuss the importance of optic nerve crush models as model systems for normal-tension glaucoma. In summary, various glaucoma models beyond IOP increase can be utilized.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (T.T.); (S.R.); (L.D.); (N.K.); (H.B.D.)
| |
Collapse
|
4
|
Barroso Á, Ketelhut S, Nettels-Hackert G, Heiduschka P, del Amor R, Naranjo V, Kemper B, Schnekenburger J. Durable 3D murine ex vivo retina glaucoma models for optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:4421-4438. [PMID: 37791268 PMCID: PMC10545187 DOI: 10.1364/boe.494271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 10/05/2023]
Abstract
Durable and standardized phantoms with optical properties similar to native healthy and disease-like biological tissues are essential tools for the development, performance testing, calibration and comparison of label-free high-resolution optical coherence tomography (HR-OCT) systems. Available phantoms are based on artificial materials and reflect thus only partially ocular properties. To address this limitation, we have performed investigations on the establishment of durable tissue phantoms from ex vivo mouse retina for enhanced reproduction of in vivo structure and complexity. In a proof-of-concept study, we explored the establishment of durable 3D models from dissected mouse eyes that reproduce the properties of normal retina structures and tissue with glaucoma-like layer thickness alterations. We explored different sectioning and preparation procedures for embedding normal and N-methyl-D-aspartate (NMDA)-treated mouse retina in transparent gel matrices and epoxy resins, to generate durable three-dimensional tissue models. Sample quality and reproducibility were quantified by thickness determination of the generated layered structures utilizing computer-assisted segmentation of OCT B-scans that were acquired with a commercial HR-OCT system at a central wavelength of 905 nm and analyzed with custom build software. Our results show that the generated 3D models feature thin biological layers close to current OCT resolution limits and glaucoma-like tissue alterations that are suitable for reliable HR-OCT performance characterization. The comparison of data from resin-embedded tissue with native murine retina in gels demonstrates that by utilization of appropriate preparation protocols, highly stable samples with layered structures equivalent to native tissues can be fabricated. The experimental data demonstrate our concept as a promising approach toward the fabrication of durable biological 3D models suitable for high-resolution OCT system performance characterization supporting the development of optimized instruments for ophthalmology applications.
Collapse
Affiliation(s)
- Álvaro Barroso
- Biomedical Technology Center of the Medical Faculty, University of Muenster, Mendelstr. 17, D-48149 Muenster, Germany
| | - Steffi Ketelhut
- Biomedical Technology Center of the Medical Faculty, University of Muenster, Mendelstr. 17, D-48149 Muenster, Germany
| | - Gerburg Nettels-Hackert
- Department of Ophthalmology of the Medical Faculty, University of Muenster, Domagkstr. 15, D-48149 Muenster, Germany
| | - Peter Heiduschka
- Department of Ophthalmology of the Medical Faculty, University of Muenster, Domagkstr. 15, D-48149 Muenster, Germany
| | - Rocío del Amor
- Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, Universitat Politècnica de València, Valencia, Spain
| | - Valery Naranjo
- Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, Universitat Politècnica de València, Valencia, Spain
| | - Björn Kemper
- Biomedical Technology Center of the Medical Faculty, University of Muenster, Mendelstr. 17, D-48149 Muenster, Germany
| | - Jürgen Schnekenburger
- Biomedical Technology Center of the Medical Faculty, University of Muenster, Mendelstr. 17, D-48149 Muenster, Germany
| |
Collapse
|
5
|
Kim J, Ryu B, Bang J, Kim CY, Park JH. Postnatal exposure to trimethyltin chloride induces retinal developmental neurotoxicity in mice via glutamate and its transporter related changes. Reprod Toxicol 2023; 119:108395. [PMID: 37164060 DOI: 10.1016/j.reprotox.2023.108395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/26/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Exposure to toxic substances during postnatal period is one of the major factors causing retinal developmental defects. The developmental toxicity of trimethyltin chloride (TMT), a byproduct of an organotin compound widely used in agriculture and industrial fields, has been reported; however, the effect on the mammalian retina during postnatal development and the mechanism have not been elucidated to date. We exposed 0.75 and 1.5 mg/kg of TMT to neonatal ICR mice (1:1 ratio of male and female) up to postnatal day 14 and performed analysis of the retina: histopathology, apoptosis, electrophysiological function, glutamate concentration, gene expression, and fluorescence immunostaining. Exposure to TMT caused delayed eye opening, eye growth defect and thinning of retinal layer. In addition, apoptosis occurred in the retina along with b-wave and spiking activity changes in the micro-electroretinogram. These changes were accompanied by an increase in the concentration of glutamate, upregulation of astrocyte-related genes, and increased expression of glial excitatory amino acid transporter (EAAT) 1 and 2. Conversely, EAAT 3, 4, and 5, mainly located in the neurons, were decreased. Our results are the first to prove postnatal retinal developmental neurotoxicity of TMT at the mammalian model and analyze the molecular, functional as well as morphological aspects to elucidate possible mechanisms: glutamate toxicity with EAAT expression changes. These mechanisms may suggest not only a strategy to treat but also a clue to prevent postnatal retina developmental toxicity of toxic substances.
Collapse
Affiliation(s)
- Jin Kim
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Bokyeong Ryu
- Department of Biomedical Informatics, College of Applied Life Sciences, Jeju National University, Jeju, Republic of Korea
| | - Junpil Bang
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - C-Yoon Kim
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea.
| | - Jae-Hak Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Reinehr S, Safaei A, Grotegut P, Guntermann A, Tsai T, Hahn SA, Kösters S, Theiss C, Marcus K, Dick HB, May C, Joachim SC. Heat Shock Protein Upregulation Supplemental to Complex mRNA Alterations in Autoimmune Glaucoma. Biomolecules 2022; 12:biom12101538. [PMID: 36291747 PMCID: PMC9599116 DOI: 10.3390/biom12101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Glaucomatous optic neuropathy is a common cause for blindness. An elevated intraocular pressure is the main risk factor, but also a contribution of the immune system seems likely. In the experimental autoimmune glaucoma model used here, systemic immunization with an optic nerve homogenate antigen (ONA) leads to retinal ganglion cell (RGC) and optic nerve degeneration. We processed retinae for quantitative real-time PCR and immunohistology 28 days after immunization. Furthermore, we performed mRNA profiling in this model for the first time. We detected a significant RGC loss in the ONA retinae. This was accompanied by an upregulation of mRNA expression of genes belonging to the heat shock protein family. Furthermore, mRNA expression levels of the genes of the immune system, such as C1qa, C1qb, Il18, and Nfkb1, were upregulated in ONA animals. After laser microdissection, inner retinal layers were used for mRNA microarrays. Nine of these probes were significantly upregulated in ONA animals (p < 0.05), including Hba-a1 and Cxcl10, while fifteen probes were significantly downregulated in ONA animals (p < 0.05), such as Gdf15 and Wwox. Taken together, these findings provide further insights into the pivotal role of the immune response in glaucomatous optic neuropathy and could help to identify novel diagnostic or therapeutic strategies.
Collapse
Affiliation(s)
- Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Armin Safaei
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Pia Grotegut
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Annika Guntermann
- Department Functional Proteomics, Medizinisches Proteom-Center, Ruhr-University Bochum, ProDi E2.227, Gesundheitscampus 4, 44801 Bochum, Germany
| | - Teresa Tsai
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Stephan A. Hahn
- Department of Molecular GI Oncology, Faculty of Medicine, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Steffen Kösters
- Department Functional Proteomics, Medizinisches Proteom-Center, Ruhr-University Bochum, ProDi E2.227, Gesundheitscampus 4, 44801 Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitaetsstr. 150, 44801 Bochum, Germany
| | - Katrin Marcus
- Department Functional Proteomics, Medizinisches Proteom-Center, Ruhr-University Bochum, ProDi E2.227, Gesundheitscampus 4, 44801 Bochum, Germany
| | - H. Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Caroline May
- Department Functional Proteomics, Medizinisches Proteom-Center, Ruhr-University Bochum, ProDi E2.227, Gesundheitscampus 4, 44801 Bochum, Germany
- Correspondence: (C.M.); (S.C.J.); Tel.: +49-234-24651 (C.M.); Tel.: +49-234-2993156 (S.C.J.)
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
- Correspondence: (C.M.); (S.C.J.); Tel.: +49-234-24651 (C.M.); Tel.: +49-234-2993156 (S.C.J.)
| |
Collapse
|
7
|
Maekawa S, Sato K, Kokubun T, Himori N, Yabana T, Ohno-Oishi M, Shi G, Omodaka K, Nakazawa T. A Plant-Derived Antioxidant Supplement Prevents the Loss of Retinal Ganglion Cells in the Retinas of NMDA-Injured Mice. Clin Ophthalmol 2022; 16:823-832. [PMID: 35330750 PMCID: PMC8939866 DOI: 10.2147/opth.s354958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/02/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Shigeto Maekawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Taiki Kokubun
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Aging Vision Healthcare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Miyagi, Japan
| | - Takeshi Yabana
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Michiko Ohno-Oishi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ge Shi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Correspondence: Toru Nakazawa, Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aoba, Sendai, Miyagi, 980-8574, Japan, Tel +81-22-717-7294, Fax +81-22-717-7298, Email
| |
Collapse
|
8
|
Auler N, Tonner H, Pfeiffer N, Grus FH. Antibody and Protein Profiles in Glaucoma: Screening of Biomarkers and Identification of Signaling Pathways. BIOLOGY 2021; 10:biology10121296. [PMID: 34943212 PMCID: PMC8698915 DOI: 10.3390/biology10121296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Glaucoma is a chronic eye disease that is one of the leading causes of blindness worldwide. Currently, the only therapeutic option is to lower intraocular pressure. The onset of the disease is often delayed because patients do not notice visual impairment until very late, which is why glaucoma is also known as “the silent thief of sight”. Therefore, early detection and definition of specific markers, the so-called biomarkers, are immensely important. For the methodical implementation, high-throughput methods and omic-based methods came more and more into focus. Thus, interesting targets for possible biomarkers were already suggested by clinical research and basic research, respectively. This review article aims to join the findings of the two disciplines by collecting overlaps as well as differences in various clinical studies and to shed light on promising candidates concerning findings from basic research, facilitating conclusions on possible therapy options. Abstract Glaucoma represents a group of chronic neurodegenerative diseases, constituting the second leading cause of blindness worldwide. To date, chronically elevated intraocular pressure has been identified as the main risk factor and the only treatable symptom. However, there is increasing evidence in the recent literature that IOP-independent molecular mechanisms also play an important role in the progression of the disease. In recent years, it has become increasingly clear that glaucoma has an autoimmune component. The main focus nowadays is elucidating glaucoma pathogenesis, finding early diagnostic options and new therapeutic approaches. This review article summarizes the impact of different antibodies and proteins associated with glaucoma that can be detected for example by microarray and mass spectrometric analyzes, which (i) provide information about expression profiles and associated molecular signaling pathways, (ii) can possibly be used as a diagnostic tool in future and, (iii) can identify possible targets for therapeutic approaches.
Collapse
|
9
|
Xue J, Zhu Y, Liu Z, Lin J, Li Y, Li Y, Zhuo Y. Demyelination of the Optic Nerve: An Underlying Factor in Glaucoma? Front Aging Neurosci 2021; 13:701322. [PMID: 34795572 PMCID: PMC8593209 DOI: 10.3389/fnagi.2021.701322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative disorders are characterized by typical neuronal degeneration and axonal loss in the central nervous system (CNS). Demyelination occurs when myelin or oligodendrocytes experience damage. Pathological changes in demyelination contribute to neurodegenerative diseases and worsen clinical symptoms during disease progression. Glaucoma is a neurodegenerative disease characterized by progressive degeneration of retinal ganglion cells (RGCs) and the optic nerve. Since it is not yet well understood, we hypothesized that demyelination could play a significant role in glaucoma. Therefore, this study started with the morphological and functional manifestations of demyelination in the CNS. Then, we discussed the main mechanisms of demyelination in terms of oxidative stress, mitochondrial damage, and immuno-inflammatory responses. Finally, we summarized the existing research on the relationship between optic nerve demyelination and glaucoma, aiming to inspire effective treatment plans for glaucoma in the future.
Collapse
Affiliation(s)
- Jingfei Xue
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yingting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhe Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jicheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yangjiani Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Suo L, Dai W, Chen X, Qin X, Li G, Song S, Zhang D, Zhang C. Proteomics analysis of N-methyl-d-aspartate-induced cell death in retinal and optic nerves. J Proteomics 2021; 252:104427. [PMID: 34781030 DOI: 10.1016/j.jprot.2021.104427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
This study aimed to comprehensively understand the proteomic characteristics and modulation of the neural microenvironment with N-methyl-d-aspartate (NMDA)-induced neuronal degeneration in the retina and optic nerve at 12 h after intravitreal injection of 40 nmol NMDA. Male Sprague-Dawley rats were sacrificed at 12 h after intravitreal injection of 40 nmol NMDA. PBS-injected eyes served as controls. The key cell death-linked proteins from the retina and optic nerve tissues were assessed by a mass spectrometry-based label-free approach. In proteomics analysis, we identified 3532 proteins in retinal tissues and 2593 proteins in optic nerve tissues. The ACSL3 (Q63151) and Prnp (P13852) proteins were upregulated in the NMDA-damaged retina and connected with ferroptosis. The Gabarapl2 (P60522) protein was upregulated in NMDA-damaged optic nerves and connected with autophagy. We performed parallel reaction monitoring (PRM) to validate the liquid chromatography-tandem mass spectrometry (LC-MS/MS) results. Data are available ProteomeXchange with identifiers PXD022466 (label-free quantification) and PXD022729 (PRM validation). SIGNIFICANCE: Excitotoxicity is one of the pathogeneses of various retinal disorders, including glaucoma, retinal ischemia-reperfusion and traumatic optic neuropathy. This study indicated that ferroptosis may be linked to pathological cell death in the retina with NMDA insult. Autophagy may be induced by NMDA overstimulation in both the optic nerve and retina. Regulating these types of death simultaneously may provide the maximum benefit for retinal disease therapy.
Collapse
Affiliation(s)
- Lingge Suo
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Wanwei Dai
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Xuhao Chen
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Xuejiao Qin
- Department of Ophthalmology, Shandong University Qilu Hospital, Shandong, China
| | - Guanlin Li
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Sijia Song
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Di Zhang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Chun Zhang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
11
|
Kramer J, Neves J, Koniikusic M, Jasper H, Lamba DA. Dpp/TGFβ-superfamily play a dual conserved role in mediating the damage response in the retina. PLoS One 2021; 16:e0258872. [PMID: 34699550 PMCID: PMC8547621 DOI: 10.1371/journal.pone.0258872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022] Open
Abstract
Retinal homeostasis relies on intricate coordination of cell death and survival in response to stress and damage. Signaling mechanisms that coordinate this process in the adult retina remain poorly understood. Here we identify Decapentaplegic (Dpp) signaling in Drosophila and its mammalian homologue Transforming Growth Factor-beta (TGFβ) superfamily, that includes TGFβ and Bone Morphogenetic Protein (BMP) signaling arms, as central mediators of retinal neuronal death and tissue survival following acute damage. Using a Drosophila model for UV-induced retinal damage, we show that Dpp released from immune cells promotes tissue loss after UV-induced retinal damage. Interestingly, we find a dynamic response of retinal cells to this signal: in an early phase, Dpp-mediated stimulation of Saxophone/Smox signaling promotes apoptosis, while at a later stage, stimulation of the Thickveins/Mad axis promotes tissue repair and survival. This dual role is conserved in the mammalian retina through the TGFβ/BMP signaling, as supplementation of BMP4 or inhibition of TGFβ using small molecules promotes retinal cell survival, while inhibition of BMP negatively affects cell survival after light-induced photoreceptor damage and NMDA induced inner retinal neuronal damage. Our data identify key evolutionarily conserved mechanisms by which retinal homeostasis is maintained.
Collapse
Affiliation(s)
- Joshua Kramer
- Department of Ophthalmology, University of California, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, United States of America
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Joana Neves
- Buck Institute for Research on Aging, Novato, CA, United States of America
- Faculdade de Medicina, Instituto de Medicina Molecular (iMM), Universidade de Lisboa, Lisbon, Portugal
| | - Mia Koniikusic
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Heinrich Jasper
- Buck Institute for Research on Aging, Novato, CA, United States of America
- Immunology Discovery, Genentech, Inc., South San Francisco, CA, United States of America
| | - Deepak A. Lamba
- Department of Ophthalmology, University of California, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, United States of America
- Buck Institute for Research on Aging, Novato, CA, United States of America
| |
Collapse
|
12
|
DZNep protects against retinal ganglion cell death in an NMDA-induced mouse model of retinal degeneration. Exp Eye Res 2021; 212:108785. [PMID: 34600894 DOI: 10.1016/j.exer.2021.108785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/10/2021] [Accepted: 09/28/2021] [Indexed: 02/08/2023]
Abstract
Epigenetic gene enhancer of zeste homolog-2 (Ezh2) is reported to be associated with ocular neurodegenerative diseases; however, its underlying mechanism is poorly understood. The present study aimed to determine the role of 3-deazaneplanocin A (DZNep), which inhibits the transcription of Ezh2 by reducing the trimethylation of histone 3 lysine 27 (H3K27me3), in a retinal ganglion cell (RGC) degeneration model. Retinal damage was caused by intravitreal injection of N-methyl-D-aspartate (NMDA). DZNep and the vehicle control were intravitreally applied immediately post-NMDA injection. The severity of retinal damage was evaluated by immunofluorescence and terminal deoxyribonucleotide transferase (TdT)-mediated dUTP nick end labeling (TUNEL) staining, and retinal function was determined by electroretinogram (ERG). The transcriptome was examined by RNA sequencing and quantitative PCR (qPCR). Microglial cells were detected by immunohistochemistry. DZNep significantly prevented the cell death in the ganglion cell layer (GCL) and inner nuclear layer (INL) induced by NMDA. DZNep preserved the ERG b- and a-wave amplitudes and the b/a ratio in NMDA-treated mice. Moreover, RNA sequencing and qPCR revealed that neuroprotective genes were upregulated and played an important role in preserving retinal cells. In addition, DZNep inhibited the NMDA-induced activation of microglial cells. Our results suggest that H3K27me3 controls RGC survival at the transcriptional and epigenetic levels. The absence of H3K27me3 deposition upregulates neuroprotective genes to protect RGCs. Therefore, DZNep, which inhibits Ezh2 activity, could be a novel therapeutic treatment for ocular neurodegenerative diseases.
Collapse
|
13
|
Multimodal imaging and functional analysis of the chick NMDA retinal damage model. PLoS One 2021; 16:e0257148. [PMID: 34492087 PMCID: PMC8423281 DOI: 10.1371/journal.pone.0257148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
Objectives The chick is rapidly becoming a standardized preclinical model in vision research to study mechanisms of ocular disease. We seek to comprehensively evaluate the N-methyl-D-aspartate (NMDA) model of excitotoxic retinal damage using multimodal imaging, functional, and histologic approaches in NMDA-damaged, vehicle-treated, and undamaged chicks. Methods Chicks were either left undamaged in both eyes or were injected with NMDA in the left eye and saline (vehicle) in the right eye. TUNEL assay was performed on chicks to assess levels of retinal cell death one day post-injection of NMDA or saline and on age-matched untreated chicks. Spectral domain optical coherence tomography (SD-OCT) was performed weekly on chicks and age-matched controls day 1 (D1) up to D28 post-injection. Light adapted electroretinograms (ERG) were performed alongside SD-OCT measurements on post-injection chicks along with age-matched untreated controls. Results Untreated and vehicle-treated eyes had no TUNEL positive cells while NMDA-treated eyes accumulated large numbers of TUNEL positive cells in the Inner Nuclear Layer (INL), but not other layers, at D1 post injection. Significant inner retina swelling or edema was found on SD-OCT imaging at D1 post-injection which resolved at subsequent timepoints. Both the INL and the inner plexiform layer significantly thinned by one-week post-injection and did not recover for the duration of the measurements. On ERG, NMDA-treated eyes had significantly reduced amplitudes of all parameters at D1 with all metrics improving over time. The b-wave, oscillatory potentials, and ON/OFF bipolar responses were the most affected with at least 70% reduction immediately after damage compared to the fellow eye control. Conclusion This study establishes a normative baseline on the retinal health and gross functional ability as well as intraocular pressures of undamaged, vehicle-treated, and NMDA-damaged chicks to provide a standard for comparing therapeutic treatment studies in this important animal model.
Collapse
|
14
|
Colbert MK, Ho LC, van der Merwe Y, Yang X, McLellan GJ, Hurley SA, Field AS, Yun H, Du Y, Conner IP, Parra C, Faiq MA, Fingert JH, Wollstein G, Schuman JS, Chan KC. Diffusion Tensor Imaging of Visual Pathway Abnormalities in Five Glaucoma Animal Models. Invest Ophthalmol Vis Sci 2021; 62:21. [PMID: 34410298 PMCID: PMC8383913 DOI: 10.1167/iovs.62.10.21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose To characterize the visual pathway integrity of five glaucoma animal models using diffusion tensor imaging (DTI). Methods Two experimentally induced and three genetically determined models of glaucoma were evaluated. For inducible models, chronic IOP elevation was achieved via intracameral injection of microbeads or laser photocoagulation of the trabecular meshwork in adult rodent eyes. For genetic models, the DBA/2J mouse model of pigmentary glaucoma, the LTBP2 mutant feline model of congenital glaucoma, and the transgenic TBK1 mouse model of normotensive glaucoma were compared with their respective genetically matched healthy controls. DTI parameters, including fractional anisotropy, axial diffusivity, and radial diffusivity, were evaluated along the optic nerve and optic tract. Results Significantly elevated IOP relative to controls was observed in each animal model except for the transgenic TBK1 mice. Significantly lower fractional anisotropy and higher radial diffusivity were observed along the visual pathways of the microbead- and laser-induced rodent models, the DBA/2J mice, and the LTBP2-mutant cats compared with their respective healthy controls. The DBA/2J mice also exhibited lower axial diffusivity, which was not observed in the other models examined. No apparent DTI change was observed in the transgenic TBK1 mice compared with controls. Conclusions Chronic IOP elevation was accompanied by decreased fractional anisotropy and increased radial diffusivity along the optic nerve or optic tract, suggestive of disrupted microstructural integrity in both inducible and genetic glaucoma animal models. The effects on axial diffusivity differed between models, indicating that this DTI metric may represent different aspects of pathological changes over time and with severity.
Collapse
Affiliation(s)
- Max K Colbert
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States
| | - Leon C Ho
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Yolandi van der Merwe
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Xiaoling Yang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Gillian J McLellan
- Department of Ophthalmology and Visual Sciences, University of Wisconsin - Madison, Madison, Wisconsin, United States.,McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, Wisconsin, United States
| | - Samuel A Hurley
- Department of Radiology, University of Wisconsin - Madison, Madison, Wisconsin, United States
| | - Aaron S Field
- Department of Radiology, University of Wisconsin - Madison, Madison, Wisconsin, United States
| | - Hongmin Yun
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Ian P Conner
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Carlos Parra
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States
| | - Muneeb A Faiq
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States
| | - John H Fingert
- Department of Ophthalmology and Visual Sciences, University of Iowa College of Medicine, Iowa City, Iowa, United States
| | - Gadi Wollstein
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States.,Center for Neural Science, College of Arts and Science, New York University, New York, New York, United States.,Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States
| | - Joel S Schuman
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States.,Center for Neural Science, College of Arts and Science, New York University, New York, New York, United States.,Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States.,Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States
| | - Kevin C Chan
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States.,Center for Neural Science, College of Arts and Science, New York University, New York, New York, United States.,Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States.,Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States.,Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States
| |
Collapse
|
15
|
Visual Disfunction due to the Selective Effect of Glutamate Agonists on Retinal Cells. Int J Mol Sci 2021; 22:ijms22126245. [PMID: 34200611 PMCID: PMC8230349 DOI: 10.3390/ijms22126245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023] Open
Abstract
One of the causes of nervous system degeneration is an excess of glutamate released upon several diseases. Glutamate analogs, like N-methyl-DL-aspartate (NMDA) and kainic acid (KA), have been shown to induce experimental retinal neurotoxicity. Previous results have shown that NMDA/KA neurotoxicity induces significant changes in the full field electroretinogram response, a thinning on the inner retinal layers, and retinal ganglion cell death. However, not all types of retinal neurons experience the same degree of injury in response to the excitotoxic stimulus. The goal of the present work is to address the effect of intraocular injection of different doses of NMDA/KA on the structure and function of several types of retinal cells and their functionality. To globally analyze the effect of glutamate receptor activation in the retina after the intraocular injection of excitotoxic agents, a combination of histological, electrophysiological, and functional tools has been employed to assess the changes in the retinal structure and function. Retinal excitotoxicity caused by the intraocular injection of a mixture of NMDA/KA causes a harmful effect characterized by a great loss of bipolar, amacrine, and retinal ganglion cells, as well as the degeneration of the inner retina. This process leads to a loss of retinal cell functionality characterized by an impairment of light sensitivity and visual acuity, with a strong effect on the retinal OFF pathway. The structural and functional injury suffered by the retina suggests the importance of the glutamate receptors expressed by different types of retinal cells. The effect of glutamate agonists on the OFF pathway represents one of the main findings of the study, as the evaluation of the retinal lesions caused by excitotoxicity could be specifically explored using tests that evaluate the OFF pathway.
Collapse
|
16
|
Oswald J, Kegeles E, Minelli T, Volchkov P, Baranov P. Transplantation of miPSC/mESC-derived retinal ganglion cells into healthy and glaucomatous retinas. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:180-198. [PMID: 33816648 PMCID: PMC7994731 DOI: 10.1016/j.omtm.2021.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/06/2021] [Indexed: 12/11/2022]
Abstract
Optic neuropathies, including glaucoma, are a group of neurodegenerative diseases, characterized by the progressive loss of retinal ganglion cells (RGCs), leading to irreversible vision loss. While previous studies demonstrated the potential to replace RGCs with primary neurons from developing mouse retinas, their use is limited clinically. We demonstrate successful transplantation of mouse induced pluripotent stem cell (miPSC)/mouse embryonic stem cell (mESC)-derived RGCs into healthy and glaucomatous mouse retinas, at a success rate exceeding 65% and a donor cell survival window of up to 12 months. Transplanted Thy1-GFP+ RGCs were able to polarize within the host retina and formed axonal processes that followed host axons along the retinal surface and entered the optic nerve head. RNA sequencing of donor RGCs re-isolated from host retinas at 24 h and 1 week post-transplantation showed upregulation of cellular pathways mediating axonal outgrowth, extension, and guidance. Additionally, we provide evidence of subtype-specific diversity within miPSC-derived RGCs prior to transplantation.
Collapse
Affiliation(s)
- Julia Oswald
- The Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Evgenii Kegeles
- Life Sciences Research Center, Moscow Institute of Physics and Technology, Dolgoprudniy 141700, Russia
| | - Tomas Minelli
- The Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Pavel Volchkov
- Life Sciences Research Center, Moscow Institute of Physics and Technology, Dolgoprudniy 141700, Russia
- Research Institute of Personalized Medicine, National Center for Personalized Medicine of Endocrine Diseases, The National Medical Research Center for Endocrinology, Moscow 117036, Russia
| | - Petr Baranov
- The Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Corresponding author: Petr Baranov, The Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
17
|
Eastlake K, Jayaram H, Luis J, Hayes M, Khaw PT, Limb GA. Strain Specific Responses in a Microbead Rat Model of Experimental Glaucoma. Curr Eye Res 2021; 46:387-397. [PMID: 32842792 PMCID: PMC8025805 DOI: 10.1080/02713683.2020.1805472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/13/2020] [Accepted: 07/23/2020] [Indexed: 11/15/2022]
Abstract
PURPOSE A major challenge in glaucoma research is the lack of reproducible animal models of RGC and optic nerve damage, the characteristic features of this condition. We therefore examined the glaucomatous responses of two different rat strains, the Brown Norway (BN) and Lister Hooded (LH) rats, to high intraocular pressure (IOP) induced by injection of magnetic beads into the anterior chamber. METHODS Magnetic microsphere suspensions (20 µl of 5-20 mg/ml) were injected into the anterior chamber of BN (n = 9) or LH (N = 15) rats. Animals from each strain were divided into three groups, each receiving a different dose of microspheres. IOP was measured over 4 weeks using a rebound tonometer. Retinal ganglion cell (RGC) damage and function were assessed using scotopic electroretinograms (ERGs), retinal flatmounts and optic nerve histology. ANOVA and Student's t-tests were used to analyse the data. RESULTS A significant elevation in IOP was observed in BN rats receiving injections of 20 mg (37.18 ± 12.28 mmHg) or 10 mg microspheres/ml (36.95 ± 13.63 mmHg) when compared with controls (19.63 ± 4.29 mmHg) (p < .001) over 2 weeks. This correlated with a significant impairment of RGC function, as determined by scotopic ERG (p < .001), reduction in axon number (p < .05) and lower RGC density (P < .05) in animals receiving 20 mg or 10 mg microspheres/ml as compared with controls. LH rats receiving similar microsphere doses showed reduced scotopic ERG function (p < .001) after 2 weeks. No changes in IOP was seen in this strain, although a reduction in axon density was observed in optic nerve cross-sections (p < .05). Initial changes in IOP and ERG responses observed in BN rats remained unchanged for a duration of 7 weeks. In LH animals, ERG responses were decreased at 1-2 weeks and returned to control levels after 5 weeks. CONCLUSIONS Although this model was easily reproducible in BN rats, the phenotype of injury observed in LH rats was very different from that observed in BN animals. We suggest that differences in the glaucomatous response observed in these two strains may be ascribed to anatomical and physiological differences and merits further investigation.
Collapse
Affiliation(s)
- Karen Eastlake
- NIHR Biomedical Research Centre at Moorfields, Eye Hospitaland UCL Institute of Ophthalmology, London, UK
| | - Hari Jayaram
- NIHR Biomedical Research Centre at Moorfields, Eye Hospitaland UCL Institute of Ophthalmology, London, UK
| | - Joshua Luis
- NIHR Biomedical Research Centre at Moorfields, Eye Hospitaland UCL Institute of Ophthalmology, London, UK
| | - Matthew Hayes
- NIHR Biomedical Research Centre at Moorfields, Eye Hospitaland UCL Institute of Ophthalmology, London, UK
| | - Peng T. Khaw
- NIHR Biomedical Research Centre at Moorfields, Eye Hospitaland UCL Institute of Ophthalmology, London, UK
| | - G. Astrid Limb
- NIHR Biomedical Research Centre at Moorfields, Eye Hospitaland UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
18
|
Benning L, Reinehr S, Grotegut P, Kuehn S, Stute G, Dick HB, Joachim SC. Synapse and Receptor Alterations in Two Different S100B-Induced Glaucoma-Like Models. Int J Mol Sci 2020; 21:ijms21196998. [PMID: 32977518 PMCID: PMC7583988 DOI: 10.3390/ijms21196998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/20/2020] [Indexed: 11/03/2022] Open
Abstract
Glaucoma is identified by an irreversible retinal ganglion cell (RGC) loss and optic nerve damage. Over the past few years, the immune system gained importance in its genesis. In a glaucoma-like animal model with intraocular S100B injection, RGC death occurs at 14 days. In an experimental autoimmune glaucoma model with systemic S100B immunization, a loss of RGCs is accompanied by a decreased synaptic signal at 28 days. Here, we aimed to study synaptic alterations in these two models. In one group, rats received a systemic S100B immunization (n = 7/group), while in the other group, S100B was injected intraocularly (n = 6–7/group). Both groups were compared to appropriate controls and investigated after 14 days. While inhibitory post-synapses remained unchanged in both models, excitatory post-synapses degenerated in animals with intraocular S100B injection (p = 0.03). Excitatory pre-synapses tendentially increased in animals with systemic S100B immunization (p = 0.08) and significantly decreased in intraocular ones (p = 0.04). Significantly more N-methyl-d-aspartate (NMDA) receptors (both p ≤ 0.04) as well as gamma-aminobutyric acid (GABA) receptors (both p < 0.03) were observed in S100B animals in both models. We assume that an upregulation of these receptors causes the interacting synapse types to degenerate. Heightened levels of excitatory pre-synapses could be explained by remodeling followed by degeneration.
Collapse
|
19
|
Schnichels S, Paquet-Durand F, Löscher M, Tsai T, Hurst J, Joachim SC, Klettner A. Retina in a dish: Cell cultures, retinal explants and animal models for common diseases of the retina. Prog Retin Eye Res 2020; 81:100880. [PMID: 32721458 DOI: 10.1016/j.preteyeres.2020.100880] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
For many retinal diseases, including age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy (DR), the exact pathogenesis is still unclear. Moreover, the currently available therapeutic options are often unsatisfactory. Research designed to remedy this situation heavily relies on experimental animals. However, animal models often do not faithfully reproduce human disease and, currently, there is strong pressure from society to reduce animal research. Overall, this creates a need for improved disease models to understand pathologies and develop treatment options that, at the same time, require fewer or no experimental animals. Here, we review recent advances in the field of in vitro and ex vivo models for AMD, glaucoma, and DR. We highlight the difficulties associated with studies on complex diseases, in which both the initial trigger and the ensuing pathomechanisms are unclear, and then delineate which model systems are optimal for disease modelling. To this end, we present a variety of model systems, ranging from primary cell cultures, over organotypic cultures and whole eye cultures, to animal models. Specific advantages and disadvantages of such models are discussed, with a special focus on their relevance to putative in vivo disease mechanisms. In many cases, a replacement of in vivo research will mean that several different in vitro models are used in conjunction, for instance to analyze and validate causative molecular pathways. Finally, we argue that the analytical decomposition into appropriate cell and tissue model systems will allow making significant progress in our understanding of complex retinal diseases and may furthermore advance the treatment testing.
Collapse
Affiliation(s)
- Sven Schnichels
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany.
| | - François Paquet-Durand
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Germany
| | - Marina Löscher
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany
| | - Teresa Tsai
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Germany
| | - José Hurst
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Germany
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Kiel, Germany
| |
Collapse
|
20
|
Destructive Effect of Intravitreal Heat Shock Protein 27 Application on Retinal Ganglion Cells and Neurofilament. Int J Mol Sci 2020; 21:ijms21020549. [PMID: 31952234 PMCID: PMC7014083 DOI: 10.3390/ijms21020549] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 01/01/2023] Open
Abstract
Heat shock protein 27 (HSP27) is commonly involved in cellular stress. Increased levels of HSP27 as well as autoantibodies against this protein were previously detected in glaucoma patients. Moreover, systemic immunization with HSP27 induced glaucoma-like damage in rodents. Now, for the first time, the direct effects of an intravitreal HSP27 application were investigated. For this reason, HSP27 or phosphate buffered saline (PBS, controls) was applied intravitreally in rats (n = 12/group). The intraocular pressure (IOP) as well as the electroretinogram recordings were comparable in HSP27 and control eyes 21 days after the injection. However, significantly fewer retinal ganglion cells (RGCs) and amacrine cells were observed in the HSP27 group via immunohistochemistry and western blot analysis. The number of bipolar cells, on the other hand, was similar in both groups. Interestingly, a stronger neurofilament degeneration was observed in HSP27 optic nerves, while no differences were noted regarding the myelination state. In summary, intravitreal HSP27 injection led to an IOP-independent glaucoma-like damage. A degeneration of RGCs as well as their axons and amacrine cells was noted. This suggests that high levels of extracellular HSP27 could have a direct damaging effect on RGCs.
Collapse
|
21
|
Reinehr S, Gomes SC, Gassel CJ, Asaad MA, Stute G, Schargus M, Dick HB, Joachim SC. Intravitreal Therapy Against the Complement Factor C5 Prevents Retinal Degeneration in an Experimental Autoimmune Glaucoma Model. Front Pharmacol 2019; 10:1381. [PMID: 31849650 PMCID: PMC6901014 DOI: 10.3389/fphar.2019.01381] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022] Open
Abstract
In glaucoma, studies revealed an involvement of the complement system. In an experimental autoimmune glaucoma model, immunization with an optic nerve homogenate antigen (ONA) led to retinal ganglion cell (RGC) loss, while intraocular pressure (IOP) remained unchanged. Here, we investigated the therapeutic effect of a complement system inhibition in this model. Hence, rats were immunized with ONA and compared to controls. In one eye of the ONA animals, an antibody against complement factor C5 was intravitreally injected (15 μmol: ONA+C5-I or 25 μmol: ONA+C5-II) before immunization and then every two weeks. IOP was measured weekly. After 6 weeks, spectral-domain optical coherence tomographies (SD-OCT), electroretinograms (ERG), immunohistochemistry, and quantitative real-time PCR analyses were performed. IOP and retinal thickness remained unchanged within all groups. The a-wave amplitudes were not altered in the ONA and ONA+C5-I groups, whereas a decrease was noted in ONA+C5-II animals (p < 0.05). ONA immunization provoked a significant decrease of the b-wave amplitude (p < 0.05), which could be preserved in ONA+C5-I, but not in ONA+C5-II animals. ONA animals showed a loss of RGCs (p = 0.001), while ONA+C5-I and ONA+C5-II retinae had similar cell counts as controls. A significant downregulation of apoptotic Bax/Bcl2 mRNA was noted in ONA+C5-I retinae (p = 0.02). Significantly more C3+ and MAC+ cells were observed in ONA animals (p < 0.001). The amount of C3+ cells in both treatment groups was significantly increased (p < 0.01), while the number of MAC+ cells in the treated retinas did not differ from controls. The number of activated microglia cells remained unchanged in ONA animals, but was increased in the treatment groups (p < 0.05). Recoverin+ cells were diminished in ONA animals (p = 0.049), but not in treated ones. Rho mRNA was downregulated in ONA and in ONA+C5-II retinas (both p = 0.014). Less opsin+ cones were observed in ONA animals (p = 0.009), but not in the treated groups. Our results indicate that the C5 antibody inhibits activation of the complement system, preventing the loss of retinal function as well as RGC, cone bipolar, and photoreceptor loss. Therefore, this approach might be a suitable new treatment for glaucoma patients, in which immune dysregulation plays an important factor for the development and progression of glaucoma.
Collapse
Affiliation(s)
- Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Sara C Gomes
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Caroline J Gassel
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - M Ali Asaad
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Gesa Stute
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Marc Schargus
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany.,Department of Ophthalmology, University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
22
|
Grotegut P, Kuehn S, Meißner W, Dick HB, Joachim SC. Intravitreal S100B Injection Triggers a Time-Dependent Microglia Response in a Pro-Inflammatory Manner in Retina and Optic Nerve. Mol Neurobiol 2019; 57:1186-1202. [DOI: 10.1007/s12035-019-01786-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022]
|
23
|
Tsai T, Reinehr S, Maliha AM, Joachim SC. Immune Mediated Degeneration and Possible Protection in Glaucoma. Front Neurosci 2019; 13:931. [PMID: 31543759 PMCID: PMC6733056 DOI: 10.3389/fnins.2019.00931] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
The underlying pathomechanisms for glaucoma, one of the most common causes of blindness worldwide, are still not identified. In addition to increased intraocular pressure (IOP), oxidative stress, excitotoxicity, and immunological processes seem to play a role. Several pharmacological or molecular/genetic methods are currently investigated as treatment options for this disease. Altered autoantibody levels were detected in serum, aqueous humor, and tissue sections of glaucoma patients. To further analyze the role of the immune system, an IOP-independent, experimental autoimmune glaucoma (EAG) animal model was developed. In this model, immunization with ocular antigens leads to antibody depositions, misdirected T-cells, retinal ganglion cell death and degeneration of the optic nerve, similar to glaucomatous degeneration in patients. Moreover, an activation of the complement system and microglia alterations were identified in the EAG as well as in ocular hypertension models. The inhibition of these factors can alleviate degeneration in glaucoma models with and without high IOP. Currently, several neuroprotective approaches are tested in distinct models. It is necessary to have systems that cover underlying pathomechanisms, but also allow for the screening of new drugs. In vitro models are commonly used, including single cell lines, mixed-cultures, and even organoids. In ex vivo organ cultures, pathomechanisms as well as therapeutics can be investigated in the whole retina. Furthermore, animal models reveal insights in the in vivo situation. With all these models, several possible new drugs and therapy strategies were tested in the last years. For example, hypothermia treatment, neurotrophic factors or the blockage of excitotoxity. However, further studies are required to reveal the pressure independent pathomechanisms behind glaucoma. There is still an open issue whether immune mechanisms directly or indirectly trigger cell death pathways. Hence, it might be an imbalance between protective and destructive immune mechanisms. Moreover, identified therapy options have to be evaluated in more detail, since deeper insights could lead to better treatment options for glaucoma patients.
Collapse
Affiliation(s)
| | | | | | - Stephanie C. Joachim
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
24
|
Todd L, Palazzo I, Suarez L, Liu X, Volkov L, Hoang TV, Campbell WA, Blackshaw S, Quan N, Fischer AJ. Reactive microglia and IL1β/IL-1R1-signaling mediate neuroprotection in excitotoxin-damaged mouse retina. J Neuroinflammation 2019; 16:118. [PMID: 31170999 PMCID: PMC6555727 DOI: 10.1186/s12974-019-1505-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Background Microglia and inflammation have context-specific impacts upon neuronal survival in different models of central nervous system (CNS) disease. Herein, we investigate how inflammatory mediators, including microglia, interleukin 1 beta (IL1β), and signaling through interleukin 1 receptor type 1 (IL-1R1), influence the survival of retinal neurons in response to excitotoxic damage. Methods Excitotoxic retinal damage was induced via intraocular injections of NMDA. Microglial phenotype and neuronal survival were assessed by immunohistochemistry. Single-cell RNA sequencing was performed to obtain transcriptomic profiles. Microglia were ablated by using clodronate liposome or PLX5622. Retinas were treated with IL1β prior to NMDA damage and cell death was assessed in wild type, IL-1R1 null mice, and mice expressing IL-1R1 only in astrocytes. Results NMDA-induced damage included neuronal cell death, microglial reactivity, upregulation of pro-inflammatory cytokines, and genes associated with IL1β-signaling in different types of retinal neurons and glia. Expression of the IL1β receptor, IL-1R1, was evident in astrocytes, endothelial cells, some Müller glia, and OFF bipolar cells. Ablation of microglia with clodronate liposomes or Csf1r antagonist (PLX5622) resulted in elevated cell death and diminished neuronal survival in excitotoxin-damaged retinas. Exogenous IL1β stimulated the proliferation and reactivity of microglia in the absence of damage, reduced numbers of dying cells in damaged retinas, and increased neuronal survival following an insult. IL1β failed to provide neuroprotection in the IL-1R1-null retina, but IL1β-mediated neuroprotection was rescued when expression of IL-1R1 was restored in astrocytes. Conclusions We conclude that reactive microglia provide protection to retinal neurons, since the absence of microglia is detrimental to survival. We propose that, at least in part, the survival-influencing effects of microglia may be mediated by IL1β, IL-1R1, and interactions of microglia and other macroglia. Electronic supplementary material The online version of this article (10.1186/s12974-019-1505-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Levi Todd
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Isabella Palazzo
- Department of Neuroscience, College of Medicine, The Ohio State University, 3020 Graves Hall, 333 W. 10th Ave, Columbus, OH, 43210-1239, USA
| | - Lilianna Suarez
- Department of Neuroscience, College of Medicine, The Ohio State University, 3020 Graves Hall, 333 W. 10th Ave, Columbus, OH, 43210-1239, USA
| | - Xiaoyu Liu
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Leo Volkov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Thanh V Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Warren A Campbell
- Department of Neuroscience, College of Medicine, The Ohio State University, 3020 Graves Hall, 333 W. 10th Ave, Columbus, OH, 43210-1239, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ning Quan
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, USA.,Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, 3020 Graves Hall, 333 W. 10th Ave, Columbus, OH, 43210-1239, USA.
| |
Collapse
|
25
|
Pichavaram P, Palani CD, Patel C, Xu Z, Shosha E, Fouda AY, Caldwell RB, Narayanan SP. Targeting Polyamine Oxidase to Prevent Excitotoxicity-Induced Retinal Neurodegeneration. Front Neurosci 2019; 12:956. [PMID: 30686964 PMCID: PMC6335392 DOI: 10.3389/fnins.2018.00956] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/30/2018] [Indexed: 12/21/2022] Open
Abstract
Dysfunction of retinal neurons is a major cause of vision impairment in blinding diseases that affect children and adults worldwide. Cellular damage resulting from polyamine catabolism has been demonstrated to be a major player in many neurodegenerative conditions. We have previously shown that inhibition of polyamine oxidase (PAO) using MDL 72527 significantly reduced retinal neurodegeneration and cell death signaling pathways in hyperoxia-mediated retinopathy. In the present study, we investigated the impact of PAO inhibition in limiting retinal neurodegeneration in a model of NMDA (N-Methyl-D-aspartate)-induced excitotoxicity. Adult mice (8–10 weeks old) were given intravitreal injections (20 nmoles) of NMDA or NMLA (N-Methyl-L-aspartate, control). Intraperitoneal injection of MDL 72527 (40 mg/kg body weight/day) or vehicle (normal saline) was given 24 h before NMDA or NMLA treatment and continued until the animals were sacrificed (varied from 1 to 7 days). Analyses of retinal ganglion cell (RGC) layer cell survival was performed on retinal flatmounts. Retinal cryostat sections were prepared for immunostaining, TUNEL assay and retinal thickness measurements. Fresh frozen retinal samples were used for Western blotting analysis. A marked decrease in the neuronal survival in the RGC layer was observed in NMDA treated retinas compared to their NMLA treated controls, as studied by NeuN immunostaining of retinal flatmounts. Treatment with MDL 72527 significantly improved survival of NeuN positive cells in the NMDA treated retinas. Excitotoxicity induced neurodegeneration was also demonstrated by reduced levels of synaptophysin and degeneration of inner retinal neurons in NMDA treated retinas compared to controls. TUNEL labeling studies showed increased cell death in the NMDA treated retinas. However, treatment with MDL 72527 markedly reduced these changes. Analysis of signaling pathways during excitotoxic injury revealed the downregulation of pro-survival signaling molecules p-ERK and p-Akt, and the upregulation of a pro-apoptotic molecule BID, which were normalized with PAO inhibition. Our data demonstrate that inhibition of polyamine oxidase blocks NMDA-induced retinal neurodegeneration and promotes cell survival, thus offering a new therapeutic target for retinal neurodegenerative disease conditions.
Collapse
Affiliation(s)
- Prahalathan Pichavaram
- Vision Discovery Institute, Augusta University, Augusta, GA, United States.,College of Allied Health Sciences, Augusta University, Augusta, GA, United States
| | - Chithra Devi Palani
- Vision Discovery Institute, Augusta University, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States.,Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States
| | - Chintan Patel
- Vision Discovery Institute, Augusta University, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Zhimin Xu
- Vision Discovery Institute, Augusta University, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Esraa Shosha
- Vision Discovery Institute, Augusta University, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Abdelrahman Y Fouda
- Vision Discovery Institute, Augusta University, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Ruth B Caldwell
- Vision Discovery Institute, Augusta University, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States.,VA Medical Center, Augusta, GA, United States
| | - Subhadra Priya Narayanan
- Vision Discovery Institute, Augusta University, Augusta, GA, United States.,College of Allied Health Sciences, Augusta University, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States.,Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States.,VA Medical Center, Augusta, GA, United States
| |
Collapse
|
26
|
Gao L, Zheng QJ, Ai LQY, Chen KJ, Zhou YG, Ye J, Liu W. Exploration of the glutamate-mediated retinal excitotoxic damage: a rat model of retinal neurodegeneration. Int J Ophthalmol 2018; 11:1746-1754. [PMID: 30450303 DOI: 10.18240/ijo.2018.11.03] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/11/2018] [Indexed: 02/02/2023] Open
Abstract
AIM To explore the more suitable concentration of glutamate or N-methyl-D-aspartic acid (NMDA) for intravitreal injection to establish a rat model of retinal neurodegeneration. METHODS We injected different doses of glutamate (20 or 50 nmol) or NMDA (40 nmol) into the vitreous chambers of rats, then measured the concentration of glutamate and retinal thickness, quantified apoptotic cells and determined the degree of tau hyperphosphorylation at different time points. T-test was used for comparison of two groups. One-way ANOVA and Turkey's multiple comparisons test were used for comparisons of different groups, and P values below 0.05 were considered statistically significant. RESULTS The glutamate level in the rats treated with 50 nmol of glutamate was twice that of the control group and persisted two weeks. Seven days after intravitreal injection of 50 nmol of glutamate, three parameters [inner retinal thickness (IRT), retinal thickness (RT) and ganglion cell layer (GCL) cell number] were reduced significantly. Furthermore, numerous TUNEL-positive cells were observed in the GCL one day after intravitreal injection of 50 nmol of glutamate, the expression of the apoptosis-related factor cleaved casepase-3 was markedly increased compared with the expression levels in the other treatment groups, and the expression levels of tau s396 and tau s404 were significantly increased compared with those in the control group. CONCLUSION This study demonstrates that the intravitreal injection of 50 nmol of glutamate can establish the more effective retinal neurodegeneration animal model relative to other treatment groups.
Collapse
Affiliation(s)
- Ling Gao
- Department of Ophthalmology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qi-Jun Zheng
- Department of Ophthalmology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Li-Qian-Yu Ai
- Department of Ophthalmology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Kai-Jian Chen
- Department of Ophthalmology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yuan-Guo Zhou
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jian Ye
- Department of Ophthalmology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Liu
- Department of Ophthalmology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
27
|
Kuehn S, Meißner W, Grotegut P, Theiss C, Dick HB, Joachim SC. Intravitreal S100B Injection Leads to Progressive Glaucoma Like Damage in Retina and Optic Nerve. Front Cell Neurosci 2018; 12:312. [PMID: 30319357 PMCID: PMC6169322 DOI: 10.3389/fncel.2018.00312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022] Open
Abstract
The glial protein S100B, which belongs to a calcium binding protein family, is up-regulated in neurological diseases, like multiple sclerosis or glaucoma. In previous studies, S100B immunization led to retinal ganglion cell (RGC) loss in an experimental autoimmune glaucoma (EAG) model. Now, the direct degenerative impact of S100B on the retina and optic nerve was evaluated. Therefore, 2 μl of S100B was intravitreally injected in two concentrations (0.2 and 0.5 μg/μl). At day 3, 14 and 21, retinal neurons, such as RGCs, amacrine and bipolar cells, as well as apoptotic mechanisms were analyzed. Furthermore, neurofilaments, myelin fibers and axons of optic nerves were evaluated. In addition, retinal function and immunoglobulin G (IgG) level in the serum were measured. At day 3, RGCs were unaffected in the S100B groups, when compared to the PBS group. Later, at days 14 and 21, the RGC number as well as the β-III tubulin protein level was reduced in the S100B groups. Only at day 14, active apoptotic mechanisms were noted. The number of amacrine cells was first affected at day 21, while the bipolar cell amount remained comparable to the PBS group. Also, the optic nerve neurofilament structure was damaged from day 3 on. At day 14, numerous swollen axons were observed. The intraocular injection of S100B is a new model for a glaucoma like degeneration. Although the application site was the eye, the optic nerve degenerated first, already at day 3. From day 14 on, retinal damage and loss of function was noted. The RGCs in the middle part of the retina were first affected. At day 21, the damage expanded and RGCs had degenerated in all areas of the retina as well as amacrine cells. Furthermore, elevated IgG levels in the serum were measured at day 21, which could be a sign of a late and S100B independet immune response. In summary, S100B had a direct destroying impact on the axons of the optic nerve. The damage of the retinal cell bodies seems to be a consequence of this axon loss.
Collapse
Affiliation(s)
- Sandra Kuehn
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Wilhelm Meißner
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Pia Grotegut
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
28
|
Eriksen AZ, Eliasen R, Oswald J, Kempen PJ, Melander F, Andresen TL, Young M, Baranov P, Urquhart AJ. Multifarious Biologic Loaded Liposomes that Stimulate the Mammalian Target of Rapamycin Signaling Pathway Show Retina Neuroprotection after Retina Damage. ACS NANO 2018; 12:7497-7508. [PMID: 30004669 PMCID: PMC6117751 DOI: 10.1021/acsnano.8b00596] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/13/2018] [Indexed: 05/08/2023]
Abstract
A common event in optic neuropathies is the loss of axons and death of retinal ganglion cells (RGCs) resulting in irreversible blindness. Mammalian target of rapamycin (mTOR) signaling pathway agonists have been shown to foster axon regeneration and RGC survival in animal models of optic nerve damage. However, many challenges remain in developing therapies that exploit cell growth and tissue remodeling including (i) activating/inhibiting cell pathways synergistically, (ii) avoiding tumorigenesis, and (iii) ensuring appropriate physiological tissue function. These challenges are further exacerbated by the need to overcome ocular physiological barriers and clearance mechanisms. Here we present liposomes loaded with multiple mTOR pathway stimulating biologics designed to enhance neuroprotection after retina damage. Liposomes were loaded with ciliary neurotrophic factor, insulin-like growth factor 1, a lipopeptide N-fragment osteopontin mimic, and lipopeptide phosphatase tension homologue inhibitors for either the ATP domain or the c-terminal tail. In a mouse model of N-methyl-d-aspartic acid induced RGC death, a single intravitreal administration of liposomes reduced both RGC death and loss of retina electrophysiological function. Furthermore, combining liposomes with transplantation of induced pluripotent stem cell derived RGCs led to an improved electrophysiological outcome in mice. The results presented here show that liposomes carrying multiple signaling pathway modulators can facilitate neuroprotection and transplant electrophysiological outcome.
Collapse
Affiliation(s)
- Anne Z. Eriksen
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Rasmus Eliasen
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Julia Oswald
- Schepens
Eye Research Institute, Massachusetts Eye and Ear, 20 Staniford Street, Boston, Massachusetts 02114, United States
| | - Paul J. Kempen
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Fredrik Melander
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Thomas L. Andresen
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Michael Young
- Schepens
Eye Research Institute, Massachusetts Eye and Ear, 20 Staniford Street, Boston, Massachusetts 02114, United States
| | - Petr Baranov
- Schepens
Eye Research Institute, Massachusetts Eye and Ear, 20 Staniford Street, Boston, Massachusetts 02114, United States
| | - Andrew J. Urquhart
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
29
|
Nogo-A inactivation improves visual plasticity and recovery after retinal injury. Cell Death Dis 2018; 9:727. [PMID: 29950598 PMCID: PMC6021388 DOI: 10.1038/s41419-018-0780-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/02/2018] [Accepted: 06/06/2018] [Indexed: 12/24/2022]
Abstract
Myelin-associated proteins such as Nogo-A are major inhibitors of neuronal plasticity that contribute to permanent neurological impairments in the injured CNS. In the present study, we investigated the influence of Nogo-A on visual recovery after retinal injuries in mice. Different doses of N-methyl-d-aspartate (NMDA) were injected in the vitreous of the left eye to induce retinal neuron death. The visual function was monitored using the optokinetic response (OKR) as a behavior test, and electroretinogram (ERG) and local field potential (LFP) recordings allowed to assess changes in retinal and cortical neuron activity, respectively. Longitudinal OKR follow-ups revealed reversible visual deficits after injection of NMDA ≤ 1 nmole in the left eye and concomitant functional improvement in the contralateral visual pathway of the right eye that was let intact. Irreversible OKR loss observed with NMDA ≥ 2 nmol was correlated with massive retinal cell death and important ERG response decline. Strikingly, the OKR mediated by injured and intact eye stimulation was markedly improved in Nogo-A KO mice compared with WT animals, suggesting that the inactivation of Nogo-A promotes visual recovery and plasticity. Moreover, OKR improvement was associated with shorter latency of the N2 wave of Nogo-A KO LFPs relative to WT animals. Strikingly, intravitreal injection of anti-Nogo-A antibody (11C7) in the injured eye exerted positive effects on cortical LFPs. This study presents the intrinsic ability of the visual system to recover from NMDA-induced retinal injury and its limitations. Nogo-A neutralization may promote visual recovery in retinal diseases such as glaucoma.
Collapse
|
30
|
Talreja D, Cashman SM, Dasari B, Kumar B, Kumar-Singh R. G-quartet oligonucleotide mediated delivery of functional X-linked inhibitor of apoptosis protein into retinal cells following intravitreal injection. Exp Eye Res 2018; 175:20-31. [PMID: 29864441 DOI: 10.1016/j.exer.2018.05.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022]
Abstract
There is currently no efficient method available for the delivery of full length functional proteins into the cytoplasm of retinal cells in vivo. Historically, the most successful approach for the treatment of retinal diseases has been intravitreal injection of antibodies or recombinant proteins, but this approach is not yet utilized for the delivery of proteins that require intracellular access for a therapeutic effect. Here we describe a platform for the delivery of functional proteins into ganglion cells, photoreceptors and retinal pigment epithelium via intravitreal injection. A nucleolin binding aptamer, AS1411, was biotinylated and complexed with traptavidin and utilized as a platform for the delivery of GFP or X-linked inhibitor of apoptosis (XIAP) proteins by intravitreal injection in BALB/c mice. Retinal sections were analyzed for uptake of proteins in the retina. Apoptosis was induced by intravitreal injection of N-methyl-D-aspartate (NMDA). Retinas were harvested for analysis of TUNEL and caspase 3/7 activity. Intravitreal injection of AS1411-directed GFP or XIAP complexes enabled delivery of these proteins into ganglion cells, photoreceptors and retinal pigment epithelium in vivo. AS1411-XIAP complexes conferred significant protection to cells in the outer and inner nuclear layers following NMDA induced apoptosis. A concomitant decrease in activity of Caspase 3/7 was observed in eyes injected with the AS1411-XIAP complex. In conclusion, AS1411 can be used as a platform for the delivery of therapeutic proteins into retinal cells. This approach can potentially be utilized to introduce a large variety of therapeutically relevant proteins that are previously well characterized to maintain the structural integrity and function of retina, thus, preventing vision loss due to ocular trauma or inherited retinal degeneration.
Collapse
Affiliation(s)
- Deepa Talreja
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Siobhan M Cashman
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Bhanu Dasari
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Binit Kumar
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Rajendra Kumar-Singh
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
31
|
Fewer Functional Deficits and Reduced Cell Death after Ranibizumab Treatment in a Retinal Ischemia Model. Int J Mol Sci 2018; 19:ijms19061636. [PMID: 29857531 PMCID: PMC6032266 DOI: 10.3390/ijms19061636] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/22/2018] [Indexed: 12/25/2022] Open
Abstract
Retinal ischemia is an important factor in several eye disorders. To investigate the impact of VEGF inhibitors, as a therapeutic option, we studied these in a retinal ischemia animal model. Therefore, animals received bevacizumab or ranibizumab intravitreally one day after ischemia induction. Via electroretinography, a significant decrease in a- and b-wave amplitudes was detected fourteen days after ischemia, but they were reduced to a lesser extent in the ranibizumab group. Ischemic and bevacizumab retinae displayed fewer retinal ganglion cells (RGCs), while no significant cell loss was noted in the ranibizumab group. Apoptosis was reduced after therapy. More autophagocytotic cells were observed in ischemic and bevacizumab eyes, but not in ranibizumab eyes. Additionally, more microglia, as well as active ones, were revealed in all ischemic groups, but the increase was less prominent under ranibizumab treatment. Fewer cone bipolar cells were detected in ischemic eyes, in contrast to bevacizumab and ranibizumab-treated ones. Our results demonstrate a reduced apoptosis and autophagocytosis rate after ranibizumab treatment. Furthermore, a certain protection was seen regarding functionality, RGC, and bipolar cell availability, as well as microglia activation by ranibizumab treatment after ischemic damage. Thus, ranibizumab could be an option for treatment of retinal ischemic injury.
Collapse
|
32
|
Kuehn S, Reinehr S, Stute G, Rodust C, Grotegut P, Hensel AT, Dick HB, Joachim SC. Interaction of complement system and microglia activation in retina and optic nerve in a NMDA damage model. Mol Cell Neurosci 2018; 89:95-106. [PMID: 29738834 DOI: 10.1016/j.mcn.2018.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/14/2018] [Accepted: 05/04/2018] [Indexed: 01/01/2023] Open
Abstract
It is known that intravitreally injected N-methyl-d-aspartate (NMDA) leads to fast retina and optic nerve degeneration and can directly activate microglia. Here, we analyzed the relevance for microglia related degenerating factors, the proteins of the complement system, at a late stage in the NMDA damage model. Therefore, different doses of NMDA (0 (PBS), 20, 40, 80 nmol) were intravitreally injected in rat eyes. Proliferative and activated microglia/macrophages (MG/Mϕ) were found in retina and optic nerve 2 weeks after NMDA injection. All three complement pathway proteins were activated in retinas after 40 and 80 nmol NMDA treatment. 80 nmol NMDA injection also lead to more numerous depositions of complement factors C3 and membrane attack complex (MAC) in retina and MAC in optic nerve. Additionally, more MAC+ depositions were detected in optic nerves of the 40 nmol NMDA group. In this NMDA model, the retina is first affected followed by optic nerve damage. However, we found initiating complement processes in the retina, while more deposits of the terminal complex were present 2 weeks after NMDA injection in the optic nerve. The complement system can be activated in waves and possibly a second wave is still on-going in the retina, while the first activation wave is in the final phase in the optic nerve. Only the damaged tissues showed microglia activation as well as proliferation and an increase of complement proteins. Interestingly, the microglia/macrophages (MG/Mϕ) in this model were closely connected with the inductors of the classical and lectin pathway, but not with the alternative pathway. However, all three initiating complement pathways were upregulated in the retina. The alternative pathway seems to be triggered by other mechanisms in this NMDA model. Our study showed an ongoing interaction of microglia and complement proteins in a late stage of a degenerative process.
Collapse
Affiliation(s)
- Sandra Kuehn
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Gesa Stute
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Cara Rodust
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Pia Grotegut
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Alexander-Tobias Hensel
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany.
| |
Collapse
|
33
|
Huang W, Hu F, Wang M, Gao F, Xu P, Xing C, Sun X, Zhang S, Wu J. Comparative analysis of retinal ganglion cell damage in three glaucomatous rat models. Exp Eye Res 2018; 172:112-122. [PMID: 29605491 DOI: 10.1016/j.exer.2018.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/21/2018] [Accepted: 03/19/2018] [Indexed: 10/17/2022]
Abstract
Progressive retinal ganglion cell (RGC) death is the major cause of retinal nerve fiber layer thinning and visual field defects in glaucoma. The purpose of this study was to compare RGC damage in three commonly used glaucomatous rat models. These models were generated by (i) injection of paramagnetic microbeads into the anterior chamber; (ii) cauterization of three episcleral veins of the eye (EVC); and (iii) intravitreal injection of N-Methyl-D-Aspartate (NMDA). Intraocular pressure (IOP) was measured with a rebound tonometer at 6, 12, and 18 h; 1, 3, and 5 days; and 1, 2, 3, 4, 6, and 8 weeks. We measured the RGC density of the three glaucomatous models in the flat-mounted retina by immunofluorescence. Subsequently, the thicknesses of both retinal ganglion cell layer (GCL) and inner retinal layer (IRL) were analyzed by hematoxylin and eosin staining of retinal sections. The visual functional deterioration was evaluated by measurement of the photopic negative response (PhNR) of different models. The IOP averages during three weeks were 22.35 ± 1.23 mmHg (mean ± SD), 20.91 ± 1.97 mmHg, and 9.67 ± 0.42 mmHg, with 50.2%, 44.00% and 66.76% RGC loss by 8 weeks, respectively, in the microbead group, EVC group and NMDA group. Decreased thickness in the GCL was observed in all three groups, while the thickness of IRL and ONL was decreased in the EVC and NMDA groups. Significant positive correlation of RGC loss rate with ΔIOP integral were demonstrated in both microbead and EVC models. Moreover, we found that the PhNR amplitudes declined early by the first day in the NMDA group, 5 days later in the EVC group and by 7 days in the microbead group. Each glaucomatous rat model has its strength and weakness. Our study provides detailed data for choosing suitable animal models to advance glaucoma research.
Collapse
Affiliation(s)
- Wanjing Huang
- From the Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Fangyuan Hu
- From the Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China; Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Min Wang
- From the Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Fengjuan Gao
- From the Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Ping Xu
- From the Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China; Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Chao Xing
- From the Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China; Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Xinghuai Sun
- From the Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China; Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Shenghai Zhang
- From the Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China; Key Laboratory of Myopia, Ministry of Health, Shanghai, China.
| | - Jihong Wu
- From the Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China; Key Laboratory of Myopia, Ministry of Health, Shanghai, China.
| |
Collapse
|