1
|
Sparks J, Meggyes M, Makszin L, Jehn V, Lugosi H, Reglodi D, Szereday L. Effects of PACAP Deficiency on Immune Dysfunction and Peyer's Patch Integrity in Adult Mice. Int J Mol Sci 2024; 25:10676. [PMID: 39409005 PMCID: PMC11476422 DOI: 10.3390/ijms251910676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
PACAP (pituitary adenylate cyclase activating polypeptide) is a widespread neuropeptide with cytoprotective and anti-inflammatory effects. It plays a role in innate and adaptive immunity, but data are limited about gut-associated lymphoid tissue. We aimed to reveal differences in Peyer's patches between wild-type (WT) and PACAP-deficient (KO) mice. Peyer's patch morphology from young (3-months-old) and aging (12-15-months-old) mice was examined, along with flow cytometry to assess immune cell populations, expression of checkpoint molecules (PD-1, PD-L1, TIM-3, Gal-9) and functional markers (CD69, granzyme B, perforin) in CD3+, CD4+, and CD8+ T cells. We found slight differences between aging, but not in young, WT, and KO mice. In WT mice, aging reduced CD8+ T cell numbers frequency and altered checkpoint molecule expression (higher TIM-3, granzyme B; lower Gal-9, CD69). CD4+ T cell frequency was higher with similar checkpoint alterations, indicating a regulatory shift. In PACAP KO mice, aging did not change cell population frequencies but led to higher TIM-3, granzyme B and lower PD-1, PD-L1, Gal-9, and CD69 expression in CD4+ and CD8+ T cells, with reduced overall T cell activity. Thus, PACAP deficiency impacts immune dysfunction by altering checkpoint molecules and T cell functionality, particularly in CD8+ T cells, suggesting complex immune responses by PACAP, highlighting its role in intestinal homeostasis and potential implications for inflammatory bowel diseases.
Collapse
MESH Headings
- Animals
- Pituitary Adenylate Cyclase-Activating Polypeptide/genetics
- Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
- Pituitary Adenylate Cyclase-Activating Polypeptide/deficiency
- Mice
- Peyer's Patches/immunology
- Peyer's Patches/metabolism
- Mice, Knockout
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Programmed Cell Death 1 Receptor/metabolism
- Programmed Cell Death 1 Receptor/genetics
- Granzymes/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Lectins, C-Type/metabolism
- Lectins, C-Type/genetics
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Hepatitis A Virus Cellular Receptor 2/genetics
- Aging/immunology
- B7-H1 Antigen/metabolism
- B7-H1 Antigen/genetics
- Mice, Inbred C57BL
- Perforin/metabolism
- Perforin/genetics
- Male
Collapse
Affiliation(s)
- Jason Sparks
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pecs, 7624 Pecs, Hungary; (J.S.); (V.J.); (H.L.)
| | - Matyas Meggyes
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 7624 Pecs, Hungary; (M.M.); (L.S.)
- Janos Szentagothai Research Center, 7624 Pecs, Hungary;
| | - Lilla Makszin
- Janos Szentagothai Research Center, 7624 Pecs, Hungary;
- Institute of Bioanalysis, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Viktoria Jehn
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pecs, 7624 Pecs, Hungary; (J.S.); (V.J.); (H.L.)
| | - Hedvig Lugosi
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pecs, 7624 Pecs, Hungary; (J.S.); (V.J.); (H.L.)
| | - Dora Reglodi
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pecs, 7624 Pecs, Hungary; (J.S.); (V.J.); (H.L.)
| | - Laszlo Szereday
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 7624 Pecs, Hungary; (M.M.); (L.S.)
- Janos Szentagothai Research Center, 7624 Pecs, Hungary;
| |
Collapse
|
2
|
Castorina A, Scheller J, Keay KA, Marzagalli R, Rose-John S, Campbell IL. Increased Expression of the Neuropeptides PACAP/VIP in the Brain of Mice with CNS Targeted Production of IL-6 Is Mediated in Part by Trans-Signalling. Int J Mol Sci 2024; 25:9453. [PMID: 39273398 PMCID: PMC11395455 DOI: 10.3390/ijms25179453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Inflammation with expression of interleukin 6 (IL-6) in the central nervous system (CNS) occurs in several neurodegenerative/neuroinflammatory conditions and may cause neurochemical changes to endogenous neuroprotective systems. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are two neuropeptides with well-established protective and anti-inflammatory properties. Yet, whether PACAP and VIP levels are altered in mice with CNS-restricted, astrocyte-targeted production of IL-6 (GFAP-IL6) remains unknown. In this study, PACAP/VIP levels were assessed in the brain of GFAP-IL6 mice. In addition, we utilised bi-genic GFAP-IL6 mice carrying the human sgp130-Fc transgene (termed GFAP-IL6/sgp130Fc mice) to determine whether trans-signalling inhibition rescued PACAP/VIP changes in the CNS. Transcripts and protein levels of PACAP and VIP, as well as their receptors PAC1, VPAC1 and VPAC2, were significantly increased in the cerebrum and cerebellum of GFAP-IL6 mice vs. wild type (WT) littermates. These results were paralleled by a robust activation of the JAK/STAT3, NF-κB and ERK1/2MAPK pathways in GFAP-IL6 mice. In contrast, co-expression of sgp130Fc in GFAP-IL6/sgp130Fc mice reduced VIP expression and activation of STAT3 and NF-κB pathways, but it failed to rescue PACAP, PACAP/VIP receptors and Erk1/2MAPK phosphorylation. We conclude that forced expression of IL-6 in astrocytes induces the activation of the PACAP/VIP neuropeptide system in the brain, which is only partly modulated upon IL-6 trans-signalling inhibition. Increased expression of PACAP/VIP neuropeptides and receptors may represent a homeostatic response of the CNS to an uncontrolled IL-6 synthesis and its neuroinflammatory consequences.
Collapse
Affiliation(s)
- Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Jurgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany;
| | - Kevin A. Keay
- Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Rubina Marzagalli
- Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Stefan Rose-John
- Institute of Biochemistry, Medical Faculty, Christian Albrechts University, 24098 Kiel, Germany;
| | - Iain L. Campbell
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia;
| |
Collapse
|
3
|
Goksu AY, Kocanci FG, Akinci E, Demir-Dora D, Erendor F, Sanlioglu S, Uysal H. Microglia cells treated with synthetic vasoactive intestinal peptide or transduced with LentiVIP protect neuronal cells against degeneration. Eur J Neurosci 2024; 59:1993-2015. [PMID: 38382910 DOI: 10.1111/ejn.16273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
A common pathological hallmark of neurodegenerative disorders is neuronal cell death, accompanied by neuroinflammation and oxidative stress. The vasoactive intestinal peptide (VIP) is a pleiotropic peptide that combines neuroprotective and immunomodulatory actions. The gene therapy field shows long-term promise for treating a wide range of neurodegenerative diseases (ND). In this study, we aimed to investigate the in vitro efficacy of transduction of microglia using lentiviral gene therapy vectors encoding VIP (LentiVIP). Additionally, we tested the protective effects of the secretome derived from LentiVIP-infected "immortalized human" microglia HMC3 cells, and cells treated with Synthetic VIP (SynVIP), against toxin-induced neurodegeneration. First, LentiVIP, which stably expresses VIP, was generated and purified. VIP secretion in microglial conditioned media (MG CM) for LentiVIP-infected HMC3 microglia cells was confirmed. Microglia cells were activated with lipopolysaccharide, and groups were formed as follows: 1) Control, 2) SynVIP-treated, or 3) LentiVIP-transduced. These MG CM were applied on an in vitro neurodegenerative model formed by differentiated (d)-SH-SY5Y cells. Then, cell survival analysis and apoptotic nuclear staining, besides measurement of oxidative/inflammatory parameters in CM of cells were performed. Activated MG CM reduced survival rates of both control and toxin-applied (d)-SH-SY5Y cells, whereas LentiVIP-infected MG CM and SynVIP-treated ones exhibited better survival rates. These findings were supported by apoptotic nuclear evaluations of (d)-SH-SY5Y cells, alongside oxidative/inflammatory parameters in their CM. LentiVIP seems worthy of further studies for the treatment of ND because of the potential of gene therapy to treat diseases effectively with a single injection.
Collapse
Affiliation(s)
- Azize Yasemin Goksu
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Fatma Gonca Kocanci
- Department of Medical Laboratory Techniques, Vocational High School of Health Services, Alanya Alaaddin Keykubat University, Alanya/Antalya, Turkey
| | - Ersin Akinci
- Brigham and Women's Hospital, Division of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Biotechnology, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| | - Devrim Demir-Dora
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Fulya Erendor
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Salih Sanlioglu
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Hilmi Uysal
- Department of Neurology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
4
|
Meireles FATP, Antunes D, Temerozo JR, Bou-Habib DC, Caffarena ER. PACAP key interactions with PAC1, VPAC1, and VPAC2 identified by molecular dynamics simulations. J Biomol Struct Dyn 2024; 42:3128-3144. [PMID: 37216328 DOI: 10.1080/07391102.2023.2213349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023]
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) belongs to the glucagon/secretin family. PACAP interacts with the pituitary adenylate cyclase-activating polypeptide receptor type 1 (PAC1) and vasoactive intestinal peptide receptors 1 and 2 (VPAC1 and VPAC2), exhibiting functions in the immune, endocrine, and nervous systems. This peptide is upregulated in numerous instances of brain injury, acting as a neuroprotective agent. It can also suppress HIV-1 and SARS-CoV-2 viral replication in vitro. This work aimed to identify, in each peptide-receptor system, the most relevant residues for complex stability and interaction energy communication via Molecular Dynamics (MD), Free Energy calculations, and Protein-energy networks, thus revealing in detail the underlying mechanisms of activation of these receptors. Hydrogen bond formation, interaction energies, and computational alanine scanning between PACAP and its receptors showed that His1, Asp3, Arg12, Arg14, and Lys15 are crucial to the peptide's stability. Furthermore, several PACAP interactions with structurally conserved positions deemed necessary in GPCR B1 activation, including Arg2.60, Lys2.67, and Glu7.42, were significant for the peptide's stability within the receptors. According to the protein-energy network, the connection between Asp3 of PACAP and the receptors' conserved Arg2.60 represents a critical energy communication hub in all complexes. Additionally, the ECDs of the receptors were also found to function as energy communication hubs for PACAP. Although the overall binding mode of PACAP in the three receptors was found to be highly conserved, Arg12 and Tyr13 of PACAP were more prominent in complex with PAC1, while Ser2 of PACAP was with VPAC2. The detailed analyses performed in this work pave the way for using PACAP and its receptors as therapeutic targets.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Deborah Antunes
- Laboratory of Applied Genomics and Bioinnovations, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Jairo R Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Ernesto Raul Caffarena
- Computational Biophysics and Molecular Modeling Group, Scientific Computing Program/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Denes V, Lukats A, Szarka G, Subicz R, Mester A, Kovacs-Valasek A, Geck P, Berta G, Herczeg R, Postyeni E, Gyenesei A, Gabriel R. Long-term Effects of the pituitary-adenylate cyclase-activating Polypeptide (PACAP38) in the Adult Mouse Retina: Microglial Activation and Induction of Neural Proliferation. Neurochem Res 2023; 48:3430-3446. [PMID: 37466802 PMCID: PMC10514177 DOI: 10.1007/s11064-023-03989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023]
Abstract
The degenerative retinal disorders characterized by progressive cell death and exacerbating inflammation lead ultimately to blindness. The ubiquitous neuropeptide, PACAP38 is a promising therapeutic agent as its proliferative potential and suppressive effect on microglia might enable cell replacement and attenuate inflammation, respectively. Our previous finding that PACAP38 caused a marked increase of the amacrine cells in the adult (1-year-old) mouse retina, served as a rationale of the current study. We aimed to determine the proliferating elements and the inflammatory status of the PACAP38-treated retina. Three months old mice were intravitreally injected with 100 pmol PACAP38 at 3 months intervals (3X). Retinas of 1-year-old animals were dissected and effects on cell proliferation, and expression of inflammatory regulators were analyzed. Interestingly, both mitogenic and anti-mitogenic actions were detected after PACAP38-treatment. Further analysis of the mitogenic effect revealed that proliferating cells include microglia, endothelial cells, and neurons of the ganglion cell layer but not amacrine cells. Furthermore, PACAP38 stimulated retinal microglia to polarize dominantly into M2-phenotype but also might cause subsequent angiogenesis. According to our results, PACAP38 might dampen pro-inflammatory responses and help tissue repair by reprogramming microglia into an M2 phenotype, nonetheless, with angiogenesis as a warning side effect.
Collapse
Affiliation(s)
- Viktoria Denes
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary.
| | - Akos Lukats
- Institute of Translational Medicine, Translational Retina Research Group, Semmelweis University, Budapest, Hungary
| | - Gergely Szarka
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| | - Rovena Subicz
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| | - Adrienn Mester
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| | - Andrea Kovacs-Valasek
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| | - Peter Geck
- Department of Medical Education, School of Medicine, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, Pécs, Hungary
| | - Robert Herczeg
- János Szentágothai Research Centre, Bioinformatics Research Group, University of Pécs, 20 Ifjúság str, Pécs, H-7624, Hungary
| | - Etelka Postyeni
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| | - Attila Gyenesei
- János Szentágothai Research Centre, Bioinformatics Research Group, University of Pécs, 20 Ifjúság str, Pécs, H-7624, Hungary
| | - Robert Gabriel
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| |
Collapse
|
6
|
Zeng L, Zhang X, Xia M, Ye H, Li H, Gao Z. Heme and Cu 2+-induced vasoactive intestinal peptide (VIP) tyrosine nitration: A possible molecular mechanism for the attenuated anti-inflammatory effect of VIP in inflammatory diseases. Biochimie 2023; 214:176-187. [PMID: 37481062 DOI: 10.1016/j.biochi.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
Vasoactive intestinal peptide (VIP) is a neuropeptide that play an important role in immunoregulation and anti-inflammation. Numerous inflammatory/autoimmune disorders are associated with decreased VIP binding ability to receptors and diminished VIP activation of cAMP generation in immune cells. However, the mechanisms linking oxidative/nitrative stress to VIP immune dysfunction remain unknown. It has been reported that the elevated heme or Cu2+ in inflammatory diseases can cause oxidative and nitrative damage to nearby biological targets under high oxidative stress conditions, which affects the structure and activity of linked peptides or proteins. Thus, the VIP down-regulated immune response may be interfered by redox metal catalyzed VIP tyrosine nitration. To explore this, we systematically investigated the possibility of heme or Cu2+ to catalyze VIP tyrosine nitration. The results showed that Tyr10 and Tyr22 of VIP can both be nitrated in heme/H2O2/NO2- system as well as in Cu2+/H2O2/NO2- system. Then, we used synthetic mutant VIPs with tyrosine residues substituted by 3-nitrotyrosine to study the impact of tyrosine nitration on VIP activity in SHSY-5Y cells. Our findings demonstrated that VIP nitration dramatically decreased the content of its α-helix and random coil, suggesting that VIP nitration might reduce its affinity to the receptor. This was further confirmed in the cAMP assay. The results showed that 10 nM of these tyrosine nitrated VIPs could significantly (p < 0.01) decrease cAMP secretion compared to the wild type VIP. Our data reveal that the attenuation of the neuroprotective effect of VIP in inflammation-related diseases might be attributed to metal-catalyzed VIP tyrosine nitration.
Collapse
Affiliation(s)
- Lizhen Zeng
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Xuan Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Mengyang Xia
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Huixian Ye
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China; School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi, 343009, PR China.
| | - Hailing Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China.
| | - Zhonghong Gao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China.
| |
Collapse
|
7
|
Witzel R, Block A, Pollmann S, Oetzel L, Fleck F, Bonaterra GA, Kinscherf R, Schwarz A. PACAP regulates VPAC1 expression, inflammatory processes and lipid homeostasis in M1- and M2-macrophages. Front Cardiovasc Med 2023; 10:1264901. [PMID: 37900572 PMCID: PMC10611464 DOI: 10.3389/fcvm.2023.1264901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023] Open
Abstract
Background Pituitary adenylate cyclase-activating polypeptide (PACAP) acts as an anti-atherogenic neuropeptide and plays an important role in cytoprotective, as well as inflammatory processes, and cardiovascular regulation. Therefore, the aim of this study is to investigate the regulatory effects of PACAP and its receptor VPAC1 in relation to inflammatory processes and lipid homeostasis in different macrophage (MΦ) subtypes. Methods To investigate the role of PACAP deficiency in the pathogenesis of atherosclerosis under standard chow (SC) or cholesterol-enriched diet (CED) in vivo, PACAP-/- mice were crossbred with ApoE-/- to generate PACAP-/-/ApoE-/- mice. Lumen stenosis in the aortic arch and different MΦ-subtypes were analyzed in atherosclerotic plaques by quantitative immunohistochemistry. Undifferentiated bone marrow-derived cells (BMDC) from 30-weeks-old ApoE-/- and PACAP-/-/ApoE-/- mice were isolated, differentiated into BMDM1- and BMDM2-MΦ, and incubated with oxidized low-density lipoprotein (oxLDL). In addition, PMA-differentiated human THP-1 MΦ were further differentiated into M1-/M2-MΦ and subsequently treated with PACAP38, the VPAC1 agonist [(Ala11,22,28)VIP], the antagonist (PG 97-269), and/or oxLDL. Uptake/accumulation of oxLDL was analyzed by oxLDL-DyLight™488 and Bodipy™ 493/503. The mRNA expression was analyzed by qRT-PCR, protein levels by Western blot, and cytokine release by ELISA. Results In vivo, after 30 weeks of SC, PACAP-/-/ApoE-/- mice showed increased lumen stenosis compared with ApoE-/- mice. In atherosclerotic plaques of PACAP-/-/ApoE-/- mice under CED, immunoreactive areas of VPAC1, CD86, and CD163 were increased compared with ApoE-/- mice. In vitro, VPAC1 protein levels were increased in PACAP-/-/ApoE-/- BMDM compared with ApoE-/- BMDM, resulting in increased TNF-α mRNA expression in BMDM1-MΦ and decreased TNF-α release in BMDM2-MΦ. Concerning lipid homeostasis, PACAP deficiency decreased the area of lipid droplets in BMDM1-/M2-MΦ with concomitant increasing adipose differentiation-related protein level. In THP-1 M1-/M2-MΦ, the VPAC1 antagonist increased the uptake of oxLDL, whereas the VPAC1 agonist decreased the oxLDL-induced intracellular triglyceride content. Conclusion Our data suggest that PACAP via VPAC1 signaling plays an important regulatory role in inflammatory processes in atherosclerotic plaques and in lipid homeostasis in different MΦ-subtypes, thereby affecting foam cell formation. Therefore, VPAC1 agonists or PACAP may represent a new class of anti-atherogenic therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anja Schwarz
- Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
8
|
Tóth D, Simon G, Reglődi D. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and Sudden Infant Death Syndrome: A Potential Model for Investigation. Int J Mol Sci 2023; 24:15063. [PMID: 37894743 PMCID: PMC10606572 DOI: 10.3390/ijms242015063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Sudden infant death syndrome (SIDS) represents a significant cause of post-neonatal mortality, yet its underlying mechanisms remain unclear. The triple-risk model of SIDS proposes that intrinsic vulnerability, exogenous triggers, and a critical developmental period are required for SIDS to occur. Although case-control studies have identified potential risk factors, no in vivo model fully reflects the complexities observed in human studies. Pituitary adenylate cyclase-activating polypeptide (PACAP), a highly conserved neuropeptide with diverse physiological functions, including metabolic and thermal regulation, cardiovascular adaptation, breathing control, stress responses, sleep-wake regulation and immunohomeostasis, has been subject to early animal studies, which revealed that the absence of PACAP or its specific receptor (PAC1 receptor: PAC1R) correlates with increased neonatal mortality similar to the susceptible period for SIDS in humans. Recent human investigations have further implicated PACAP and PAC1R genes as plausible contributors to the pathomechanism of SIDS. This mini-review comprehensively synthesizes all PACAP-related research from the perspective of SIDS and proposes that PACAP deficiency might offer a promising avenue for studying SIDS.
Collapse
Affiliation(s)
- Dénes Tóth
- Department of Forensic Medicine, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary;
| | - Gábor Simon
- Department of Forensic Medicine, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary;
| | - Dóra Reglődi
- Department of Anatomy, HUN-REG-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary;
| |
Collapse
|
9
|
Broome ST, Mandwie M, Gorrie CA, Musumeci G, Marzagalli R, Castorina A. Early Alterations of PACAP and VIP Expression in the Female Rat Brain Following Spinal Cord Injury. J Mol Neurosci 2023; 73:724-737. [PMID: 37646964 PMCID: PMC10694121 DOI: 10.1007/s12031-023-02151-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Previous evidence shows that rapid changes occur in the brain following spinal cord injury (SCI). Here, we interrogated the expression of the neuropeptides pituitary adenylyl cyclase-activating peptide (PACAP), vasoactive intestinal peptides (VIP), and their binding receptors in the rat brain 24 h following SCI. Female Sprague-Dawley rats underwent thoracic laminectomy; half of the rats received a mild contusion injury at the level of the T10 vertebrate (SCI group); the other half underwent sham surgery (sham group). Twenty-four hours post-surgery, the hypothalamus, thalamus, amygdala, hippocampus (dorsal and ventral), prefrontal cortex, and periaqueductal gray were collected. PACAP, VIP, PAC1, VPAC1, and VPAC2 mRNA and protein levels were measured by real-time quantitative polymerase chain reaction and Western blot. In SCI rats, PACAP expression was increased in the hypothalamus (104-141% vs sham) and amygdala (138-350%), but downregulated in the thalamus (35-95%) and periaqueductal gray (58-68%). VIP expression was increased only in the thalamus (175-385%), with a reduction in the amygdala (51-68%), hippocampus (40-75%), and periaqueductal gray (74-76%). The expression of the PAC1 receptor was the least disturbed by SCI, with decrease expression in the ventral hippocampus (63-68%) only. The expression levels of VPAC1 and VPAC2 receptors were globally reduced, with more prominent reductions of VPAC1 vs VPAC2 in the amygdala (21-70%) and ventral hippocampus (72-75%). In addition, VPAC1 downregulation also extended to the dorsal hippocampus (69-70%). These findings demonstrate that as early as 24 h post-SCI, there are region-specific disruptions of PACAP, VIP, and related receptor transcript and protein levels in supraspinal regions controlling higher cognitive functions.
Collapse
MESH Headings
- Female
- Rats
- Animals
- Pituitary Adenylate Cyclase-Activating Polypeptide/genetics
- Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
- Rats, Sprague-Dawley
- Receptors, Pituitary Hormone/genetics
- Receptors, Pituitary Hormone/metabolism
- Vasoactive Intestinal Peptide/genetics
- Vasoactive Intestinal Peptide/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics
- Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/genetics
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/genetics
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/metabolism
- Spinal Cord Injuries/metabolism
- Brain/metabolism
Collapse
Affiliation(s)
- Sarah Thomas Broome
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia
| | - Mawj Mandwie
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia
| | - Catherine A Gorrie
- Neural Injury Research Unit, School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy
| | - Rubina Marzagalli
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia.
| |
Collapse
|
10
|
Jurcau A, Andronie-Cioara FL, Nistor-Cseppento DC, Pascalau N, Rus M, Vasca E, Jurcau MC. The Involvement of Neuroinflammation in the Onset and Progression of Parkinson's Disease. Int J Mol Sci 2023; 24:14582. [PMID: 37834030 PMCID: PMC10573049 DOI: 10.3390/ijms241914582] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Parkinson's disease is a neurodegenerative disease exhibiting the fastest growth in incidence in recent years. As with most neurodegenerative diseases, the pathophysiology is incompletely elucidated, but compelling evidence implicates inflammation, both in the central nervous system and in the periphery, in the initiation and progression of the disease, although it is not yet clear what triggers this inflammatory response and where it begins. Gut dysbiosis seems to be a likely candidate for the initiation of the systemic inflammation. The therapies in current use provide only symptomatic relief, but do not interfere with the disease progression. Nonetheless, animal models have shown promising results with therapies that target various vicious neuroinflammatory cascades. Translating these therapeutic strategies into clinical trials is still in its infancy, and a series of issues, such as the exact timing, identifying biomarkers able to identify Parkinson's disease in early and pre-symptomatic stages, or the proper indications of genetic testing in the population at large, will need to be settled in future guidelines.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Delia Carmen Nistor-Cseppento
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Nicoleta Pascalau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Marius Rus
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Elisabeta Vasca
- Department of Oral Rehabilitation, Faculty of Medicine “Vasile Goldis” Arad, 310025 Arad, Romania
| | | |
Collapse
|
11
|
Tóth T, Alizadeh H, Polgár B, Csalódi R, Reglődi D, Tamás A. Diagnostic and Prognostic Value of PACAP in Multiple Myeloma. Int J Mol Sci 2023; 24:10801. [PMID: 37445974 DOI: 10.3390/ijms241310801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multifunctional neuropeptide with well-known anti-inflammatory, antioxidant, antitumor, and immunomodulatory effects. PACAP regulates the production of various proinflammatory factors and may influence the complex cytokine network of the bone marrow microenvironment altered by plasma cells, affecting the progression of multiple myeloma (MM) and the development of end-organ damage. The aim of our study was to investigate the changes in PACAP-38 levels in patients with MM to explore its value as a potential biomarker in this disease. We compared the plasma PACAP-38 levels of MM patients with healthy individuals by ELISA method and examined its relationship with various MM-related clinical and laboratory parameters. Lower PACAP-38 levels were measured in MM patients compared with the healthy controls, however, this difference vanished if the patient achieved any response better than partial response. In addition, lower peptide levels were found in elderly patients. Significantly higher PACAP-38 levels were seen in patients with lower stage, lower plasma cell infiltration in bone marrow, lower markers of tumor burden in serum, lower total urinary and Bence-Jones protein levels, and in patients after lenalidomide therapy. Higher PACAP-38 levels in newly diagnosed MM patients predicted longer survival and a higher probability of complete response to treatment. Our findings confirm the hypothesis that PACAP plays an important role in the pathomechanism of MM. Furthermore, our results suggest that PACAP might be used as a valuable, non-invasive, complementary biomarker in diagnosis, and may be utilized for prognosis prediction and response monitoring.
Collapse
Affiliation(s)
- Tünde Tóth
- Department of Anatomy, ELKH-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Hussain Alizadeh
- 1st Department of Medicine, Division of Hematology, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Beáta Polgár
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Renáta Csalódi
- Department of Hematology, Balassa János Hospital of Tolna County, 7100 Szekszárd, Hungary
| | - Dóra Reglődi
- Department of Anatomy, ELKH-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Andrea Tamás
- Department of Anatomy, ELKH-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
12
|
Polarized Anti-Inflammatory Mesenchymal Stem Cells Increase Hippocampal Neurogenesis and Improve Cognitive Function in Aged Mice. Int J Mol Sci 2023; 24:ijms24054490. [PMID: 36901920 PMCID: PMC10003244 DOI: 10.3390/ijms24054490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Age-related decline in cognitive functions is associated with reduced hippocampal neurogenesis caused by changes in the systemic inflammatory milieu. Mesenchymal stem cells (MSC) are known for their immunomodulatory properties. Accordingly, MSC are a leading candidate for cell therapy and can be applied to alleviate inflammatory diseases as well as aging frailty via systemic delivery. Akin to immune cells, MSC can also polarize into pro-inflammatory MSC (MSC1) and anti-inflammatory MSC (MSC2) following activation of Toll-like receptor 4 (TLR4) and TLR3, respectively. In the present study, we apply pituitary adenylate cyclase-activating peptide (PACAP) to polarize bone-marrow-derived MSC towards an MSC2 phenotype. Indeed, we found that polarized anti-inflammatory MSC were able to reduce the plasma levels of aging related chemokines in aged mice (18-months old) and increased hippocampal neurogenesis following systemic administration. Similarly, aged mice treated with polarized MSC displayed improved cognitive function in the Morris water maze and Y-maze assays compared with vehicle- and naïve-MSC-treated mice. Changes in neurogenesis and Y-maze performance were negatively and significantly correlated with sICAM, CCL2 and CCL12 serum levels. We conclude that polarized PACAP-treated MSC present anti-inflammatory properties that can mitigate age-related changes in the systemic inflammatory milieu and, as a result, ameliorate age related cognitive decline.
Collapse
|
13
|
Gallino L, Hauk V, Castagnola L, Vota D, Pascuali N, Parborell F, May M, Fontana V, Merech F, Naguila Z, Waschek J, Leirós CP, Ramhorst R. Vasoactive intestinal peptide deficiency promotes ovarian dysfunction associated to a proinflammatory microenvironment reminiscent of premature aging. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166585. [PMID: 36423894 DOI: 10.1016/j.bbadis.2022.166585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022]
Abstract
Complex immune regulation during pregnancy is required to ensure a successful pregnancy outcome. Vasoactive intestinal peptide (VIP) has local immunoregulatory effects on the ovary, uterus and maternal-fetal interface that favor a tolerogenic maternal microenvironment. Since the VIP Knockout (KO) mice are subfertile, we investigated the mechanisms underlying the effects of VIP deficiency on ovarian physiology and immune homeostasis. Therefore, we studied VIP KO, deficient (HT) and wild type (WT) female mice in estrus at 3 or 8 months of age. Young KO mice showed abnormal cycle timing and regularity associated with dysfunctional ovaries. Ovaries presented higher number of atretic follicles and reduced number of corpora lutea leading to a lower ovulation rates. Part of the VIP KO mice (25 %) failed to ovulate or ovulated oocytes incompetent to be fertilized (50 %). In particular, ovaries of young KO mice exhibited features of premature aging accompanied by a pro-inflammatory milieu with increased levels of IL-1β. A unique macrophage subpopulation identified as "foamy macrophages" was found. On the other hand, aged VIP KO females did not gain body weight probably due to the sustained production of E2. Finally, the adoptive transfer of FOXP3+ cells to infertile VIP KO females resulted in their selective recruitment to the ovary. It increased FOXP3/RORγt and TGFβ/IL-6 ratio improving ovarian microenvironment and pregnancy rate. The present results suggest that VIP contributes to ovarian homeostatic mechanisms required for a successful pregnancy.
Collapse
Affiliation(s)
- Lucila Gallino
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Vanesa Hauk
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Lara Castagnola
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Daiana Vota
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | | | | | - Maria May
- ININFA, Universidad de Buenos Aires, CONICET, Argentina
| | - Vanina Fontana
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Fatima Merech
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Zaira Naguila
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - James Waschek
- The David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Claudia Perez Leirós
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Rosanna Ramhorst
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| |
Collapse
|
14
|
Calo G, Hauk V, Vota D, Van C, Condro M, Gallino L, Ramhorst R, Waschek J, Pérez Leirós C. VPAC1 and VPAC2 receptor deficiencies negatively influence pregnancy outcome through distinct and overlapping modulations of immune, trophoblast and vascular functions. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166593. [PMID: 36328148 PMCID: PMC9772292 DOI: 10.1016/j.bbadis.2022.166593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022]
Abstract
Pregnancy outcome relies on the maintenance of immune and metabolic homeostasis at the maternal fetal interface. Maternal and perinatal morbidity and mortality is associated with impaired placental development. Multiple regulatory effects of the endogenous-produced vasoactive intestinal peptide (VIP) on vascular, metabolic and immune functions at the maternal-fetal interface have been reported. Here we studied the involvement of the two primary high affinity receptors for VIP (VPAC1 and VPAC2) on maternal immune response, placental homeostasis and pregnancy outcome. Targeted disruption of each receptor gene led to altered placental structure, vascular and trophoblast functional markers and shaped the functional profiles of macrophages and neutrophils towards a proinflammatory state. Several changes in pregnant mice were receptor specific: ROS production elicited by VIP on neutrophils was selectively dependent on the presence of VPAC1 whereas apoptosis rate was associated with the VPAC2 deletion. In peritoneal macrophages from pregnant mice, levels of MHC-II, TLR2, and IL-10 were selectively altered in VPAC2 receptor-deficient mice, whereas IL-6 gene expression was reduced only in mice lacking VPAC1 receptors. Additionally, MMP9 mRNA in isolated TGCs was reduced in VPAC2 receptor deleted mice, while the percentage of IL-12 cells in post-phagocytosis macrophage cultures was selectively reduced in VPAC2 receptor deficient mice. The results indicate that manipulation of VPAC1 and VPAC2 receptor affects immune, vascular and metabolic environment at the maternal fetal interface. These mouse models offer new approaches to study pregnancy complications adding new perspectives to the development of VPAC receptor-selective drugs.
Collapse
Affiliation(s)
- Guillermina Calo
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Laboratorio de Inmunofarmacología, Facultad de Ciencias Exactas y Naturales (FCEN-UBA), Buenos Aires, Argentina
| | - Vanesa Hauk
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Laboratorio de Inmunofarmacología, Facultad de Ciencias Exactas y Naturales (FCEN-UBA), Buenos Aires, Argentina
| | - Daiana Vota
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Laboratorio de Inmunofarmacología, Facultad de Ciencias Exactas y Naturales (FCEN-UBA), Buenos Aires, Argentina
| | - Christina Van
- The David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Michael Condro
- The David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Lucila Gallino
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Laboratorio de Inmunofarmacología, Facultad de Ciencias Exactas y Naturales (FCEN-UBA), Buenos Aires, Argentina
| | - Rosanna Ramhorst
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Laboratorio de Inmunofarmacología, Facultad de Ciencias Exactas y Naturales (FCEN-UBA), Buenos Aires, Argentina
| | - James Waschek
- The David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Claudia Pérez Leirós
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Laboratorio de Inmunofarmacología, Facultad de Ciencias Exactas y Naturales (FCEN-UBA), Buenos Aires, Argentina.
| |
Collapse
|
15
|
Sakamoto K, Asano S, Ago Y, Hirokawa T. AlphaFold version 2.0 elucidates the binding mechanism between VIPR2 and KS-133, and reveals an S–S bond (Cys25−Cys192) formation of functional significance for VIPR2. Biochem Biophys Res Commun 2022; 636:10-16. [DOI: 10.1016/j.bbrc.2022.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 11/02/2022]
|
16
|
Figueiredo CA, Düsedau HP, Steffen J, Ehrentraut S, Dunay MP, Toth G, Reglödi D, Heimesaat MM, Dunay IR. The neuropeptide PACAP alleviates T. gondii infection-induced neuroinflammation and neuronal impairment. J Neuroinflammation 2022; 19:274. [PMCID: PMC9675261 DOI: 10.1186/s12974-022-02639-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/23/2022] [Indexed: 11/21/2022] Open
Abstract
Background Cerebral infection with the protozoan Toxoplasma gondii (T. gondii) is responsible for inflammation of the central nervous system (CNS) contributing to subtle neuronal alterations. Albeit essential for brain parasite control, continuous microglia activation and recruitment of peripheral immune cells entail distinct neuronal impairment upon infection-induced neuroinflammation. PACAP is an endogenous neuropeptide known to inhibit inflammation and promote neuronal survival. Since PACAP is actively transported into the CNS, we aimed to assess the impact of PACAP on the T. gondii-induced neuroinflammation and subsequent effects on neuronal homeostasis. Methods Exogenous PACAP was administered intraperitoneally in the chronic stage of T. gondii infection, and brains were isolated for histopathological analysis and determination of pathogen levels. Immune cells from the brain, blood, and spleen were analyzed by flow cytometry, and the further production of inflammatory mediators was investigated by intracellular protein staining as well as expression levels by RT-qPCR. Neuronal and synaptic alterations were assessed on the transcriptional and protein level, focusing on neurotrophins, neurotrophin-receptors and signature synaptic markers. Results Here, we reveal that PACAP administration reduced the inflammatory foci and the number of apoptotic cells in the brain parenchyma and restrained the activation of microglia and recruitment of monocytes. The neuropeptide reduced the expression of inflammatory mediators such as IFN-γ, IL-6, iNOS, and IL-1β. Moreover, PACAP diminished IFN-γ production by recruited CD4+ T cells in the CNS. Importantly, PACAP promoted neuronal health via increased expression of the neurotrophin BDNF and reduction of p75NTR, a receptor related to neuronal cell death. In addition, PACAP administration was associated with increased expression of transporters involved in glutamatergic and GABAergic signaling that are particularly affected during cerebral toxoplasmosis. Conclusions Together, our findings unravel the beneficial effects of exogenous PACAP treatment upon infection-induced neuroinflammation, highlighting the potential implication of neuropeptides to promote neuronal survival and minimize synaptic prejudice. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02639-z.
Collapse
Affiliation(s)
- Caio Andreeta Figueiredo
- grid.5807.a0000 0001 1018 4307Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-Von-Guericke University, Magdeburg, Germany
| | - Henning Peter Düsedau
- grid.5807.a0000 0001 1018 4307Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-Von-Guericke University, Magdeburg, Germany
| | - Johannes Steffen
- grid.5807.a0000 0001 1018 4307Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-Von-Guericke University, Magdeburg, Germany
| | - Stefanie Ehrentraut
- grid.5807.a0000 0001 1018 4307Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-Von-Guericke University, Magdeburg, Germany
| | - Miklos P. Dunay
- grid.483037.b0000 0001 2226 5083Department and Clinic of Surgery and Ophthalmology, University of Veterinary Medicine, Budapest, Hungary
| | - Gabor Toth
- grid.9008.10000 0001 1016 9625Department of Medical Chemistry, University of Szeged, Budapest, Hungary
| | - Dora Reglödi
- grid.9679.10000 0001 0663 9479Department of Anatomy, MTA-PTE PACAP Research Team and Szentagothai Research Center, University of Pecs Medical School, Pecs, Hungary
| | - Markus M. Heimesaat
- grid.6363.00000 0001 2218 4662Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Ildiko Rita Dunay
- grid.5807.a0000 0001 1018 4307Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-Von-Guericke University, Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265Center for Behavioral Brain Sciences – CBBS, Magdeburg, Germany
| |
Collapse
|
17
|
Patko E, Szabo E, Toth D, Tornoczky T, Bosnyak I, Vaczy A, Atlasz T, Reglodi D. Distribution of PACAP and PAC1 Receptor in the Human Eye. J Mol Neurosci 2022; 72:2176-2187. [PMID: 35253081 PMCID: PMC9726800 DOI: 10.1007/s12031-022-01985-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/08/2022] [Indexed: 12/16/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with widespread distribution and diverse biological functions. Several studies show that PACAP has strong cytoprotective effects mediated mostly through its specific PAC1 receptor (PAC1-R) and it plays important roles in several pathological conditions. Its distribution and altered expression are known in various human tissues, but there is no descriptive data about PACAP and its receptors in the human eyebulb. Since PACAP38 is the dominant form of the naturally occurring PACAP, our aim was to investigate the distribution of PACAP38-like immunoreactivity in the human eye and to describe the presence of PAC1-R. Semiquantitative evaluation was performed after routine histology and immunohistochemical labeling on human eye sections. Our results showed high level of immunopositivity in the corneal epithelium and endothelium. Within the vascular layer, the iris and the ciliary body had strong immunopositivity for both PACAP and PAC1-R. Several layers of the retina showed immunoreactivity for PACAP and PAC1-R, but the ganglion cell layer had a special pattern in the immunolabeling. Labeling was observed in the neuropil within the optic nerve in both cases and glial cells displayed immunoreactivity for PAC1-R. In summary, our study indicates the widespread occurrence of PACAP and its specific receptor in the human eye, implying that the results from in vitro and animal studies have translational value and most probably are also present in the human eye.
Collapse
Affiliation(s)
- Evelin Patko
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
| | - Edina Szabo
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
| | - Denes Toth
- Department of Forensic Medicine, Medical School, University of Pecs, 7624, Pecs, Hungary
| | - Tamas Tornoczky
- Department of Pathology, Medical School and Clinical Center, University of Pecs, 7624, Pecs, Hungary
| | - Inez Bosnyak
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
| | - Alexandra Vaczy
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
| | - Tamas Atlasz
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary.
- Szentagothai Research Center, Medical School, University of Pecs, 7624, Pecs, Hungary.
- Department of Sportbiology, University of Pecs, 7624, Pecs, Hungary.
| | - Dora Reglodi
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
- Szentagothai Research Center, Medical School, University of Pecs, 7624, Pecs, Hungary
| |
Collapse
|
18
|
Lund AM, Hannibal J. Localization of the neuropeptides pituitary adenylate cyclase-activating polypeptide, vasoactive intestinal peptide, and their receptors in the basal brain blood vessels and trigeminal ganglion of the mouse CNS; an immunohistochemical study. Front Neuroanat 2022; 16:991403. [PMID: 36387999 PMCID: PMC9643199 DOI: 10.3389/fnana.2022.991403] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are structurally related neuropeptides that are widely expressed in vertebrate tissues. The two neuropeptides are pleiotropic and have been associated with migraine pathology. Three PACAP and VIP receptors have been described: PAC1, VPAC1, and VPAC2. The localization of these receptors in relation to VIP and PACAP in migraine-relevant structures has not previously been shown in mice. In the present study, we used fluorescence immunohistochemistry, well-characterized antibodies, confocal microscopy, and three-dimensional reconstruction to visualize the distribution of PACAP, VIP, and their receptors in the basal blood vessels (circle of Willis), trigeminal ganglion, and brain stem spinal trigeminal nucleus (SP5) of the mouse CNS. We demonstrated a dense network of circularly oriented VIP fibers on the basal blood vessels. PACAP nerve fibers were fewer in numbers compared to VIP fibers and ran along the long axis of the blood vessels, colocalized with calcitonin gene-related peptide (CGRP). The nerve fibers expressing CGRP are believed to be sensorial, with neuronal somas localized in the trigeminal ganglion and PACAP was found in a subpopulation of these CGRP-neurons. Immunostaining of the receptors revealed that only the VPAC1 receptor was present in the basal blood vessels, localized on the surface cell membrane of vascular smooth muscle cells and innervated by VIP fibers. No staining was seen for the PAC1, VPAC1, or VPAC2 receptor in the trigeminal ganglion. However, distinct PAC1 immunoreactivity was found in neurons innervated by PACAP nerve terminals located in the spinal trigeminal nucleus. These findings indicate that the effect of VIP is mediated via the VPAC1 receptor in the basal arteries. The role of PACAP in cerebral arteries is less clear. The localization of PACAP in a subpopulation of CGRP-expressing neurons in the trigeminal ganglion points toward a primary sensory function although a dendritic release cannot be excluded which could stimulate the VPAC1 receptor or the PAC1 and VPAC2 receptors on immune cells in the meninges, initiating neurogenic inflammation relevant for migraine pathology.
Collapse
Affiliation(s)
- Anne Marie Lund
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens Hannibal
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Jens Hannibal,
| |
Collapse
|
19
|
Hawley E, Mia K, Yusuf M, Swanson KC, Doetkott C, Dorsam GP. Messenger RNA Gene Expression Screening of VIP and PACAP Neuropeptides and Their Endogenous Receptors in Ruminants. BIOLOGY 2022; 11:biology11101512. [PMID: 36290416 PMCID: PMC9598725 DOI: 10.3390/biology11101512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022]
Abstract
Vasoactive Intestinal Peptide (VIP) and Pituitary Adenylate-Cyclase-Activating Peptide (PACAP) are anti-inflammatory neuropeptides that play important roles in human and rodent gut microbiota homeostasis and host immunity. Pharmacologically regulating these neuropeptides is expected to have significant health and feed efficiency benefits for agriculturally relevant animals. However, their expression profile in ruminant tissues is not well characterized. To this end, we screened for VIP and PACAP neuropeptides and their endogenous GPCRs using 15 different tissues from wethers and steers by RT-qPCR. Our results revealed relatively similar expression profiles for both VIP and PACAP neuropeptide ligands in the brain and intestinal tissue of both species. In contrast, the tissue expression profiles for VPAC1, VPAC2, and PAC1 were more widespread and disparate, with VPAC1 being the most diversely expressed receptor with mRNA detection in the brain and throughout the gastrointestinal tract. These data are an important first step to allow for future investigations regarding the VIP and PACAP signaling pathways in livestock ruminant species.
Collapse
Affiliation(s)
- Emma Hawley
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Kafi Mia
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Mustapha Yusuf
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Kendall C. Swanson
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Curt Doetkott
- Information Technology Services, North Dakota State University, Fargo, ND 58102, USA
| | - Glenn P. Dorsam
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58102, USA
- Correspondence:
| |
Collapse
|
20
|
Song K, Zheng X, Liu X, Sheng Y, Liu L, Wen L, Shang S, Deng Y, Ouyang Q, Sun X, Li Q, Chen P, Cai G, Chen M, Zhang Y, Liang B, Zhang J, Zhang X, Chen X. Genome-wide association study of SNP- and gene-based approaches to identify susceptibility candidates for lupus nephritis in the Han Chinese population. Front Immunol 2022; 13:908851. [PMID: 36275661 PMCID: PMC9580327 DOI: 10.3389/fimmu.2022.908851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundLupus nephritis (LN) is one of the most common and serious complications of systemic lupus erythaematosus (SLE). Genetic factors play important roles in the pathogenesis of LN and could be used to predict who might develop LN. The purpose of this study was to screen for susceptible candidates of LN across the whole genome in the Han Chinese population.Methods592 LN patients and 453 SLE patients without renal damage were genotyped at 492,970 single nucleotide polymorphisms (SNPs) in the genome-wide association study (GWAS). Fifty-six SNPs were selected for replication in an independent cohort of 188 LN and 171 SLE without LN patients. Further quantitative real-time (qRT) PCR was carried out in 6 LN patients and 6 healthy controls. Gene-based analysis was conducted using the versatile gene-based test for GWAS. Subsequently, enrichment and pathway analyses were performed in the DAVID database.ResultsThe GWAS analysis and the following replication research identified 9 SNPs showing suggestive correlation with LN (P<10-4). The most significant SNP was rs12606116 (18p11.32), at P=8.72×10−6. The qRT-PCR results verified the mRNA levels of LINC00470 and ADCYAP1, the closest genes to rs12606116, were significantly lower in LN patients. From the gene-based analysis, 690 genes had suggestive evidence of association (P<0.05), including LINC00470. The enrichment analysis identified the involvement of transforming growth factor beta (TGF-β) signalings in the development of LN. Lower plasma level of TGF-β1 (P<0.05) in LN patients and lower expression of transforming growth factor beta receptor 2 in lupus mice kidney (P<0.05) futher indicate the involvement of TGF-β in LN.ConclusionsOur analyses identified several promising susceptibility candidates involved in LN, and further verification of these candidates was necessary.
Collapse
Affiliation(s)
- Kangkang Song
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Xiaodong Zheng
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, China
| | - Xiaomin Liu
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Yujun Sheng
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, China
| | - Lu Liu
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, China
| | - Leilei Wen
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, China
| | - Shunlai Shang
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Yiyao Deng
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Qing Ouyang
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Xuefeng Sun
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Qinggang Li
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Pu Chen
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Mengyun Chen
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, China
| | - Yuanjing Zhang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, China
| | - Bo Liang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, China
| | - Jianglin Zhang
- Department of Rheumatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xuejun Zhang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, China
- Institute of Dermatology and Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Xiangmei Chen, ; Xuejun Zhang,
| | - Xiangmei Chen
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
- Haihe Laboratory of Cell Ecosystem, Tianjin, China
- *Correspondence: Xiangmei Chen, ; Xuejun Zhang,
| |
Collapse
|
21
|
Liu SQ, Li B, Li JJ, Sun S, Sun SR, Wu Q. Neuroendocrine regulations in tissue-specific immunity: From mechanism to applications in tumor. Front Cell Dev Biol 2022; 10:896147. [PMID: 36072337 PMCID: PMC9442449 DOI: 10.3389/fcell.2022.896147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022] Open
Abstract
Immune responses in nonlymphoid tissues play a vital role in the maintenance of homeostasis. Lots of evidence supports that tissue-specific immune cells provide defense against tumor through the localization in different tissue throughout the body, and can be regulated by diverse factors. Accordingly, the distribution of nervous tissue is also tissue-specific which is essential in the growth of corresponding organs, and the occurrence and development of tumor. Although there have been many mature perspectives on the neuroendocrine regulation in tumor microenvironment, the neuroendocrine regulation of tissue-specific immune cells has not yet been summarized. In this review, we focus on how tissue immune responses are influenced by autonomic nervous system, sensory nerves, and various neuroendocrine factors and reversely how tissue-specific immune cells communicate with neuroendocrine system through releasing different factors. Furthermore, we pay attention to the potential mechanisms of neuroendocrine-tissue specific immunity axis involved in tumors. This may provide new insights for the immunotherapy of tumors in the future.
Collapse
Affiliation(s)
- Si-Qing Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juan-Juan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Sheng-Rong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Sheng-Rong Sun, ; Qi Wu,
| | - Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Sheng-Rong Sun, ; Qi Wu,
| |
Collapse
|
22
|
Reducing neuroinflammation via therapeutic compounds and lifestyle to prevent or delay progression of Parkinson's disease. Ageing Res Rev 2022; 78:101618. [PMID: 35395416 DOI: 10.1016/j.arr.2022.101618] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/08/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is the second most common age-associated neurodegenerative disorder and is characterised by progressive loss of dopamine neurons in the substantia nigra. Peripheral immune cell infiltration and activation of microglia and astrocytes are observed in PD, a process called neuroinflammation. Neuroinflammation is a fundamental response to protect the brain but, when chronic, it triggers neuronal damage. In the last decade, central and peripheral inflammation were suggested to occur at the prodromal stage of PD, sustained throughout disease progression, and may play a significant role in the pathology. Understanding the pathological mechanisms of PD has been a high priority in research, primarily to find effective treatments once symptoms are present. Evidence indicates that early life exposure to neuroinflammation as a consequence of life events, environmental or behaviour factors such as exposure to infections, pollution or a high fat diet increase the risk of developing PD. Many studies show healthy habits and products that decrease neuroinflammation also reduce the risk of PD. Here, we aim to stimulate discussion about the role of neuroinflammation in PD onset and progression. We highlight that reducing neuroinflammation throughout the lifespan is critical for preventing idiopathic PD, and present epidemiological studies that detail risk and protective factors. It is possible that introducing lifestyle changes that reduce neuroinflammation at the time of PD diagnosis may slow symptom progression. Finally, we discuss compounds and therapeutics to treat the neuroinflammation associated with PD.
Collapse
|
23
|
Azevedo MDCS, Fonseca AC, Colavite PM, Melchiades JL, Tabanez AP, Codo AC, de Medeiros AI, Trombone APF, Garlet GP. Macrophage Polarization and Alveolar Bone Healing Outcome: Despite a Significant M2 Polarizing Effect, VIP and PACAP Treatments Present a Minor Impact in Alveolar Bone Healing in Homeostatic Conditions. Front Immunol 2021; 12:782566. [PMID: 34992601 PMCID: PMC8724033 DOI: 10.3389/fimmu.2021.782566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022] Open
Abstract
Host inflammatory immune response comprises an essential element of the bone healing process, where M2 polarization allegedly contributes to a favorable healing outcome. In this context, immunoregulatory molecules that modulate host response, including macrophage polarization, are considered potential targets for improving bone healing. This study aims to evaluate the role of the immunoregulatory molecules VIP (Vasoactive intestinal peptide) and PACAP (Pituitary adenylate cyclase activating polypeptide), which was previously described to favor the development of the M2 phenotype, in the process of alveolar bone healing in C57Bl/6 (WT) mice. Experimental groups were submitted to tooth extraction and maintained under control conditions or treated with VIP or PACAP were evaluated by microtomographic (µCT), histomorphometric, immunohistochemical, and molecular analysis at 0, 3, 7, and 14 days to quantify tissue healing and host response indicators at the healing site. Gene expression analysis demonstrates the effectiveness of VIP or PACAP in modulating host response, evidenced by the early dominance of an M2-type response, which was paralleled by a significant increase in M2 (CD206+) in treated groups. However, despite the marked effect of M1/M2 balance in the healing sites, the histomorphometric analysis does not reveal an equivalent/corresponding modulation of the healing process. µCT reveals a slight increase in bone matrix volume and the trabecular thickness number in the PACAP group, while histomorphometric analyzes reveal a slight increase in the VIP group, both at a 14-d time-point; despite the increased expression of osteogenic factors, osteoblastic differentiation, activity, and maturation markers in both VIP and PACAP groups. Interestingly, a lower number of VIP and PACAP immunolabeled cells were observed in the treated groups, suggesting a reduction in endogenous production. In conclusion, while both VIP and PACAP treatments presented a significant immunomodulatory effect with potential for increased healing, no major changes were observed in bone healing outcome, suggesting that the signals required for bone healing under homeostatic conditions are already optimal, and additional signals do not improve an already optimal process. Further studies are required to elucidate the role of macrophage polarization in the bone healing process.
Collapse
Affiliation(s)
| | - Angélica Cristina Fonseca
- Bauru School of Dentistry, Department of Biological Sciences, University of São Paulo, Bauru, Brazil
| | - Priscila Maria Colavite
- Bauru School of Dentistry, Department of Biological Sciences, University of São Paulo, Bauru, Brazil
| | - Jéssica Lima Melchiades
- Bauru School of Dentistry, Department of Biological Sciences, University of São Paulo, Bauru, Brazil
| | - André Petenuci Tabanez
- Bauru School of Dentistry, Department of Biological Sciences, University of São Paulo, Bauru, Brazil
| | - Ana Campos Codo
- School of Pharmaceutical Sciences, Department of Immunology, São Paulo State University, Araraquara, Brazil
| | - Alexandra Ivo de Medeiros
- School of Pharmaceutical Sciences, Department of Immunology, São Paulo State University, Araraquara, Brazil
| | | | | |
Collapse
|
24
|
Tamás A, Tóth D, Pham D, Loibl C, Rendeki S, Csontos C, Rozanovic M, Bogár L, Polgár B, Németh J, Gyenesei A, Herczeg R, Szántó Z, Reglődi D. Changes of pituitary adenylate cyclase activating polypeptide (PACAP) level in polytrauma patients in the early post-traumatic period. Peptides 2021; 146:170645. [PMID: 34478801 DOI: 10.1016/j.peptides.2021.170645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 12/18/2022]
Abstract
In polytrauma patients who survive the primary insult, the imbalance between the pro- and anti-inflammatory processes seems to be responsible for life-threatening complications such as sepsis or multiple organ dysfunction syndrome. Measurement of C-reactive protein (CRP) and procalcitonin (PCT) is a standard way for differentiating between infectious (bacterial) and non-infectious inflammation. Monitoring of immune cell functions, like leukocyte anti-sedimentation rate (LAR) can also be useful to diagnose infectious complications. Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with well-known immunomodulatory and anti-inflammatory effects. The aim of our study was to determine the changes of PACAP38 levels in polytrauma patients in the early post-traumatic period in intensive care unit and analyse possible correlation of its level with conventional (CRP, PCT) and unconventional (LAR) laboratory parameters. Twenty polytrauma patients were enrolled. Blood samples were taken daily for five days. We observed significant correlation between PACAP38 and CRP levels on day 4 and 5 as well as between PACAP38 and LAR levels all of the days. This could be due to the anti-inflammatory and cytoprotective functions of PACAP38 as part of an endogenous response to the trauma induced systemic inflammatory response syndrome. These significant correlations could have clinical importance in monitoring the dynamic balance of pro- and anti-inflammatory processes in case of polytraumatic patients.
Collapse
Affiliation(s)
- Andrea Tamás
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pecs, 7624, Pecs, Hungary.
| | - Dénes Tóth
- Department of Forensic Medicine, Medical School, University of Pecs, 7624, Pecs, Hungary.
| | - Dániel Pham
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pecs, 7624, Pecs, Hungary.
| | - Csaba Loibl
- Department of Anaesthesiology and Intensive Therapy, Clinical Centre, University of Pecs, 7624, Pecs, Hungary.
| | - Szilárd Rendeki
- Department of Anaesthesiology and Intensive Therapy, Clinical Centre, University of Pecs, 7624, Pecs, Hungary.
| | - Csaba Csontos
- Department of Anaesthesiology and Intensive Therapy, Clinical Centre, University of Pecs, 7624, Pecs, Hungary.
| | - Martin Rozanovic
- Department of Anaesthesiology and Intensive Therapy, Clinical Centre, University of Pecs, 7624, Pecs, Hungary.
| | - Lajos Bogár
- Department of Anaesthesiology and Intensive Therapy, Clinical Centre, University of Pecs, 7624, Pecs, Hungary.
| | - Beáta Polgár
- Department of Medical Microbiology and Immunology, Clinical Centre, University of Pecs, 7624, Pecs, Hungary.
| | - József Németh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
| | - Attila Gyenesei
- Bioinformatics Research Group, Szentagothai Research Centre, University of Pecs, 7624, Pecs, Hungary.
| | - Róbert Herczeg
- Bioinformatics Research Group, Szentagothai Research Centre, University of Pecs, 7624, Pecs, Hungary.
| | - Zalán Szántó
- Department of Surgery, Clinical Centre, University of Pecs, 7624, Pecs, Hungary.
| | - Dóra Reglődi
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pecs, 7624, Pecs, Hungary.
| |
Collapse
|
25
|
Sakamoto K, Chen L, Miyaoka T, Yamada M, Masutani T, Ishimoto K, Hino N, Nakagawa S, Asano S, Ago Y. Generation of KS-133 as a Novel Bicyclic Peptide with a Potent and Selective VIPR2 Antagonist Activity that Counteracts Cognitive Decline in a Mouse Model of Psychiatric Disorders. Front Pharmacol 2021; 12:751587. [PMID: 34819858 PMCID: PMC8607231 DOI: 10.3389/fphar.2021.751587] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Worldwide, more than 20 million people suffer from schizophrenia, but effective and definitive new therapeutic drugs/treatments have not been established. Vasoactive intestinal peptide receptor 2 (VIPR2) might be an attractive drug target for the treatment of schizophrenia because both preclinical and clinical studies have demonstrated a strong link between high expression/overactivation of VIPR2 and schizophrenia. Nevertheless, VIPR2-targeting drugs are not yet available. VIPR2 is a class-B G protein-coupled receptor that possesses high structural homology to its subtypes, vasoactive intestinal peptide receptor 1 (VIPR1) and pituitary adenylate cyclase-activating polypeptide type-1 receptor (PAC1). These biological and structural properties have made it difficult to discover small molecule drugs against VIPR2. In 2018, cyclic peptide VIpep-3, a VIPR2-selective antagonist, was reported. The aim of this study was to generate a VIpep-3 derivative for in vivo experiments. After amino acid substitution and structure optimization, we successfully generated KS-133 with 1) a VIPR2-selective and potent antagonistic activity, 2) at least 24 h of stability in plasma, and 3) in vivo pharmacological efficacies in a mouse model of psychiatric disorders through early postnatal activation of VIPR2. To the best of our knowledge, this is the first report of a VIPR2-selective antagonistic peptide that counteracts cognitive decline, a central feature of schizophrenia. KS-133 may contribute to studies and development of novel schizophrenia therapeutic drugs that target VIPR2.
Collapse
Affiliation(s)
- Kotaro Sakamoto
- Research and Development Department, Ichimaru Pharcos Company Limited, Gifu, Japan
| | - Lu Chen
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Tatsunori Miyaoka
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Mei Yamada
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Teruaki Masutani
- Research and Development Department, Ichimaru Pharcos Company Limited, Gifu, Japan
| | - Kenji Ishimoto
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Nobumasa Hino
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Shinsaku Nakagawa
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Satoshi Asano
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yukio Ago
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan.,Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
26
|
Moody TW, Jensen RT. Pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal peptide (Part 2): biology and clinical importance in central nervous system and inflammatory disorders. Curr Opin Endocrinol Diabetes Obes 2021; 28:206-213. [PMID: 33481421 PMCID: PMC7961158 DOI: 10.1097/med.0000000000000621] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW To discuss recent advances of vasoactive intestinal peptide/pituitary adenylate cyclase-activating polypeptide (VIP/PACAP) receptors in the selected central nervous system (CNS) and inflammatory disorders. RECENT FINDINGS Recent studies provide evidence that PACAP plays an important role in a number of CNS disorders, particularly the pathogenesis of headaches (migraine, etc.) as well as posttraumatic stress disorder and drug/alcohol/smoking addiction. VIP has important therapeutic effects in a number of autoimmune/inflammatory disorder such as rheumatoid arthritis. In some cases, these insights have advanced to therapeutic trials. SUMMARY Recent insights from studies of VIP/PACAP and their receptors in both CNS disorders (migraine, posttraumatic stress disorder, addiction [drugs, alcohol, smoking]) and inflammatory disorders [such as rheumatoid arthritis] are suggesting new treatment approaches. The elucidation of the importance of VIP/PACAP system in these disorders combined recent development of specific drugs acting on this system (i.e., monoclonal VIP/PACAP antibodies) will likely lead to importance novel treatment approaches in these diseases.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human services, National Cancer Institute, Center for Cancer Training. Bethesda, Maryland, USA
| | - Robert T Jensen
- National Institutes of Health, National Institute of Diabetes, Digestive and Kidney Diseases, Digestive Diseases Branch, Bethesda, Maryland, USA
| |
Collapse
|
27
|
Southey BR, Zhang P, Keever MR, Rymut HE, Johnson RW, Sweedler JV, Rodriguez-Zas SL. Effects of maternal immune activation in porcine transcript isoforms of neuropeptide and receptor genes. J Integr Neurosci 2021; 20:21-31. [PMID: 33834688 PMCID: PMC8103820 DOI: 10.31083/j.jin.2021.01.332] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/11/2020] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
The prolonged effects of maternal immune activation in response stressors during gestation on the offspring's molecular pathways after birth are beginning to be understood. An association between maternal immune activation and neurodevelopmental and behavior disorders such as autism and schizophrenia spectrum disorders has been detected in long-term gene dysregulation. The incidence of alternative splicing among neuropeptides and neuropeptide receptor genes, critical cell-cell signaling molecules, associated with behavior may compromise the replicability of reported maternal immune activation effects at the gene level. This study aims to advance the understanding of the effect of maternal immune activation on transcript isoforms of the neuropeptide system (including neuropeptide, receptor and connecting pathway genes) underlying behavior disorders later in life. Recognizing the wide range of bioactive peptides and functional receptors stemming from alternative splicing, we studied the effects of maternal immune activation at the transcript isoform level on the hippocampus and amygdala of three-week-old pigs exposed to maternal immune activation due to viral infection during gestation. In the hippocampus and amygdala, 29 and 9 transcript isoforms, respectively, had maternal immune activation effects (P-value < 0.01). We demonstrated that the study of the effect of maternal immune activation on neuropeptide systems at the isoform level is necessary to expose opposite effects among transcript isoforms from the same gene. Genes were maternal immune activation effects have also been associated with neurodevelopmental and behavior disorders. The characterization of maternal immune activation effects at the transcript isoform level advances the understanding of neurodevelopmental disorders and identifies precise therapeutic targets.
Collapse
Affiliation(s)
- Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA
| | - Pan Zhang
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA
| | - Marissa R Keever
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA
| | - Haley E Rymut
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA
| | - Rodney W Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA
| | - Jonathan V Sweedler
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA
| | - Sandra L Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA.,Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA.,Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA
| |
Collapse
|
28
|
Langer I, Latek D. Drug Repositioning For Allosteric Modulation of VIP and PACAP Receptors. Front Endocrinol (Lausanne) 2021; 12:711906. [PMID: 34867774 PMCID: PMC8637020 DOI: 10.3389/fendo.2021.711906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are two neuropeptides that contribute to the regulation of intestinal motility and secretion, exocrine and endocrine secretions, and homeostasis of the immune system. Their biological effects are mediated by three receptors named VPAC1, VPAC2 and PAC1 that belong to class B GPCRs. VIP and PACAP receptors have been identified as potential therapeutic targets for the treatment of chronic inflammation, neurodegenerative diseases and cancer. However, pharmacological use of endogenous ligands for these receptors is limited by their lack of specificity (PACAP binds with high affinity to VPAC1, VPAC2 and PAC1 receptors while VIP recognizes both VPAC1 and VPAC2 receptors), their poor oral bioavailability (VIP and PACAP are 27- to 38-amino acid peptides) and their short half-life. Therefore, the development of non-peptidic small molecules or specific stabilized peptidic ligands is of high interest. Structural similarities between VIP and PACAP receptors are major causes of difficulties in the design of efficient and selective compounds that could be used as therapeutics. In this study we performed structure-based virtual screening against the subset of the ZINC15 drug library. This drug repositioning screen provided new applications for a known drug: ticagrelor, a P2Y12 purinergic receptor antagonist. Ticagrelor inhibits both VPAC1 and VPAC2 receptors which was confirmed in VIP-binding and calcium mobilization assays. A following analysis of detailed ticagrelor binding modes to all three VIP and PACAP receptors with molecular dynamics revealed its allosteric mechanism of action. Using a validated homology model of inactive VPAC1 and a recently released cryo-EM structure of active VPAC1 we described how ticagrelor could block conformational changes in the region of 'tyrosine toggle switch' required for the receptor activation. We also discuss possible modifications of ticagrelor comparing other P2Y12 antagonist - cangrelor, closely related to ticagrelor but not active for VPAC1/VPAC2. This comparison with inactive cangrelor could lead to further improvement of the ticagrelor activity and selectivity for VIP and PACAP receptor sub-types.
Collapse
MESH Headings
- Allosteric Regulation/drug effects
- Binding Sites
- Computer Simulation
- Drug Evaluation, Preclinical/methods
- Drug Repositioning/methods
- Molecular Structure
- Protein Conformation/drug effects
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/chemistry
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/drug effects
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/chemistry
- Receptors, Vasoactive Intestinal Peptide, Type II/drug effects
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I/chemistry
- Receptors, Vasoactive Intestinal Polypeptide, Type I/drug effects
- Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
- Ticagrelor/chemistry
- Ticagrelor/pharmacology
Collapse
Affiliation(s)
- Ingrid Langer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université libre de Bruxelles, Brussels, Belgium
| | - Dorota Latek
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
- *Correspondence: Dorota Latek,
| |
Collapse
|
29
|
Mendel HC, Kaas Q, Muttenthaler M. Neuropeptide signalling systems - An underexplored target for venom drug discovery. Biochem Pharmacol 2020; 181:114129. [PMID: 32619425 PMCID: PMC7116218 DOI: 10.1016/j.bcp.2020.114129] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023]
Abstract
Neuropeptides are signalling molecules mainly secreted from neurons that act as neurotransmitters or peptide hormones to affect physiological processes and modulate behaviours. In humans, neuropeptides are implicated in numerous diseases and understanding their role in physiological processes and pathologies is important for therapeutic development. Teasing apart the (patho)physiology of neuropeptides remains difficult due to ligand and receptor promiscuity and the complexity of the signalling pathways. The current approach relies on a pharmacological toolbox of agonists and antagonists displaying high selectivity for independent receptor subtypes, with the caveat that only few selective ligands have been discovered or developed. Animal venoms represent an underexplored source for novel receptor subtype-selective ligands that could aid in dissecting human neuropeptide signalling systems. Multiple endogenous-like neuropeptides as well as peptides acting on neuropeptide receptors are present in venoms. In this review, we summarise current knowledge on neuropeptides and discuss venoms as a source for ligands targeting neuropeptide signalling systems.
Collapse
Affiliation(s)
- Helen C Mendel
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia; University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Vienna, Austria.
| |
Collapse
|
30
|
Ulkumen B, Batir MB, Artunc Ulkumen B, Pala HG, Vatansever S, Cam S. Role of VPAC1 anD VPAC2 receptors in the etiology of pregnancy rhinitis: an experimental study in rats. Braz J Otorhinolaryngol 2020; 88:505-510. [PMID: 32798199 PMCID: PMC9422359 DOI: 10.1016/j.bjorl.2020.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/20/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction Pregnancy rhinitis is a common sex hormone-related otorhinolaryngological disorder. There are some epidemiological and physiological studies on pregnancy rhinitis, but histopathological and biomolecular changes have not been studied thoroughly. Objectives The receptors VPAC1 and VPAC2 are known for their roles in allergic rhinitis. On the other hand, activation of subclinical allergy has been suggested in the pathophysiology of pregnancy rhinitis. Therefore, we aimed to compare the physiological and gestational pattern of VPAC1 and VPAC2 expression in rat nasal mucosa. Methods Twenty adult Wister albino female rats were enrolled into the study. Two groups constituted as 10 control (group A) and 10 pregnant (group B) rats. They were fed ad libitum and sheltered at room temperature (22°±2 °C). The rats were sacrificed at the 20th day of gestation by intraperitoneal injection of 400 mg/kg Na-pentobarbitone. Then, 10 − 15 mL of blood was taken, and samples were reserved for the detection of serum estradiol and progesterone levels by ELISA test. The nasal septum was resected and divided in half for immunohistochemical analyses and real time polymerase chain reaction testing of VPAC1 and VPAC2. Results VPAC1 and VPAC2 were found to be in all layers of septal specimens, but the immunostaining of surface epithelium was more distinct in specimens of both groups. We demonstrated higher overall staining intensity in the pregnant group. PCR revealed significant increase in expression of VPAC1 (p = 0.023) and VPAC2 (p = 0.021) in pregnant group when compared with control group. In addition, we demonstrated upregulatory effect of estradiol and progesterone on the vasoactive intestinal peptide receptor expression. Conclusions Gestational up-regulation of nasal VPAC1 and VPAC2 was shown both by PCR and immunohistochemical analysis. These findings support the hypothesis that PR is caused by the activation of subclinical allergy that is present before pregnancy.
Collapse
|
31
|
Splitthoff P, Rasbach E, Neudert P, Bonaterra GA, Schwarz A, Mey L, Schwarzbach H, Eiden LE, Weihe E, Kinscherf R. PAC1 deficiency attenuates progression of atherosclerosis in ApoE deficient mice under cholesterol-enriched diet. Immunobiology 2020; 225:151930. [PMID: 32173151 PMCID: PMC9741700 DOI: 10.1016/j.imbio.2020.151930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022]
Abstract
The neuropeptide, pituitary adenylate cyclase-activating polypeptide (PACAP) is vasoactive and cytoprotective and exerts immunoregulatory functions throughout the nervous, neuroendocrine cardiovascular and immune systems in health and disease. PACAP mainly acts through PAC1 receptor signaling in neuronal communication, but the role of PAC1 in immune regulation of atherosclerosis is not known. Here, we generated PAC1-/-/ApoE-/- mice to test, whether PAC1-/- influences plasma cholesterol-/triglyceride levels and/or atherogenesis in the brachiocephalic trunk (BT) seen in ApoE-/- mice, under standard chow (SC) or cholesterol-enriched diet (CED). Furthermore, the effect of PAC1-/-, on inflammatory, autophagy-, apoptosis- and necroptosis-relevant proteins in atherosclerotic plaques was determined. In plaques of PAC1-/-/ApoE-/- mice fed a SC, the immunoreactivity for apoptotic, autophagic, necroptotic and proinflammatory proteins was increased, however, proliferation was unaffected. Interestingly, without affecting hyperlipidemia, PAC1-/- in ApoE-/- mice remarkably reduced CED-induced lumen stenosis seen in ApoE-/- mice. Thus, PAC1-/- allows unchecked inflammation, necroptosis and decreased proliferation during SC, apparently priming the BT to develop reduced atheroma under subsequent CED. Remarkably, no differences in inflammation/necroptosis signatures in the atheroma under CED between PAC1-/-/ApoE-/- and ApoE-/- mice were observed. These data indicate that selective PAC1 antagonists should offer potential as a novel class of atheroprotective therapeutics, especially during hypercholesterolemia.
Collapse
Affiliation(s)
- Paul Splitthoff
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany
| | - Erik Rasbach
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany
| | - Philip Neudert
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany
| | - Gabriel A. Bonaterra
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany,Corresponding author at: Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032, Marburg, Germany., (G.A. Bonaterra)
| | - Anja Schwarz
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany
| | - Lilli Mey
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany
| | - Hans Schwarzbach
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany
| | - Lee E. Eiden
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health Intramural Research Program, Bethesda, 20814, Maryland, USA
| | - Eberhard Weihe
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany
| | - Ralf Kinscherf
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany
| |
Collapse
|
32
|
Gallino L, Hauk V, Fernández L, Soczewski E, Gori S, Grasso E, Calo G, Saraco N, Berensztein E, Waschek JA, Pérez Leirós C, Ramhorst R. VIP Promotes Recruitment of Tregs to the Uterine-Placental Interface During the Peri-Implantation Period to Sustain a Tolerogenic Microenvironment. Front Immunol 2020; 10:2907. [PMID: 31969877 PMCID: PMC6960177 DOI: 10.3389/fimmu.2019.02907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 11/26/2019] [Indexed: 01/02/2023] Open
Abstract
Uterine receptivity and embryo implantation are two main processes that need a finely regulated balance between pro-inflammatory and tolerogenic mediators to allow a successful pregnancy. The neuroimmune peptide vasoactive intestinal peptide (VIP) is a key regulator, and it is involved in the induction of regulatory T cells (Tregs), which are crucial in both processes. Here, we analyzed the ability of endogenous and exogenous VIP to sustain a tolerogenic microenvironment during the peri-implantation period, particularly focusing on Treg recruitment. Wild-type (WT) and VIP-deficient mice [heterozygous (HT, +/-), knockout (KO, -/-)], and FOXP3-knock-in-GFP mice either pregnant or in estrus were used. During the day of estrus, we found significant histological differences between the uterus of WT mice vs. VIP-deficient mice, with the latter exhibiting undetectable levels of FOXP3 expression, decreased expression of interleukin (IL)-10, and vascular endothelial growth factor (VEGF)c, and increased gene expression of the Th17 proinflammatory transcription factor RORγt. To study the implantation window, we mated WT and VIP (+/-) females with WT males and observed altered FOXP3, VEGFc, IL-10, and transforming growth factor (TGF)β gene expression at the implantation sites at day 5.5 (d5.5), demonstrating a more inflammatory environment in VIP (+/-) vs. VIP (+/+) females. A similar molecular profile was observed at implantation sites of WT × WT mice treated with VIP antagonist at d3.5. We then examined the ability GFP-sorted CD4+ cells from FOXP3-GFP females to migrate toward conditioned media (CM) obtained from d5.5 implantation sites cultured in the absence/presence of VIP or VIP antagonist. VIP treatment increased CD4+FOXP3+ and decreased CD4+ total cell migration towards implantation sites, and VIP antagonist prevented these effects. Finally, we performed adoptive cell transfer of Tregs (sorted from FOXP3-GFP females) in VIP-deficient-mice, and we observed that FOXP3-GFP cells were mainly recruited into the uterus/implantation sites compared to all other tested tissues. In addition, after Treg transfer, we found an increase in IL-10 expression and VEGFc in HT females and allowed embryo implantation in KO females. In conclusion, VIP contributes to a local tolerogenic response necessary for successful pregnancy, preventing the development of a hostile uterine microenvironment for implantation by the selective recruitment of Tregs during the peri-implantation period.
Collapse
Affiliation(s)
- Lucila Gallino
- CONICET, Laboratorio de Inmunofarmacología, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Vanesa Hauk
- CONICET, Laboratorio de Inmunofarmacología, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Laura Fernández
- CONICET, Laboratorio de Inmunofarmacología, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Elizabeth Soczewski
- CONICET, Laboratorio de Inmunofarmacología, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Soledad Gori
- CONICET, Laboratorio de Inmunofarmacología, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Esteban Grasso
- CONICET, Laboratorio de Inmunofarmacología, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermina Calo
- CONICET, Laboratorio de Inmunofarmacología, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nora Saraco
- Servicio de Endocrinología, Hospital Pediátrico Dr. Juan P. Garrahan, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Esperanza Berensztein
- Servicio de Endocrinología, Hospital Pediátrico Dr. Juan P. Garrahan, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - James A Waschek
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Claudia Pérez Leirós
- CONICET, Laboratorio de Inmunofarmacología, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rosanna Ramhorst
- CONICET, Laboratorio de Inmunofarmacología, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
33
|
Toth D, Szabo E, Tamas A, Juhasz T, Horvath G, Fabian E, Opper B, Szabo D, Maugeri G, D'Amico AG, D'Agata V, Vicena V, Reglodi D. Protective Effects of PACAP in Peripheral Organs. Front Endocrinol (Lausanne) 2020; 11:377. [PMID: 32765418 PMCID: PMC7381171 DOI: 10.3389/fendo.2020.00377] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide widely distributed in the nervous system, where it exerts strong neuroprotective effects. PACAP is also expressed in peripheral organs but its peripheral protective effects have not been summarized so far. Therefore, the aim of the present paper is to review the existing literature regarding the cytoprotective effects of PACAP in non-neuronal cell types, peripheral tissues, and organs. Among others, PACAP has widespread expression in the digestive system, where it shows protective effects in various intestinal pathologies, such as duodenal ulcer, small bowel ischemia, and intestinal inflammation. PACAP is present in both the exocrine and endocrine pancreas as well as liver where it reduces inflammation and steatosis by interfering with hepatic pathology related to obesity. It is found in several exocrine glands and also in urinary organs, where, with its protective effects being mainly published regarding renal pathologies, PACAP is protective in numerous conditions. PACAP displays anti-inflammatory effects in upper and lower airways of the respiratory system. In the skin, it is involved in the development of inflammatory pathology such as psoriasis and also has anti-allergic effects in a model of contact dermatitis. In the non-neuronal part of the visual system, PACAP showed protective effects in pathological conditions of the cornea and retinal pigment epithelial cells. The positive role of PACAP has been demonstrated on the formation and healing processes of cartilage and bone where it also prevents osteoarthritis and rheumatoid arthritis development. The protective role of PACAP was also demonstrated in the cardiovascular system in different pathological processes including hyperglycaemia-induced endothelial dysfunction and age-related vascular changes. In the heart, PACAP protects against ischemia, oxidative stress, and cardiomyopathies. PACAP is also involved in the protection against the development of pre-senile systemic amyloidosis, which is presented in various peripheral organs in PACAP-deficient mice. The studies summarized here provide strong evidence for the cytoprotective effects of the peptide. The survival-promoting effects of PACAP depend on a number of factors which are also shortly discussed in the present review.
Collapse
Affiliation(s)
- Denes Toth
- Department of Forensic Medicine, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Edina Szabo
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Tamas Juhasz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Gabriella Horvath
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Eszter Fabian
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Balazs Opper
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Dora Szabo
- Heart Institute, Medical School, University of Pécs, Pécs, Hungary
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Agata G. D'Amico
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Viktoria Vicena
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
- *Correspondence: Dora Reglodi
| |
Collapse
|
34
|
Martínez C, Juarranz Y, Gutiérrez-Cañas I, Carrión M, Pérez-García S, Villanueva-Romero R, Castro D, Lamana A, Mellado M, González-Álvaro I, Gomariz RP. A Clinical Approach for the Use of VIP Axis in Inflammatory and Autoimmune Diseases. Int J Mol Sci 2019; 21:E65. [PMID: 31861827 PMCID: PMC6982157 DOI: 10.3390/ijms21010065] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
The neuroendocrine and immune systems are coordinated to maintain the homeostasis of the organism, generating bidirectional communication through shared mediators and receptors. Vasoactive intestinal peptide (VIP) is the paradigm of an endogenous neuropeptide produced by neurons and endocrine and immune cells, involved in the control of both innate and adaptive immune responses. Exogenous administration of VIP exerts therapeutic effects in models of autoimmune/inflammatory diseases mediated by G-protein-coupled receptors (VPAC1 and VPAC2). Currently, there are no curative therapies for inflammatory and autoimmune diseases, and patients present complex diagnostic, therapeutic, and prognostic problems in daily clinical practice due to their heterogeneous nature. This review focuses on the biology of VIP and VIP receptor signaling, as well as its protective effects as an immunomodulatory factor. Recent progress in improving the stability, selectivity, and effectiveness of VIP/receptors analogues and new routes of administration are highlighted, as well as important advances in their use as biomarkers, contributing to their potential application in precision medicine. On the 50th anniversary of VIP's discovery, this review presents a spectrum of potential clinical benefits applied to inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Carmen Martínez
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Irene Gutiérrez-Cañas
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Mar Carrión
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Selene Pérez-García
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Raúl Villanueva-Romero
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - David Castro
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Amalia Lamana
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Mario Mellado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología (CNB)/CSIC, 28049 Madrid, Spain;
| | - Isidoro González-Álvaro
- Servicio de Reumatología, Instituto de Investigación Médica, Hospital Universitario La Princesa, 28006 Madrid, Spain;
| | - Rosa P. Gomariz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| |
Collapse
|
35
|
Lack of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Disturbs Callus Formation. J Mol Neurosci 2019; 71:1543-1555. [PMID: 31808034 PMCID: PMC8349325 DOI: 10.1007/s12031-019-01448-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022]
Abstract
Pituitary adenylate cyclase–activating polypeptide (PACAP) is a naturally secreted signaling peptide and has important regulatory roles in the differentiation of the central nervous system and its absence results in disorders in femur development. PACAP has an important function in prevention of oxidative stress or mechanical stress in chondrogenesis but little is known about its function in bone regeneration. A new callus formation model was set to investigate its role in bone remodeling. Fracturing was 5 mm distal from the proximal articular surface of the tibia and the depth was 0.5 mm. Reproducibility of callus formation was investigated with CT 3, 7, and 21 days after the operation. Absence of PACAP did not alter the alkaline phosphatase (ALP) activation in PACAP KO healing process. In developing callus, the expression of collagen type I increased in wild-type (WT) and PACAP KO mice decreased to the end of healing process. Expression of the elements of BMP signaling was disturbed in the callus formation of PACAP KO mice, as bone morphogenic protein 4 (BMP4) and 6 showed an early reduction in bone regeneration. However, elevated Smad1 expression was demonstrated in PACAP KO mice. Our results indicate that PACAP KO mice show various signs of disturbed bone healing and suggest PACAP compensatory and fine tuning effects in proper bone regeneration.
Collapse
|
36
|
Bains M, Laney C, Wolfe AE, Orr M, Waschek JA, Ericsson AC, Dorsam GP. Vasoactive Intestinal Peptide Deficiency Is Associated With Altered Gut Microbiota Communities in Male and Female C57BL/6 Mice. Front Microbiol 2019; 10:2689. [PMID: 31849864 PMCID: PMC6900961 DOI: 10.3389/fmicb.2019.02689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) is crucial for gastrointestinal tract (GIT) health. VIP sustains GIT homeostasis through maintenance of the intestinal epithelial barrier and acts as a potent anti-inflammatory mediator that contributes to gut bacterial tolerance. Based on these biological functions by VIP, we hypothesized that its deficiency would alter gut microbial ecology. To this end, fecal samples from male and female VIP+/+, VIP+/-, and VIP-/- littermates (n = 47) were collected and 16S rRNA sequencing was conducted. Our data revealed significant changes in bacterial composition, biodiversity, and weight loss from VIP-/- mice compared to VIP+/+ and VIP+/- littermates, irrespective of sex. The gut bacteria compositional changes observed in VIP-/- mice was consistent with gut microbial structure changes reported for certain inflammatory and autoimmune disorders. Moreover, predicted functional changes by PICRUSt software suggested an energy surplus within the altered microbiota from VIP-/- mice. These data support that VIP plays an important role in maintaining microbiota balance, biodiversity, and GIT function, and its genetic removal results in significant gut microbiota restructuring and weight loss.
Collapse
Affiliation(s)
- Manpreet Bains
- Department of Microbiological Sciences, College of Agriculture, Food Systems and Natural Resources, North Dakota State University, Fargo, ND, United States
| | - Caleb Laney
- Department of Microbiological Sciences, College of Agriculture, Food Systems and Natural Resources, North Dakota State University, Fargo, ND, United States
| | - Annie E. Wolfe
- Metagenomics Center, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Megan Orr
- Department of Statistics, College of Science and Math, North Dakota State University, Fargo, ND, United States
| | - James A. Waschek
- Intellectual and Developmental Disabilities Research Center, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aaron C. Ericsson
- Metagenomics Center, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Glenn P. Dorsam
- Department of Microbiological Sciences, College of Agriculture, Food Systems and Natural Resources, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
37
|
The Neuropeptide Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is Protective in Inflammation and Oxidative Stress-Induced Damage in the Kidney. Int J Mol Sci 2019; 20:ijms20194944. [PMID: 31591326 PMCID: PMC6801442 DOI: 10.3390/ijms20194944] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide with a widespread distribution throughout the entire body including the urinary system. PACAP exerts protective actions in different injury models related to several organ systems. Its protective effect is mainly based on its antiapoptotic, anti-inflammatory and antioxidant effects. The present review aims to summarize the effects of PACAP in pathologies associated with inflammation and oxidative stress-induced damage in the kidney. Both in vitro and in vivo data are available proving its protective actions against oxidative stress, hypoxia, renal ischemia/reperfusion, diabetic nephropathy, myeloma kidney injury, amyloidosis and different types of drug-induced nephropathies. Data showing the nephroprotection by PACAP emphasize the potential of PACAP’s therapeutic use in various renal pathologies.
Collapse
|
38
|
Denes V, Geck P, Mester A, Gabriel R. Pituitary Adenylate Cyclase-Activating Polypeptide: 30 Years in Research Spotlight and 600 Million Years in Service. J Clin Med 2019; 8:jcm8091488. [PMID: 31540472 PMCID: PMC6780647 DOI: 10.3390/jcm8091488] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Emerging from the depths of evolution, pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors (i.e., PAC1, VPAC1, VPAC2) are present in multicellular organisms from Tunicates to humans and govern a remarkable number of physiological processes. Consequently, the clinical relevance of PACAP systems spans a multifaceted palette that includes more than 40 disorders. We aimed to present the versatility of PACAP1-38 actions with a focus on three aspects: (1) when PACAP1-38 could be a cause of a malfunction, (2) when PACAP1-38 could be the cure for a malfunction, and (3) when PACAP1-38 could either improve or impair biology. PACAP1-38 is implicated in the pathophysiology of migraine and post-traumatic stress disorder whereas an outstanding protective potential has been established in ischemia and in Alzheimer’s disease. Lastly, PACAP receptors could mediate opposing effects both in cancers and in inflammation. In the light of the above, the duration and concentrations of PACAP agents must be carefully set at any application to avoid unwanted consequences. An enormous amount of data accumulated since its discovery (1989) and the first clinical trials are dated in 2017. Thus in the field of PACAP research: “this is not the end, not even the beginning of the end, but maybe the end of the beginning.”
Collapse
Affiliation(s)
- Viktoria Denes
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Peter Geck
- Department of Immunology, School of Medicine, Tufts University, Boston, MA 02111, USA.
| | - Adrienn Mester
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| |
Collapse
|
39
|
Iwasaki M, Akiba Y, Kaunitz JD. Recent advances in vasoactive intestinal peptide physiology and pathophysiology: focus on the gastrointestinal system. F1000Res 2019; 8. [PMID: 31559013 PMCID: PMC6743256 DOI: 10.12688/f1000research.18039.1] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2019] [Indexed: 12/11/2022] Open
Abstract
Vasoactive intestinal peptide (VIP), a gut peptide hormone originally reported as a vasodilator in 1970, has multiple physiological and pathological effects on development, growth, and the control of neuronal, epithelial, and endocrine cell functions that in turn regulate ion secretion, nutrient absorption, gut motility, glycemic control, carcinogenesis, immune responses, and circadian rhythms. Genetic ablation of this peptide and its receptors in mice also provides new insights into the contribution of VIP towards physiological signaling and the pathogenesis of related diseases. Here, we discuss the impact of VIP on gastrointestinal function and diseases based on recent findings, also providing insight into its possible therapeutic application to diabetes, autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Mari Iwasaki
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Yasutada Akiba
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jonathan D Kaunitz
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA.,Departments of Medicine and Surgery, UCLA School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
40
|
Atlasz T, Werling D, Song S, Szabo E, Vaczy A, Kovari P, Tamas A, Reglodi D, Yu R. Retinoprotective Effects of TAT-Bound Vasoactive Intestinal Peptide and Pituitary Adenylate Cyclase Activating Polypeptide. J Mol Neurosci 2019. [PMID: 30542799 DOI: 10.1007/s12031-018-1229-5/figures/7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) belong to the same peptide family and exert a variety of biological functions. Both PACAP and VIP have protective effects in several tissues. While PACAP is known to be a stronger retinoprotective peptide, VIP has very potent anti-inflammatory effects. The need for a non-invasive therapeutic approach has emerged and PACAP has been shown to be retinoprotective when administered in the form of eye drops as well. The cell penetrating peptide TAT is composed of 11 amino acids and tagging of TAT at the C-terminus of neuropeptides PACAP/VIP can enhance the traversing ability of the peptides through the biological barriers. We hypothesized that TAT-bound PACAP and VIP could be more effective in exerting retinoprotective effects when given in eye drops, by increasing the traversing efficacy and enhancing the activation of the PAC1 receptor. Rats were subjected to bilateral carotid artery occlusion (BCCAO), and retinas were processed for histological analysis 14 days later. The efficiency of the TAT-bound peptides to reach the retina was assessed as well as their cAMP increasing ability. Our present study provides evidence, for the first time, that topically administered PACAP and VIP derivatives (PACAP-TAT and VIP-TAT) attenuate ischemic retinal degeneration via the PAC1 receptor presumably due to a multifactorial protective mechanism.
Collapse
Affiliation(s)
- Tamas Atlasz
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary.
- Department of Sportbiology, University of Pecs, Pecs, Hungary.
- Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary.
| | - D Werling
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - S Song
- Institute of Biomedicine, Jinan University, Guangzhou, China
| | - E Szabo
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - A Vaczy
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - P Kovari
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - A Tamas
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - D Reglodi
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - Rongjie Yu
- Institute of Biomedicine, Jinan University, Guangzhou, China.
| |
Collapse
|
41
|
Figueiredo CA, Düsedau HP, Steffen J, Gupta N, Dunay MP, Toth GK, Reglodi D, Heimesaat MM, Dunay IR. Immunomodulatory Effects of the Neuropeptide Pituitary Adenylate Cyclase-Activating Polypeptide in Acute Toxoplasmosis. Front Cell Infect Microbiol 2019; 9:154. [PMID: 31192159 PMCID: PMC6546896 DOI: 10.3389/fcimb.2019.00154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/26/2019] [Indexed: 12/21/2022] Open
Abstract
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is an endogenous neuropeptide with distinct functions including the regulation of inflammatory processes. PACAP is able to modify the immune response by directly regulating macrophages and monocytes inhibiting the production of inflammatory cytokines, chemokines and free radicals. Here, we analyzed the effect of exogenous PACAP on peripheral immune cell subsets upon acute infection with the parasite Toxoplasma gondii (T. gondii). PACAP administration was followed by diminished innate immune cell recruitment to the peritoneal cavity of T. gondii-infected mice. PACAP did not directly interfere with parasite replication, instead, indirectly reduced parasite burden in mononuclear cell populations by enhancing their phagocytic capacity. Although proinflammatory cytokine levels were attenuated in the periphery upon PACAP treatment, interleukin (IL)-10 and Transforming growth factor beta (TGF-β) remained stable. While PACAP modulated VPAC1 and VPAC2 receptors in immune cells upon binding, it also increased their expression of brain-derived neurotrophic factor (BDNF). In addition, the expression of p75 neurotrophin receptor (p75NTR) on Ly6Chi inflammatory monocytes was diminished upon PACAP administration. Our findings highlight the immunomodulatory effect of PACAP on peripheral immune cell subsets during acute Toxoplasmosis, providing new insights about host-pathogen interaction and the effects of neuropeptides during inflammation.
Collapse
Affiliation(s)
- Caio Andreeta Figueiredo
- Medical Faculty, Institute of Inflammation and Neurodegeneration, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Henning Peter Düsedau
- Medical Faculty, Institute of Inflammation and Neurodegeneration, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Johannes Steffen
- Medical Faculty, Institute of Inflammation and Neurodegeneration, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Nishith Gupta
- Faculty of Life Sciences, Institute of Biology, Humboldt University, Berlin, Germany
| | - Miklos Pal Dunay
- Department and Clinic of Surgery and Ophthalmology, University of Veterinary Medicine, Budapest, Hungary
| | - Gabor K Toth
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, Pecs, Hungary
| | - Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Ildiko Rita Dunay
- Medical Faculty, Institute of Inflammation and Neurodegeneration, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences - CBBS, Magdeburg, Germany
| |
Collapse
|
42
|
Reglodi D, Toth D, Vicena V, Manavalan S, Brown D, Getachew B, Tizabi Y. Therapeutic potential of PACAP in alcohol toxicity. Neurochem Int 2019; 124:238-244. [PMID: 30682380 DOI: 10.1016/j.neuint.2019.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/15/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022]
Abstract
Alcohol addiction is a worldwide concern as its detrimental effects go far beyond the addicted individual and can affect the entire family as well as the community. Considerable effort is being expended in understanding the neurobiological basis of such addiction in hope of developing effective prevention and/or intervention strategies. In addition, organ damage and neurotoxicological effects of alcohol are intensely investigated. Pharmacological approaches, so far, have only provided partial success in prevention or treatment of alcohol use disorder (AUD) including the neurotoxicological consequences of heavy drinking. Pituitary adenylate cyclase-activating polypeptide (PACAP) is an endogenous 38 amino-acid neuropeptide with demonstrated protection against neuronal injury, trauma as well as various endogenous and exogenous toxic agents including alcohol. In this mini-review, following a brief presentation of alcohol addiction and its neurotoxicity, the potential of PACAP as a therapeutic intervention in toxicological consequences of this devastating disorder is discussed.
Collapse
Affiliation(s)
- Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, Hungary.
| | - Denes Toth
- Department of Forensic Medicine, University of Pecs Medical School, Hungary
| | - Viktoria Vicena
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, Hungary
| | - Sridharan Manavalan
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, Hungary; Department of Basic Sciences, National University of Health Sciences, Florida, USA
| | - Dwayne Brown
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
43
|
Gomariz RP, Juarranz Y, Carrión M, Pérez-García S, Villanueva-Romero R, González-Álvaro I, Gutiérrez-Cañas I, Lamana A, Martínez C. An Overview of VPAC Receptors in Rheumatoid Arthritis: Biological Role and Clinical Significance. Front Endocrinol (Lausanne) 2019; 10:729. [PMID: 31695683 PMCID: PMC6817626 DOI: 10.3389/fendo.2019.00729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
The axis comprised by the Vasoactive Intestinal Peptide (VIP) and its G protein-coupled receptors (GPCRs), VPAC1, and VPAC2, belong to the B1 family and signal through Gs or Gq proteins. VPAC receptors seem to preferentially interact with Gs in inflammatory cells, rather than Gq, thereby stimulating adenylate cyclase activity. cAMP is able to trigger various downstream pathways, mainly the canonical PKA pathway and the non-canonical cAMP-activated guanine nucleotide exchange factor (EPAC) pathway. Classically, the presence of VPACs has been confined to the plasma membrane; however, VPAC1 location has been described in the nuclear membrane in several cell types such as activated Th cells, where they are also functional. VPAC receptor signaling modulates a number of biological processes by tipping the balance of inflammatory mediators in macrophages and other innate immune cells, modifying the expression of TLRs, and inhibiting MMPs and the expression of adhesion molecules. Receptor signaling also downregulates coagulation factors and acute-phase proteins, promotes Th2 over Th1, stimulates Treg abundance, and finally inhibits a pathogenic Th17 profile. Thus, the VIP axis signaling regulates both the innate and adaptive immune responses in several inflammatory/autoimmune diseases. Rheumatoid arthritis (RA) is a complex autoimmune disease that develops on a substrate of genetically susceptible individuals and under the influence of environmental factors, as well as epigenetic mechanisms. It is a heterogeneous disease with different pathogenic mechanisms and variable clinical forms between patients with the same diagnosis. The knowledge of VIP signaling generated in both animal models and human ex vivo studies can potentially be translated to clinical reality. Most recently, the beneficial effects of nanoparticles of VIP self-associated with sterically stabilized micelles have been reported in a murine model of RA. Another novel research area is beginning to define the receptors as biomarkers in RA, with their expression levels shown to be associated with the activity of the disease and patients-reported impairment. Therefore, VPAC expression together VIP genetic variants could allow patients to be stratified at the beginning of the disease with the purpose of guiding personalized treatment decisions.
Collapse
Affiliation(s)
- Rosa P. Gomariz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Rosa P. Gomariz
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Mar Carrión
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Selene Pérez-García
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Raúl Villanueva-Romero
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Isidoro González-Álvaro
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - Irene Gutiérrez-Cañas
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Amalia Lamana
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - Carmen Martínez
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
44
|
Atlasz T, Werling D, Song S, Szabo E, Vaczy A, Kovari P, Tamas A, Reglodi D, Yu R. Retinoprotective Effects of TAT-Bound Vasoactive Intestinal Peptide and Pituitary Adenylate Cyclase Activating Polypeptide. J Mol Neurosci 2018; 68:397-407. [PMID: 30542799 PMCID: PMC6581923 DOI: 10.1007/s12031-018-1229-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022]
Abstract
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) belong to the same peptide family and exert a variety of biological functions. Both PACAP and VIP have protective effects in several tissues. While PACAP is known to be a stronger retinoprotective peptide, VIP has very potent anti-inflammatory effects. The need for a non-invasive therapeutic approach has emerged and PACAP has been shown to be retinoprotective when administered in the form of eye drops as well. The cell penetrating peptide TAT is composed of 11 amino acids and tagging of TAT at the C-terminus of neuropeptides PACAP/VIP can enhance the traversing ability of the peptides through the biological barriers. We hypothesized that TAT-bound PACAP and VIP could be more effective in exerting retinoprotective effects when given in eye drops, by increasing the traversing efficacy and enhancing the activation of the PAC1 receptor. Rats were subjected to bilateral carotid artery occlusion (BCCAO), and retinas were processed for histological analysis 14 days later. The efficiency of the TAT-bound peptides to reach the retina was assessed as well as their cAMP increasing ability. Our present study provides evidence, for the first time, that topically administered PACAP and VIP derivatives (PACAP-TAT and VIP-TAT) attenuate ischemic retinal degeneration via the PAC1 receptor presumably due to a multifactorial protective mechanism.
Collapse
Affiliation(s)
- Tamas Atlasz
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary. .,Department of Sportbiology, University of Pecs, Pecs, Hungary. .,Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary.
| | - D Werling
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - S Song
- Institute of Biomedicine, Jinan University, Guangzhou, China
| | - E Szabo
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - A Vaczy
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - P Kovari
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - A Tamas
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - D Reglodi
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Group, University of Pecs, Pecs, Hungary
| | - Rongjie Yu
- Institute of Biomedicine, Jinan University, Guangzhou, China.
| |
Collapse
|
45
|
Abstract
Dysregulation of neuropeptides may play an important role in aging-induced impairments. In the long list of neuropeptides, pituitary adenylate cyclase-activating polypeptide (PACAP) represents a highly effective cytoprotective peptide that provides an endogenous control against a variety of tissue-damaging stimuli. PACAP has neuro- and general cytoprotective effects due to anti-apoptotic, anti-inflammatory, and antioxidant actions. As PACAP is also a part of the endogenous protective machinery, it can be hypothesized that the decreased protective effects in lack of endogenous PACAP would accelerate age-related degeneration and PACAP knockout mice would display age-related degenerative signs earlier. Recent results support this hypothesis showing that PACAP deficiency mimics aspects of age-related pathophysiological changes including increased neuronal vulnerability and systemic degeneration accompanied by increased apoptosis, oxidative stress, and inflammation. Decrease in PACAP expression has been shown in different species from invertebrates to humans. PACAP-deficient mice display numerous pathological alterations mimicking early aging, such as retinal changes, corneal keratinization and blurring, and systemic amyloidosis. In the present review, we summarize these findings and propose that PACAP deficiency could be a good model of premature aging.
Collapse
|