1
|
Liampas I, Tsirelis D, Dastamani M, Pariou SI, Papasavva M, Katsarou MS, Tsolakou A, Tsatsakis A, Bogdanos DP, Drakoulis N, Dardiotis E, Siokas V. Lack of Association between BDNF rs6265 and Multiple Sclerosis: A Case-Control Study. J Mol Neurosci 2024; 75:1. [PMID: 39690366 DOI: 10.1007/s12031-024-02301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND AND OBJECTIVES Data on the association between BDNF rs6265 and multiple sclerosis (MS) are scarce and heterogeneous. MATERIALS AND METHODS We undertook a case-control study design. Newly diagnosed individuals with MS based on the 2017 revision of the McDonald criteria were recruited from the Neurology Department of the General University Hospital of Larissa. Healthy controls with a free medical and family history were also recruited. The relationship between BDNF rs6265 and MS was defined as the primary outcome. The association between rs6265 and age of MS onset, spinal lesions, and clinical manifestations at the time of MS onset were defined as the secondary outcomes. RESULTS We genotyped a total of 200 patients with MS and 205 healthy controls, yielding a sample power of approximately 80%. BDNF rs6265 was in Hardy-Weinberg Equilibrium among healthy participants (p = 0.64). No significant relationship was revealed between rs6265 and MS [log-additive OR = 0.83 (0.57,1.21), over-dominant OR = 0.73 (0.48,1.14), recessive OR = 1.24 (0.37,4.12), dominant OR = 0.77 (0.50,1.17), co-dominant OR1 = 0.74 (0.48,1.14) and co-dominant OR2 = 1.13 (0.34,3.80)]. Additionally, rs6265 was unrelated to the age of MS onset according to both unadjusted and sex-adjusted cox-proportional models. Finally, rs6265 was not associated with the presence of spinal lesions (cervical or thoracic) at MS onset, according to both unadjusted and age and sex-adjusted logistic regression models. CONCLUSIONS We failed to establish an association between BDNF rs6265 and the risk of MS, the age of onset, the presence of spinal lesions, and the clinical manifestations at the onset.
Collapse
Affiliation(s)
- Ioannis Liampas
- Department of Neurology, School of Medicine, University Hospital of Larissa, University of Thessaly, 41110, Larissa, Greece
- Laboratory of Neurogenetics, School of Medicine, University of Thessaly, 41110, Larissa, Greece
| | - Daniil Tsirelis
- Department of Neurology, School of Medicine, University Hospital of Larissa, University of Thessaly, 41110, Larissa, Greece
- Laboratory of Neurogenetics, School of Medicine, University of Thessaly, 41110, Larissa, Greece
| | - Metaxia Dastamani
- Department of Neurology, School of Medicine, University Hospital of Larissa, University of Thessaly, 41110, Larissa, Greece
- Laboratory of Neurogenetics, School of Medicine, University of Thessaly, 41110, Larissa, Greece
| | - Stavroula-Ioanna Pariou
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Maria Papasavva
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
- Department of Pharmacy, School of Health Sciences, Frederick University, Nicosia, Cyprus
| | - Martha-Spyridoula Katsarou
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Annia Tsolakou
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University General Hospital of Larissa, University of Thessaly, Viopolis 40500, Larissa, Greece
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Efthimios Dardiotis
- Department of Neurology, School of Medicine, University Hospital of Larissa, University of Thessaly, 41110, Larissa, Greece
- Laboratory of Neurogenetics, School of Medicine, University of Thessaly, 41110, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, School of Medicine, University Hospital of Larissa, University of Thessaly, 41110, Larissa, Greece.
- Laboratory of Neurogenetics, School of Medicine, University of Thessaly, 41110, Larissa, Greece.
- Department of Neurology, Laboratory of Neurogenetics, Faculty of Medicine, University Hospital of Larissa, University of Thessaly, Mezourlo Hill, 41100, Biopolis, Greece.
| |
Collapse
|
2
|
Arneth B. Genes, Gene Loci, and Their Impacts on the Immune System in the Development of Multiple Sclerosis: A Systematic Review. Int J Mol Sci 2024; 25:12906. [PMID: 39684620 DOI: 10.3390/ijms252312906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Multiple sclerosis (MS) is a condition that is characterized by damage to the central nervous system (CNS) that causes patients to experience cognitive and physical difficulties. Although the disease has a complex etiology that involves genetic and environmental factors, little is known about the role of genes and gene loci in its development. Aims: This study aimed to investigate the effects of genes and gene loci on the immune system during the development of MS. We aimed to identify the main genes and gene loci that play roles in MS pathogenesis and the implications for the future development of clinical treatment approaches. A systematic review of articles published over the last decade was conducted. This review focused on studies about the genetic and epigenetic mechanisms underlying MS onset and progression. Genome-wide association studies (GWASs) as well as papers describing the role of the immune system in disease development were prioritized. Key genetic loci and immune system-related genes, such as HLA class II genes, are associated with MS susceptibility. Studies have also shown that epigenetic modifications, such as DNA methylation, influence disease progression via the immune system.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, Feulgenstr. 12, 35392 Giessen, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldinger Str., 35043 Marburg, Germany
| |
Collapse
|
3
|
Kiselev I, Kulakova O, Baturina O, Kabilov M, Boyko A, Favorova O. Different genome-wide DNA methylation patterns in CD4+ T lymphocytes and CD14+ monocytes characterize relapse and remission of multiple sclerosis: Focus on GNAS. Mult Scler Relat Disord 2024; 91:105910. [PMID: 39369632 DOI: 10.1016/j.msard.2024.105910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/31/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Relapsing-remitting multiple sclerosis (RRMS) is a most common form of multiple sclerosis in which periods of neurological worsening are followed by periods of clinical remission. RRMS relapses are caused by an acute autoimmune inflammatory process, which can occur in any area of the central nervous system. Although development of exacerbation cannot yet be accurately predicted, various external factors are known to affect its risk. These factors may trigger the pathological process through epigenetic mechanisms of gene expression regulation, first of all, through changes in DNA methylation. METHODS In the present work, we for the first time analyzed genome-wide DNA methylation patterns in CD4+ T lymphocytes and CD14+ monocytes of the same RRMS patients in relapse and remission. The effects of the differential methylation on gene expression were studied using qPCR. RESULTS We found 743 differentially methylated CpG positions (DMPs) in CD4+ cells and only 113 DMPs in CD14+ cells. They were mostly hypermethylated in RRMS relapse in both cell populations. However, the proportion of hypermethylated DMPs (as well as DMPs located within or in close proximity to CpG islands) was significantly higher in CD4+ T lymphocytes. In CD4+ and CD14+ cells we identified 469 and 67 DMP-containing genes, respectively; 25 of them were common for two cell populations. When we conducted a search for differentially methylated genomic regions (DMRs), we found a CD4+ specific DMR hypermethylated in RRMS relapse (adj. p = 0.03) within the imprinted GNAS locus. Total level of the protein-coding GNAS transcripts in CD4+ T cells decreased significantly in the row from healthy control to RRMS remission and then to RRMS relapse (adj. p = 3.1 × 10-7 and 0.011, respectively). CONCLUSION Our findings suggest that the epigenetic mechanism of DNA methylation in immune cells contributes to the development of RRMS relapse. Further studies are now required to validate these results and shed light on the molecular mechanisms underlying the observed GNAS methylation and expression changes.
Collapse
Affiliation(s)
- Ivan Kiselev
- Pirogov Russian National Research Medical University, 117997, Moscow, Ostrovityanova st. 1, Russia.
| | - Olga Kulakova
- Pirogov Russian National Research Medical University, 117997, Moscow, Ostrovityanova st. 1, Russia
| | - Olga Baturina
- Institute of Chemical Biology and Fundamental Medicine, 630090, Novosibirsk, Lavrentiev ave. 8, Russia
| | - Marsel Kabilov
- Institute of Chemical Biology and Fundamental Medicine, 630090, Novosibirsk, Lavrentiev ave. 8, Russia
| | - Alexey Boyko
- Pirogov Russian National Research Medical University, 117997, Moscow, Ostrovityanova st. 1, Russia
| | - Olga Favorova
- Pirogov Russian National Research Medical University, 117997, Moscow, Ostrovityanova st. 1, Russia
| |
Collapse
|
4
|
Reyes-Mata MP, Mireles-Ramírez MA, Griñán-Ferré C, Pallàs M, Pavón L, Guerrero-García JDJ, Ortuño-Sahagún D. Global DNA Methylation and Hydroxymethylation Levels in PBMCs Are Altered in RRMS Patients Treated with IFN-β and GA-A Preliminary Study. Int J Mol Sci 2023; 24:ijms24109074. [PMID: 37240421 DOI: 10.3390/ijms24109074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/15/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic disease affecting the central nervous system (CNS) due to an autoimmune attack on axonal myelin sheaths. Epigenetics is an open research topic on MS, which has been investigated in search of biomarkers and treatment targets for this heterogeneous disease. In this study, we quantified global levels of epigenetic marks using an ELISA-like approach in Peripheral Blood Mononuclear Cells (PBMCs) from 52 patients with MS, treated with Interferon beta (IFN-β) and Glatiramer Acetate (GA) or untreated, and 30 healthy controls. We performed media comparisons and correlation analyses of these epigenetic markers with clinical variables in subgroups of patients and controls. We observed that DNA methylation (5-mC) decreased in treated patients compared with untreated and healthy controls. Moreover, 5-mC and hydroxymethylation (5-hmC) correlated with clinical variables. In contrast, histone H3 and H4 acetylation did not correlate with the disease variables considered. Globally quantified epigenetic DNA marks 5-mC and 5-hmC correlate with disease and were altered with treatment. However, to date, no biomarker has been identified that can predict the potential response to therapy before treatment initiation.
Collapse
Affiliation(s)
- María Paulina Reyes-Mata
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Mario Alberto Mireles-Ramírez
- Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), IMSS, Guadalajara 44340, Mexico
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28220 Madrid, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28220 Madrid, Spain
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - José de Jesús Guerrero-García
- Banco de Sangre Central, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), IMSS, Guadalajara 44340, Mexico
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
5
|
Kiselev IS, Kulakova OG, Baturina OA, Kabilov MR, Boyko AN, Favorova OO. [A comparison of DNA methylation profiles of blood mononuclear cells in patients with multiple sclerosis in remission and relapse]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:60-64. [PMID: 37560835 DOI: 10.17116/jnevro202312307260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
OBJECTIVE To study the whole-genome DNA methylation profiles of peripheral blood mononuclear blood cells (PBMCs) of patients with relapsing-remitting multiple sclerosis (RRMS) in remission and relapse in order to assess the contribution of this epigenetic mechanism of gene expression regulation to the activity of the pathological process. MATERIAL AND METHODS Eight patients with RRMS in remission and 6 patients in relapse were included in the study. Methylation levels of DNA CpG sites in PBMCs were analyzed using Infinium HumanMethylation450 BeadChip DNA microarrays. RESULTS Seven differentially methylated positions (DMPs) were identified, of which 3 were hypermethylated (cg02981003, cg18486102, cg19533582) and 4 were hypomethylated (cg16814680, cg1964802, cg18584440, cg08291996) during RRMS relapse. Five DMPs are located in protein-coding genes (GPR123, FAIM2, BTNL2, ZNF8, ASAP2), one in microRNA gene (MIR548N), and one in an intergenic region. For all identified DMPs, we observed a change in DNA methylation levels of more than 20% (range 20.2-57.5%). Hierarchical clustering of DNA samples on the heatmap shows their clear aggregation into separate clusters corresponding to RRMS patients in the stages of relapse and remission. CONCLUSION For the first time it was shown that during relapse and remission of RRMS there are differences in the DNA methylation profile that allow discrimination between these clinical stages. These data indicate the involvement of the epigenetic mechanism of DNA methylation in the activation of the pathological process in RRMS.
Collapse
Affiliation(s)
- I S Kiselev
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - O G Kulakova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - O A Baturina
- Institute of Chemical Biology and Fundamental Medicine - Genomics Core Facility, Novosibirsk, Russia
| | - M R Kabilov
- Institute of Chemical Biology and Fundamental Medicine - Genomics Core Facility, Novosibirsk, Russia
| | - A N Boyko
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency, Moscow, Russia
| | - O O Favorova
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
6
|
Lima M, Aloizou AM, Siokas V, Bakirtzis C, Liampas I, Tsouris Z, Bogdanos DP, Baloyannis SJ, Dardiotis E. Coronaviruses and their relationship with multiple sclerosis: is the prevalence of multiple sclerosis going to increase after the Covid-19 pandemia? Rev Neurosci 2022; 33:703-720. [PMID: 35258237 DOI: 10.1515/revneuro-2021-0148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
The purpose of this review is to examine whether there is a possible (etiological/triggering) relationship between infection with various Coronaviruses, including Severe Acute Respiratory Syndrome-related Coronavirus-2 (SARS-CoV-2), the virus responsible for the Coronavirus disease-19 (Covid-19) pandemia, and Multiple Sclerosis (MS), and whether an increase of the prevalence of MS after the current Covid-19 pandemia should be expected, examining new and preexisting data. Although the exact pathogenesis of MS remains unknown, environmental agents seem to greatly influence the onset of the disease, with viruses being the most popular candidate. Existing data support this possible etiological relationship between viruses and MS, and experimental studies show that Coronaviruses can actually induce an MS-like demyelinating disease in animal models. Findings in MS patients could also be compatible with this coronaviral MS hypothesis. More importantly, current data from the Covid-19 pandemia show that SARS-CoV-2 can trigger autoimmunity and possibly induce autoimmune diseases, in the Central Nervous System as well, strengthening the viral hypothesis of MS. If we accept that Coronaviruses can induce MS, it is reasonable to expect an increase in the prevalence of MS after the Covid-19 pandemia. This knowledge is of great importance in order to protect the aging groups that are more vulnerable against autoimmune diseases and MS specifically, and to establish proper vaccination and health policies.
Collapse
Affiliation(s)
- Maria Lima
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| | - Christos Bakirtzis
- B' Department of Neurology, Multiple Sclerosis Center, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece
| | - Ioannis Liampas
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 40500 Viopolis, Larissa, Greece
| | - Stavros J Baloyannis
- Research Institute for Alzheimer's disease, Aristotle University of Thessaloniki, 57200 Iraklio Lagkada, Thessaloniki, Greece.,1st Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece
| | - Efthimios Dardiotis
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| |
Collapse
|
7
|
Azari H, Karimi E, Shekari M, Tahmasebi A, Nikpoor AR, Negahi AA, Sanadgol N, Mousavi P. Construction of a lncRNA-miRNA-mRNA network to determine the key regulators of the Th1/Th2 imbalance in multiple sclerosis. Epigenomics 2021; 13:1797-1815. [PMID: 34726075 DOI: 10.2217/epi-2021-0296] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The exact epigenetic mechanisms that determine the balance of T helper (Th)1 and Th2 cells and autoimmune responses in multiple sclerosis (MS) remain unclear. We aim to clarify these. Methods: A combination of bioinformatics analysis and molecular evaluations was utilized to identify master hub genes. Results: A competitive endogenous RNA network containing six long noncoding RNAs (lncRNAs), 21 miRNAs and 86 mRNAs was provided through enrichment analysis and a protein-protein interaction network. NEAT1 and MALAT1 were found as differentially expressed lncRNAs using Gene Expression Omnibus (GSE21942). Quantitative real-time PCR results demonstrate dysregulation in the RUNX3 (a regulator of Th1/Th2 balance), GATA3 and TBX21, as well as miR-544a and miR-210-3p (which directly target RUNX3). ELISA also confirmed an imbalance in IFN-γ (Th1)/IL-4 (Th2) in MS patients. Conclusion: Our findings introduce novel biomarkers leading to Th1/Th2 imbalance in MS.
Collapse
Affiliation(s)
- Hanieh Azari
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 79196-93116, Iran
| | - Elham Karimi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 79196-93116, Iran
| | - Mohammad Shekari
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 79196-93116, Iran.,Hormozgan University of Medical Sciences Research Center for Molecular Medicine, Bandar Abbas, 79196-93116, Iran
| | - Ahmad Tahmasebi
- Institute of Biotechnology, Shiraz University, Shiraz, 71441-13131, Iran
| | - Amin Reza Nikpoor
- Hormozgan University of Medical Sciences Research Center for Molecular Medicine, Bandar Abbas, 79196-93116, Iran
| | - Ahmad Agha Negahi
- Department of Internal Medicine, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 79196-93116, Iran
| | - Nima Sanadgol
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, 52074, Germany
| | - Pegah Mousavi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 79196-93116, Iran.,Hormozgan University of Medical Sciences Research Center for Molecular Medicine, Bandar Abbas, 79196-93116, Iran
| |
Collapse
|
8
|
Impact of Body Mass Index on the Age of Relapsing-Remitting Multiple Sclerosis Onset: A Retrospective Study. Neurol Int 2021; 13:517-526. [PMID: 34698268 PMCID: PMC8544404 DOI: 10.3390/neurolint13040051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022] Open
Abstract
A BACKROUND: Multiple sclerosis (MS) is a complex chronic disease of the central nervous system (CNS). Body mass index (BMI), a component of metabolic syndrome (MetS), is considered among the risk factors for MS. However, its role in MS remains ambiguous. OBJECTIVE: To examine the impact of BMI on the age of onset in patients with relapsing-remitting MS (RRMS) in a Greek cohort. METHODS: Data from 821 Greek patients with RRMS were collected. The BMI values were considered as quartiles. Comparisons for the demographic characteristics between the quartiles were made by Pearson’s chi-square test for the categorical variables and by ANOVA for the continuous variables. An overall p-value was calculated corresponding to trend for association. In case of significant association, further post-hoc analysis was performed in order to identify differences in demographic characteristics between specific BMI quartiles groups. Linear regression analyses were used to assess the relationship between BMI and age at onset of MS. RESULTS: Comparisons of participant characteristics by quartiles of BMI revealed that participants with the highest BMI had an older age of disease onset. Results from linear regression analysis showed that with each increase of 1 BMI unit, the age of RRMS onset increases by 0.255 (95% CI 0.136 to 0.374) years, p < 0.001. CONCLUSIONS: Patients with higher BMI, as a parameter of MetS, exhibit increased age of RRMS onset. Our results may present an alternative personalized approach for diagnosis, prognosis, and/or prevention of RRMS.
Collapse
|
9
|
Diniz SN, da Silva CF, de Almeida IT, da Silva Costa FE, de Oliveira EML. INFβ treatment affects global DNA methylation in monocytes of patients with multiple sclerosis. J Neuroimmunol 2021; 355:577563. [PMID: 33853016 DOI: 10.1016/j.jneuroim.2021.577563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 01/31/2023]
Abstract
The combination of genetic and epigenetic influences alters the development of complex diseases. Aberrant patterns of DNA methylation are associated with inflammation and clinical activity in MS. We evaluated the differences between global DNA methylation in lymphocytes and monocytes of patients with MS compared to healthy controls. Thirty-three patients with RRMS (PwRMS) and five healthy individuals were included. DNA was isolated from PBMCs by a phenol-chloroform method, and global methylation was analyzed by Imprint® Methylated DNA Quantification Kit. We observed a cell-type-specific DNA methylation pattern and showed that monocyte global DNA methylation was significantly affected by IFNβ treatment.
Collapse
Affiliation(s)
- Susana Nogueira Diniz
- Universidade Anhanguera de São Paulo, UNIAN, Programa de Pós-Graduação em Farmácia e Biotecnologia e Inovação em Saúde, Rua Raimundo Pereira de Magalhães, 3305, Pirituba, Zip Code: 05145-200 São Paulo, SP, Brazil.
| | - Claudia Forlin da Silva
- Universidade Anhanguera de São Paulo, UNIAN, Programa de Pós-Graduação em Biotecnologia e Inovação em Saúde, Rua Raimundo Pereira de Magalhães, 3305, Pirituba, Zip Code: 05145-200 São Paulo, SP, Brazil.
| | - Inara Tais de Almeida
- Universidade Federal de São Paulo, UNIFESP, Disciplina de Neurologia, Rua Pedro de Toledo, 650, Vila Clementino, Zip Code: 04039-002 São Paulo, SP, Brazil
| | - Felipe Expedito da Silva Costa
- Universidade Anhanguera de São Paulo, UNIAN, Programa de Pós-Graduação em Biotecnologia e Inovação em Saúde, Rua Raimundo Pereira de Magalhães, 3305, Centro Pirituba, Zip Code: 05145-200 São Paulo, SP, Brazil
| | - Enedina Maria Lobato de Oliveira
- Universidade Federal de São Paulo, UNIFESP, Disciplina de Neurologia, Rua Pedro de Toledo, 650, Vila Cldementino, Zip Code: 04039-002 São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Kiselev IS, Kulakova OG, Boyko AN, Favorova OO. DNA Methylation As an Epigenetic Mechanism in the Development of Multiple Sclerosis. Acta Naturae 2021; 13:45-57. [PMID: 34377555 PMCID: PMC8327151 DOI: 10.32607/actanaturae.11043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
The epigenetic mechanisms of gene expression regulation are a group of the key cellular and molecular pathways that lead to inherited alterations in genes' activity without changing their coding sequence. DNA methylation at the C5 position of cytosine in CpG dinucleotides is amongst the central epigenetic mechanisms. Currently, the number of studies that are devoted to the identification of methylation patterns specific to multiple sclerosis (MS), a severe chronic autoimmune disease of the central nervous system, is on a rapid rise. However, the issue of the contribution of DNA methylation to the development of the different clinical phenotypes of this highly heterogeneous disease has only begun to attract the attention of researchers. This review summarizes the data on the molecular mechanisms underlying DNA methylation and the MS risk factors that can affect the DNA methylation profile and, thereby, modulate the expression of the genes involved in the disease's pathogenesis. The focus of our attention is centered on the analysis of the published data on the differential methylation of DNA from various biological samples of MS patients obtained using both the candidate gene approach and high-throughput methods.
Collapse
Affiliation(s)
- I. S. Kiselev
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| | - O. G. Kulakova
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| | - A. N. Boyko
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| | - O. O. Favorova
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| |
Collapse
|
11
|
Aloizou AM, Pateraki G, Anargyros K, Siokas V, Bakirtzis C, Liampas I, Nousia A, Nasios G, Sgantzos M, Peristeri E, Dardiotis E. Transcranial magnetic stimulation (TMS) and repetitive TMS in multiple sclerosis. Rev Neurosci 2021; 32:723-736. [PMID: 33641274 DOI: 10.1515/revneuro-2020-0140] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/05/2021] [Indexed: 01/02/2023]
Abstract
Multiple sclerosis (MS) is the most well-known autoimmune disorder of the central nervous system, and constitutes a major cause of disability, especially in young individuals. A wide array of pharmacological treatments is available, but they have often been proven to be ineffective in ameliorating disease symptomatology or slowing disease progress. As such, non-invasive and non-pharmacological techniques have been gaining more ground. Transcranial magnetic stimulation (TMS) utilizes the electric field generated by a magnetic coil to stimulate neurons and has been applied, usually paired with electroencephalography, to study the underlying pathophysiology of MS, and in repetitive trains, in the form of repetitive transcranial magnetic stimulation (rTMS), to induce long-lasting changes in neuronal circuits. In this review, we present the available literature on the application of TMS and rTMS in the context of MS, with an emphasis on its therapeutic potential on various clinical aspects, while also naming the ongoing trials, whose results are anticipated in the future.
Collapse
Affiliation(s)
- Athina-Maria Aloizou
- Department of Neurology,Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100Larissa, Greece
| | - Georgia Pateraki
- Department of Neurology,Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100Larissa, Greece
| | - Konstantinos Anargyros
- Department of Neurology,Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology,Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100Larissa, Greece
| | - Christos Bakirtzis
- B' Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Liampas
- Department of Neurology,Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100Larissa, Greece
| | - Anastasia Nousia
- Department of Speech and Language Therapy, University of Ioannina, Ioannina, Greece
| | - Grigorios Nasios
- Department of Speech and Language Therapy, University of Ioannina, Ioannina, Greece
| | - Markos Sgantzos
- Department of Neurology,Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100Larissa, Greece
| | - Eleni Peristeri
- Department of Neurology,Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology,Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100Larissa, Greece
| |
Collapse
|
12
|
Thinking outside the Ischemia Box: Advancements in the Use of Multiple Sclerosis Drugs in Ischemic Stroke. J Clin Med 2021; 10:jcm10040630. [PMID: 33562264 PMCID: PMC7914575 DOI: 10.3390/jcm10040630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke (IS) is a major cause of death and disability, despite early intervention. Thrombo-inflammation, the inflammatory process triggered by ischemia, is a concept that ties IS with multiple sclerosis (MS), under the wider ‘umbrella’ of neuroinflammation, i.e., the inflammation of the nervous tissue. Drawing from this, numerous studies have explored the potential of MS disease-modifying drugs in the setting of IS. In this review, we present the available studies and discuss their potential in ameliorating IS outcomes. Based on our search, the vast majority of the studies have been conducted on animals, yielding mostly positive results. Two clinical trials involving natalizumab showed that it does not confer any benefits, but four human studies regarding fingolimod have showcased its potential in improving recovery prospects. However, concerns on safety and other issues are raised, and basic questions still need to be answered.
Collapse
|
13
|
Siokas V, Tsouris Z, Aloizou AM, Bakirtzis C, Liampas I, Koutsis G, Anagnostouli M, Bogdanos DP, Grigoriadis N, Hadjigeorgiou GM, Dardiotis E. Multiple Sclerosis: Shall We Target CD33? Genes (Basel) 2020; 11:E1334. [PMID: 33198164 PMCID: PMC7696272 DOI: 10.3390/genes11111334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic disease of the central nervous system (CNS). Myeloid lineage cells (microglia and macrophages) may participate in the pathogenic mechanisms leading to MS. CD33 is a transmembrane receptor, mainly expressed by myeloid lineage cells. CD33 rs3865444 is a promoter variant previously associated with Alzheimer's disease, whose role in MS remains obscure. OBJECTIVE To assess the role of CD33 rs3865444 in MS risk. METHODS We genotyped 1396 patients with MS and 400 healthy controls for the presence of the CD33 rs3865444 variant. Odds ratios (ORs) with the respective 95% confidence intervals (CIs), were calculated with the SNPStats software, assuming five genetic models (co-dominant, dominant, recessive, over-dominant, and log-additive), with the G allele as the reference allele. The value of 0.05 was set as the threshold for statistical significance. RESULTS CD33 rs3865444 was associated with MS risk in the dominant (GG vs. GT + TT; OR (95% C.I.) = 0.79 (0.63-0.99), p = 0.041) and the over-dominant (GG + TT vs. GT; OR (95% C.I.) = 0.77 (0.61-0.97), p = 0.03) modes of inheritance. Given that the GG genotype was more frequent and the GT genotype was less frequent in MS patients compared to controls-while the observed frequency of the TT genotype did not differ between the two groups-the observed difference in MS risk may be stemming from either the GG (as a risk factor) or the GT (as a protective factor) genotype of CD33 rs3865444. CONCLUSIONS Our preliminary results suggest a possible contribution of CD33 rs3865444 to MS. Therefore, larger multiethnic studies should be conducted, investigating the role of CD33 rs3865444 in MS.
Collapse
Affiliation(s)
- Vasileios Siokas
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (V.S.); (Ζ.Τ.); (A.-M.A.); (I.L.); (G.M.H.)
| | - Zisis Tsouris
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (V.S.); (Ζ.Τ.); (A.-M.A.); (I.L.); (G.M.H.)
| | - Athina-Maria Aloizou
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (V.S.); (Ζ.Τ.); (A.-M.A.); (I.L.); (G.M.H.)
| | - Christos Bakirtzis
- Multiple Sclerosis Center, B’ Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece; (C.B.); (N.G.)
| | - Ioannis Liampas
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (V.S.); (Ζ.Τ.); (A.-M.A.); (I.L.); (G.M.H.)
| | - Georgios Koutsis
- Neurogenetics Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Vassilissis Sofias 72-74 Ave, 11528 Athens, Greece;
| | - Maria Anagnostouli
- Multiple Sclerosis and Demyelinating Diseases Unit and Immunogenetics Laboratory, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece;
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece;
| | - Nikolaos Grigoriadis
- Multiple Sclerosis Center, B’ Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece; (C.B.); (N.G.)
| | - Georgios M. Hadjigeorgiou
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (V.S.); (Ζ.Τ.); (A.-M.A.); (I.L.); (G.M.H.)
- Department of Neurology, Medical School, University of Cyprus, 1678 Nicosia, Cyprus
| | - Efthimios Dardiotis
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (V.S.); (Ζ.Τ.); (A.-M.A.); (I.L.); (G.M.H.)
| |
Collapse
|
14
|
Abstract
Multiple sclerosis (MS) is an aggravating autoimmune disease that cripples young patients slowly with physical, sensory and cognitive deficits. The break of self-tolerance to neuronal antigens is the key to the pathogenesis of MS, with autoreactive T cells causing demyelination that subsequently leads to inflammation-mediated neurodegenerative events in the central nervous system. The exact etiology of MS remains elusive; however, the interplay of genetic and environmental factors contributes to disease development and progression. Given that genetic variation only accounts for a fraction of risk for MS, extrinsic risk factors including smoking, infection and lack of vitamin D or sunshine, which cause changes in gene expression, contribute to disease development through epigenetic regulation. To date, there is a growing body of scientific evidence to support the important roles of epigenetic processes in MS. In this chapter, the three main layers of epigenetic regulatory mechanisms, namely DNA methylation, histone modification and microRNA-mediated gene regulation, will be discussed, with a particular focus on the role of epigenetics on dysregulated immune responses and neurodegenerative events in MS. Also, the potential for epigenetic modifiers as biomarkers and therapeutics for MS will be reviewed.
Collapse
Affiliation(s)
- Vera Sau-Fong Chan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Queen Mary Hospital, Hong Kong SAR, China.
| |
Collapse
|
15
|
Zamani G, Hosseini Bereshneh A, Azizi Malamiri R, Bagheri S, Moradi K, Ashrafi MR, Tavasoli AR, Mohammadi M, Badv RS, Ghahvechi Akbari M, Heidari M. The First Comprehensive Cohort of the Duchenne Muscular Dystrophy in Iranian Population: Mutation Spectrum of 314 Patients and Identifying Two Novel Nonsense Mutations. J Mol Neurosci 2020; 70:1565-1573. [DOI: 10.1007/s12031-020-01594-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/14/2020] [Indexed: 12/17/2022]
|
16
|
Celarain N, Tomas-Roig J. Aberrant DNA methylation profile exacerbates inflammation and neurodegeneration in multiple sclerosis patients. J Neuroinflammation 2020; 17:21. [PMID: 31937331 PMCID: PMC6961290 DOI: 10.1186/s12974-019-1667-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune and demyelinating disease of the central nervous system characterised by incoordination, sensory loss, weakness, changes in bladder capacity and bowel function, fatigue and cognitive impairment, creating a significant socioeconomic burden. The pathogenesis of MS involves both genetic susceptibility and exposure to distinct environmental risk factors. The gene x environment interaction is regulated by epigenetic mechanisms. Epigenetics refers to a complex system that modifies gene expression without altering the DNA sequence. The most studied epigenetic mechanism is DNA methylation. This epigenetic mark participates in distinct MS pathophysiological processes, including blood-brain barrier breakdown, inflammatory response, demyelination, remyelination failure and neurodegeneration. In this study, we also accurately summarised a list of environmental factors involved in the MS pathogenesis and its clinical course. A literature search was conducted using MEDLINE through PubMED and Scopus. In conclusion, an exhaustive study of DNA methylation might contribute towards new pharmacological interventions in MS by use of epigenetic drugs.
Collapse
Affiliation(s)
- Naiara Celarain
- Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEM), Dr. Josep Trueta University Hospital and Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
| | - Jordi Tomas-Roig
- Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEM), Dr. Josep Trueta University Hospital and Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
| |
Collapse
|
17
|
Andravizou A, Dardiotis E, Artemiadis A, Sokratous M, Siokas V, Tsouris Z, Aloizou AM, Nikolaidis I, Bakirtzis C, Tsivgoulis G, Deretzi G, Grigoriadis N, Bogdanos DP, Hadjigeorgiou GM. Brain atrophy in multiple sclerosis: mechanisms, clinical relevance and treatment options. AUTO- IMMUNITY HIGHLIGHTS 2019; 10:7. [PMID: 32257063 PMCID: PMC7065319 DOI: 10.1186/s13317-019-0117-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/28/2019] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system characterized by focal or diffuse inflammation, demyelination, axonal loss and neurodegeneration. Brain atrophy can be seen in the earliest stages of MS, progresses faster compared to healthy adults, and is a reliable predictor of future physical and cognitive disability. In addition, it is widely accepted to be a valid, sensitive and reproducible measure of neurodegeneration in MS. Reducing the rate of brain atrophy has only recently been incorporated as a critical endpoint into the clinical trials of new or emerging disease modifying drugs (DMDs) in MS. With the advent of easily accessible neuroimaging softwares along with the accumulating evidence, clinicians may be able to use brain atrophy measures in their everyday clinical practice to monitor disease course and response to DMDs. In this review, we will describe the different mechanisms contributing to brain atrophy, their clinical relevance on disease presentation and course and the effect of current or emergent DMDs on brain atrophy and neuroprotection.
Collapse
Affiliation(s)
- Athina Andravizou
- Department of Neurology, Laboratory of Neurogenetics, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100 Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100 Larissa, Greece
| | - Artemios Artemiadis
- Immunogenetics Laboratory, 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Aeginition Hospital, Vas. Sophias Ave 72-74, 11528 Athens, Greece
| | - Maria Sokratous
- Department of Neurology, Laboratory of Neurogenetics, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100 Larissa, Greece
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University General Hospital of Larissa, University of Thessaly, Viopolis, 40500 Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100 Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology, Laboratory of Neurogenetics, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100 Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100 Larissa, Greece
| | - Ioannis Nikolaidis
- Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos Bakirtzis
- Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, School of Medicine, University of Athens, “Attikon” University Hospital, Athens, Greece
| | - Georgia Deretzi
- Department of Neurology, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University General Hospital of Larissa, University of Thessaly, Viopolis, 40500 Larissa, Greece
| | - Georgios M. Hadjigeorgiou
- Department of Neurology, Laboratory of Neurogenetics, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100 Larissa, Greece
- Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
18
|
Celarain N, Tomas-Roig J. Changes in Deoxyribonucleic Acid Methylation Contribute to the Pathophysiology of Multiple Sclerosis. Front Genet 2019; 10:1138. [PMID: 31798633 PMCID: PMC6874160 DOI: 10.3389/fgene.2019.01138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/21/2019] [Indexed: 12/02/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system characterized by loss of coordination, weakness, dysfunctions in bladder capacity, bowel movement, and cognitive impairment. Thus, the disease leads to a significant socioeconomic burden. In the pathophysiology of the disease, both genetic and environmental risk factors are involved. Gene x environment interaction is modulated by epigenetic mechanisms. Epigenetics refers to a sophisticated system that regulates gene expression with no changes in the DNA sequence. The most studied epigenetic mechanism is the DNA methylation. In this review, we summarize the data available from the current literature by grouping sets of differentially methylated genes in distinct biological categories: the immune system including innate and adaptive response, the DNA damage, and the central nervous system.
Collapse
Affiliation(s)
- Naiara Celarain
- Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEM), Dr. Josep Trueta University Hospital, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Jordi Tomas-Roig
- Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEM), Dr. Josep Trueta University Hospital, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| |
Collapse
|
19
|
Rikos D, Siokas V, Aloizou AM, Tsouris Z, Aslanidou P, Koutsis G, Anagnostouli M, Bogdanos DP, Grigoriadis N, Hadjigeorgiou GM, Dardiotis E. TREM2 R47H (rs75932628) variant is unlikely to contribute to Multiple Sclerosis susceptibility and severity in a large Greek MS cohort. Mult Scler Relat Disord 2019; 35:116-118. [PMID: 31362167 DOI: 10.1016/j.msard.2019.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/28/2019] [Accepted: 07/19/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Multiple Sclerosis is a multifactorial autoimmune disease of the central nervous system, characterized by focal inflammation, demyelination and secondary axonal injury. TREM2 is a signaling protein which participates in the innate immune system by implication to inflammation, proliferation and phagocytosis. The R47H (rs75392628) rare variant of the TREM2 gene has been related to various neurological diseases and leads to impaired signaling, lipoprotein binding, lipoprotein uptake and surface uptake. AIM To assess the role of TREM2 rs75932628 on MS risk through a genetic candidate gene association case-control study in a Greek population. METHODS 1246 MS cases and 398 controls were genotyped for this variant. RESULTS No MS or healthy subjects carried the variant. CONCLUSION This variant does not seem to play a determining role in the pathogenesis of MS, although further studies examining the presence of TREM2 mutations in other, phylogenetically different populations and the epigenetic regulation of this gene are needed in order to thoroughly investigate its role in MS.
Collapse
Affiliation(s)
- Dimitrios Rikos
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Paraskevi Aslanidou
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Georgios Koutsis
- Neurogenetics Unit, 1st Department of Neurology, University of Athens, Medical School, Eginition Hospital, Athens, Greece
| | - Maria Anagnostouli
- Demyelinating Diseases Unit and Immunogenetics Laboratory, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios P Bogdanos
- Cellular Immunotherapy & Molecular Immunodiagnostics, Biomedical Section, Centre for Research and Technology-Hellas (CERTH), Institute for Research and Technology-Thessaly (IRETETH), Larissa, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios M Hadjigeorgiou
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, University of Thessaly, Larissa, Greece; Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, University of Thessaly, Larissa, Greece.
| |
Collapse
|
20
|
Andravizou A, Artemiadis A, Bakirtzis C, Siokas V, Aloizou AM, Peristeri E, Kapsalaki E, Tsimourtou V, Hadjigeorgiou GM, Dardiotis E. Brain volume dynamics in multiple sclerosis. A case-control study. Neurol Res 2019; 41:936-942. [DOI: 10.1080/01616412.2019.1637041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Athina Andravizou
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | | | - Christos Bakirtzis
- Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University HospitalThessaloniki, Thessaloniki, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Eleni Peristeri
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Eftychia Kapsalaki
- Department of Radiology, University of Thessaly, School of Medicine, Larissa, Greece
| | - Vana Tsimourtou
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Georgios M. Hadjigeorgiou
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, University of Thessaly, Larissa, Greece
- Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| |
Collapse
|
21
|
Dardiotis E, Tsouris Z, Aslanidou P, Aloizou AM, Sokratous M, Provatas A, Siokas V, Deretzi G, Hadjigeorgiou GM. Body mass index in patients with Multiple Sclerosis: a meta-analysis. Neurol Res 2019; 41:836-846. [DOI: 10.1080/01616412.2019.1622873] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Paraskevi Aslanidou
- Department of Neurology, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Maria Sokratous
- Department of Neurology, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Antonios Provatas
- Department of Neurology, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Georgia Deretzi
- Papageorgiou hospital, Neurology clinic, Thessaloniki, Greece
| | - Georgios M. Hadjigeorgiou
- Department of Neurology, University Hospital of Larissa, University of Thessaly, Larissa, Greece
- Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
22
|
Cellular senescence in progenitor cells contributes to diminished remyelination potential in progressive multiple sclerosis. Proc Natl Acad Sci U S A 2019; 116:9030-9039. [PMID: 30910981 PMCID: PMC6500153 DOI: 10.1073/pnas.1818348116] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We identify cellular senescence occurring in neural progenitor cells (NPCs) from primary progressive multiple sclerosis (PPMS). In this study, senescent progenitor cells were identified within demyelinated white matter lesions in progressive MS (PMS) autopsy tissue, and induced pluripotent stem-derived NPCs from patients with PPMS were found to express cellular senescence markers compared with age-matched control NPCs. Reversal of this cellular senescence phenotype, by treatment with rapamycin, restored PPMS NPC-mediated support for oligodendrocyte (OL) maturation. Proteomic and histological analyses identify senescent progenitor cells in PMS as a source of high-mobility group box-1, which limits maturation and promotes transcriptomic changes in OLs. These findings provide evidence that cellular senescence is an active process in PMS that may contribute to limited remyelination in disease. Cellular senescence is a form of adaptive cellular physiology associated with aging. Cellular senescence causes a proinflammatory cellular phenotype that impairs tissue regeneration, has been linked to stress, and is implicated in several human neurodegenerative diseases. We had previously determined that neural progenitor cells (NPCs) derived from induced pluripotent stem cell (iPSC) lines from patients with primary progressive multiple sclerosis (PPMS) failed to promote oligodendrocyte progenitor cell (OPC) maturation, whereas NPCs from age-matched control cell lines did so efficiently. Herein, we report that expression of hallmarks of cellular senescence were identified in SOX2+ progenitor cells within white matter lesions of human progressive MS (PMS) autopsy brain tissues and iPS-derived NPCs from patients with PPMS. Expression of cellular senescence genes in PPMS NPCs was found to be reversible by treatment with rapamycin, which then enhanced PPMS NPC support for oligodendrocyte (OL) differentiation. A proteomic analysis of the PPMS NPC secretome identified high-mobility group box-1 (HMGB1), which was found to be a senescence-associated inhibitor of OL differentiation. Transcriptome analysis of OPCs revealed that senescent NPCs induced expression of epigenetic regulators mediated by extracellular HMGB1. Lastly, we determined that progenitor cells are a source of elevated HMGB1 in human white matter lesions. Based on these data, we conclude that cellular senescence contributes to altered progenitor cell functions in demyelinated lesions in MS. Moreover, these data implicate cellular aging and senescence as a process that contributes to remyelination failure in PMS, which may impact how this disease is modeled and inform development of future myelin regeneration strategies.
Collapse
|
23
|
The Role of MicroRNAs in Patients with Amyotrophic Lateral Sclerosis. J Mol Neurosci 2018; 66:617-628. [PMID: 30415446 DOI: 10.1007/s12031-018-1204-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a serious neurodegenerative disease that affects motor neurons and leads to death within 2 to 3 years after the first symptoms manifest. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression in fundamental cellular processes and, post-transcriptionally, the translation levels of target mRNA transcripts. We searched PubMed for studies that examined miRNAs in ALS patients and attempted to group the results in order to find the strongest miRNA candidate for servings as an ALS biomarker. The studies on humans so far have been diverse, yielding considerably heterogeneous results, as they were performed on a wide variety of tissues and subjects. Among the miRNAs that were found consistently deregulated are miR-206, miR-133, miR-149, and miR-338-3p. Additively, the deregulation of some specific miRNAs seems to compose a miRNA expression profile that is specific for ALS. More research is required in order for the scientific community to reach a consensus.
Collapse
|
24
|
Hadjigeorgiou GM, Kountra PM, Koutsis G, Tsimourtou V, Siokas V, Dardioti M, Rikos D, Marogianni C, Aloizou AM, Karadima G, Ralli S, Grigoriadis N, Bogdanos D, Panas M, Dardiotis E. Replication study of GWAS risk loci in Greek multiple sclerosis patients. Neurol Sci 2018; 40:253-260. [PMID: 30361804 DOI: 10.1007/s10072-018-3617-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/20/2018] [Indexed: 12/28/2022]
Abstract
OBJECTIVES To validate in an ethnically homogeneous Greek multiple sclerosis (MS) cohort, genetic risk factors for the disease, identified through a number of previous multi-ethnic genome-wide association studies (GWAS). METHODS A total of 1228 MS cases and 1014 controls were recruited in the study, from 3 MS centers in Greece. We genotyped 35 susceptibility SNPs that emerged from previous GWAS or meta-analyses of GWAS. Allele and genotype single locus regression analysis, adjusted for gender and site, was performed. Permutation testing was applied to all analyses. RESULTS Six polymorphisms reached statistical significance (permutation p value < 0.05). In particular, rs2760524 of LOC105371664, near RGS1 (permutation p value 0.001), rs3129889 of HLA-DRA, near HLA-DRB1 (permutation p value < 1.00e-04), rs1738074 of TAGAP (permutation p value 0.007), rs703842 of METTL1/CYP27B1 (permutation p value 0.008), rs9596270 of DLEU1 (permutation p value < 1.00e-04), and rs17445836 of LincRNA, near IRF8 (permutation p value 0.001) were identified as susceptibility risk factors in our group. CONCLUSION The current study replicated a number of GWAS susceptibility SNPs, which implies that some similarities between the examined Greek population and the MS genetic architecture of the GWAS populations do exist.
Collapse
Affiliation(s)
| | - Persia-Maria Kountra
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Georgios Koutsis
- Neurogenetics Unit, 1st Department of Neurology, Eginition Hospital, University of Athens, Medical School, Athens, Greece
| | - Vana Tsimourtou
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Maria Dardioti
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Dimitrios Rikos
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Chrysoula Marogianni
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Georgia Karadima
- Neurogenetics Unit, 1st Department of Neurology, Eginition Hospital, University of Athens, Medical School, Athens, Greece
| | - Styliani Ralli
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Bogdanos
- Cellular Immunotherapy & Molecular Immunodiagnostics, Biomedical Section, Centre for Research and Technology-Hellas (CERTH), Institute for Research and Technology-Thessaly (IRETETH), Larissa, Greece
| | - Marios Panas
- Neurogenetics Unit, 1st Department of Neurology, Eginition Hospital, University of Athens, Medical School, Athens, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| |
Collapse
|