1
|
Wang J, Teng F, Liu S, Pan X, Yang B, Wu W. lncRNA SND1-IT1 delivered via intracerebral hemorrhage-derived exosomes affect the growth of human microglia by regulating the miR-124-3p/MTF1 axis. J Cell Physiol 2023; 238:366-378. [PMID: 36548450 DOI: 10.1002/jcp.30930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/31/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
In this study, we investigated the effects of long noncoding RNA (lncRNA) SND1-IT1 on human microglia (HMC3 cells) delivered by intracerebral hemorrhage (ICH)-derived exosomes (ICH-exos) as well as a competitive endogenous RNA (ceRNA) network. Exosomes obtained from ICH plasma were characterized by nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and western blot. RNA sequencing was performed to study the lncRNA transcriptome from ICH-exos and the healthy control-derived exosomes (HC-exos) and differentially expressed lncRNAs (DE-lncRNAs) were identified. HMC3 cells were treated with ICH-exos or transfected with pcDNA3.1-SND1-IT1, and then cell viability and apoptosis were measured. The ceRNA network (lncRNA SND1-IT1/miR-124-3p/messenger RNA MTF1) was chosen for further investigation. NTA, TEM, and western blot showed that exosomes were successfully separated and could be absorbed by HMC3 cells. The expression of lncRNA SND1-IT1 in ICH-exos was significantly higher than that of HC-exos (p < 0.05). In addition, lncRNA SND1-IT1 overexpression and ICH-exos significantly inhibited cell viability and enhanced apoptosis. A total of 162 DE-lncRNAs were identified by sequencing, and a ceRNA network was constructed. The dual-luciferase reporter gene indicated that lncRNA SND1-IT1, miR-124-3p, and MTF1 interacted with each other. Cell experiments showed that lncRNA SND1-IT1 affected the growth of HMC3 cells through miR-124-3p/MTF1. In conclusion, ICH-exos delivered lncRNA SND1-IT1 to HMC3 cells, and exosomal lncRNA SND1-IT1 can regulate cell viability and apoptosis to influence HMC3 cell growth via the SND1-IT1/miR-124-3p/MTF1 axis.
Collapse
Affiliation(s)
- Jian Wang
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Fei Teng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Chongqing University Cancer Hospital, Chongqing, China
| | - Shuhan Liu
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaoqiang Pan
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Bo Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Wu
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Heterologous Expression of Human Metallothionein Gene HsMT1L Can Enhance the Tolerance of Tobacco ( Nicotiana nudicaulis Watson) to Zinc and Cadmium. Genes (Basel) 2022; 13:genes13122413. [PMID: 36553680 PMCID: PMC9777932 DOI: 10.3390/genes13122413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Metallothionein (MT) is a multifunctional inducible protein in animals, plants, and microorganisms. MT is rich in cysteine residues (10-30%), can combine with metal ions, has a low molecular weight, and plays an essential biological role in various stages of the growth and development of organisms. Due to its strong ability to bind metal ions and scavenge free radicals, metallothionein has been used in medicine, health care, and other areas. Zinc is essential for plant growth, but excessive zinc (Zn) is bound to poison plants, and cadmium (Cd) is a significant environmental pollutant. A high concentration of cadmium can significantly affect the growth and development of plants and even lead to plant death. In this study, the human metallothionein gene HsMT1L under the control of the CaMV 35S constitutive promoter was transformed into tobacco, and the tolerance and accumulation capacity of transgenic tobacco plants to Zn and Cd were explored. The results showed that the high-level expression of HsMT1L in tobacco could significantly enhance the accumulation of Zn2+ and Cd2+ in both the aboveground parts and the roots compared to wild-type tobacco plants and conferred a greater tolerance to Zn and Cd in transgenic tobacco. Subcellular localization showed that HsMT1L was localized to the nucleus and cytoplasm in the tobacco. Our study suggests that HsMT1L can be used for the phytoremediation of soil for heavy metal removal.
Collapse
|
3
|
Song J, He K, Yang L, Shen J. Sevoflurane protects mice from cerebral ischemic injury by regulating microRNA-203-3p/HDAC4/Bcl-2 axis. Eur J Neurosci 2022; 55:1695-1708. [PMID: 35141965 DOI: 10.1111/ejn.15622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/29/2022]
Abstract
Sevoflurane (Sevo) is neuroprotective in ischemic injury, but its specific mechanism in the disease from microRNA-203-3p/histone deacetylases 4/B-cell lymphoma 2 (miR-203-3p/HDAC4/Bcl-2) axis asks for a comprehensive explanation. A middle cerebral artery occlusion (MCAO) mouse model was established by nylon suture method. miR-203-3p and HDAC4 expression was measured in mouse brain tissues. The MCAO mice were exposed to Sevo or injected with miR-203-3p- or HDAC4-related plasmids. In response to Sevo treatment or plasmid interference, neurological function, brain pathology, neuronal apoptosis and inflammation were determined. The interactions of miR-203-3p and HDAC4, and HDAC4 and Bcl-2 were verified. MCAO mice presented down-regulated miR-203-3p and up-regulated HDAC4. Sevo improved neurological function, brain pathological damage and reduced neuronal apoptosis and inflammation in MCAO mice, while overexpressing miR-203-3p further enhanced those effects. HDAC4 overexpression antagonized the impacts of miR-203-3p up-regulation on MCAO mice. The targeting relation existed between miR-203-3p and HDAC4, as well as between HDAC4 and Bcl-2. It is clearly elucidated that miR-203-3p enhances the protective effects of Sevo on MCAO mice through elevating Bcl-2 and down-regulating HDAC4, potentially and clinically offering an effective treatment method with Sevo for cerebral ischemic injury.
Collapse
Affiliation(s)
- Jie Song
- Department of Anesthesiology, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Ke He
- Department of Anesthesiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, China
| | - Longqiu Yang
- Department of Anesthesiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, China.,Medical College, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jun Shen
- Department of Anesthesiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, China.,Medical College, Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
4
|
Redox-Active Metal Ions and Amyloid-Degrading Enzymes in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22147697. [PMID: 34299316 PMCID: PMC8307724 DOI: 10.3390/ijms22147697] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
Redox-active metal ions, Cu(I/II) and Fe(II/III), are essential biological molecules for the normal functioning of the brain, including oxidative metabolism, synaptic plasticity, myelination, and generation of neurotransmitters. Dyshomeostasis of these redox-active metal ions in the brain could cause Alzheimer’s disease (AD). Thus, regulating the levels of Cu(I/II) and Fe(II/III) is necessary for normal brain function. To control the amounts of metal ions in the brain and understand the involvement of Cu(I/II) and Fe(II/III) in the pathogenesis of AD, many chemical agents have been developed. In addition, since toxic aggregates of amyloid-β (Aβ) have been proposed as one of the major causes of the disease, the mechanism of clearing Aβ is also required to be investigated to reveal the etiology of AD clearly. Multiple metalloenzymes (e.g., neprilysin, insulin-degrading enzyme, and ADAM10) have been reported to have an important role in the degradation of Aβ in the brain. These amyloid degrading enzymes (ADE) could interact with redox-active metal ions and affect the pathogenesis of AD. In this review, we introduce and summarize the roles, distributions, and transportations of Cu(I/II) and Fe(II/III), along with previously invented chelators, and the structures and functions of ADE in the brain, as well as their interrelationships.
Collapse
|
5
|
Valsecchi V, Laudati G, Cuomo O, Sirabella R, Del Prete A, Annunziato L, Pignataro G. The hypoxia sensitive metal transcription factor MTF-1 activates NCX1 brain promoter and participates in remote postconditioning neuroprotection in stroke. Cell Death Dis 2021; 12:423. [PMID: 33931586 PMCID: PMC8087832 DOI: 10.1038/s41419-021-03705-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/02/2022]
Abstract
Remote limb ischemic postconditioning (RLIP) is an experimental strategy in which short femoral artery ischemia reduces brain damage induced by a previous harmful ischemic insult. Ionic homeostasis maintenance in the CNS seems to play a relevant role in mediating RLIP neuroprotection and among the effectors, the sodium-calcium exchanger 1 (NCX1) may give an important contribution, being expressed in all CNS cells involved in brain ischemic pathophysiology. The aim of this work was to investigate whether the metal responsive transcription factor 1 (MTF-1), an important hypoxia sensitive transcription factor, may (i) interact and regulate NCX1, and (ii) play a role in the neuroprotective effect mediated by RLIP through NCX1 activation. Here we demonstrated that in brain ischemia induced by transient middle cerebral occlusion (tMCAO), MTF-1 is triggered by a subsequent temporary femoral artery occlusion (FAO) and represents a mediator of endogenous neuroprotection. More importantly, we showed that MTF-1 translocates to the nucleus where it binds the metal responsive element (MRE) located at -23/-17 bp of Ncx1 brain promoter thus activating its transcription and inducing an upregulation of NCX1 that has been demonstrated to be neuroprotective. Furthermore, RLIP restored MTF-1 and NCX1 protein levels in the ischemic rat brain cortex and the silencing of MTF-1 prevented the increase of NCX1 observed in RLIP protected rats, thus demonstrating a direct regulation of NCX1 by MTF-1 in the ischemic cortex of rat exposed to tMCAO followed by FAO. Moreover, silencing of MTF-1 significantly reduced the neuroprotective effect elicited by RLIP as demonstrated by the enlargement of brain infarct volume observed in rats subjected to RLIP and treated with MTF-1 silencing. Overall, MTF-dependent activation of NCX1 and their upregulation elicited by RLIP, besides unraveling a new molecular pathway of neuroprotection during brain ischemia, might represent an additional mechanism to intervene in stroke pathophysiology.
Collapse
Affiliation(s)
- Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via Pansini 5, 80131, Naples, Italy
| | - Giusy Laudati
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via Pansini 5, 80131, Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via Pansini 5, 80131, Naples, Italy
| | - Rossana Sirabella
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via Pansini 5, 80131, Naples, Italy
| | - Annalisa Del Prete
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via Pansini 5, 80131, Naples, Italy
| | | | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
6
|
Huang X, Deng J, Xu T, Xin W, Zhang Y, Ruan X. Downregulation of metallothionein-2 contributes to oxaliplatin-induced neuropathic pain. J Neuroinflammation 2021; 18:91. [PMID: 33849565 PMCID: PMC8045403 DOI: 10.1186/s12974-021-02139-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background We previously reported a correlation between small doses of oxaliplatin penetrating onto the spinal cord and acute pain after chemotherapy. Here, we propose that MT2 within the spinal dorsal horns participates in the development of oxaliplatin-induced neuropathic pain and may be a pharmacological target for the prevention and treatment of chemotherapy-induced peripheral neuropathy (CIPN). Methods The rat model of CIPN was established by 5 consecutive injections of oxaliplatin (0.4 mg/100 g/day). Genetic restoration of neuron-specific metallothionein-2 was implemented 21 days before oxaliplatin treatment, and also, genetic inhibition by metallothionein-2 siRNA was performed. Mechanical allodynia and locomotor activity were assayed. Cell-specific expression of metallothionein-2, the mRNA levels of pro-inflammatory cytokines, nuclear translocation of NF-κB, the protein levels of expression of IκB-α, and interaction between IκB-α and P65 were evaluated in the spinal dorsal horns. Also, in vitro interaction of sequentially deleted IκB-α promoter with metallothionein-2 was used to assess the signal transduction mechanism. Results We found that oxaliplatin induced downregulation of metallothionein-2 in rat spinal cord neurons. By contrast, genetic restoration of metallothionein-2 in the spinal dorsal horn neuron blocked and reversed neuropathic pain in oxaliplatin-treated rats of both sexes, whereas genetic inhibition of metallothionein-2 triggered neuropathic pain in normal rats. Overall locomotor activity was not impaired after the genetic alterations of metallothionein-2. At the molecular level, metallothionein-2 modulated oxaliplatin-induced neuroinflammation, activation of NF-κB, and inactive transcriptional expression of IκB-α promoter, and these processes could be blocked by genetic restoration of metallothionein-2 in the spinal dorsal horn neurons. Conclusions Metallothionein-2 is a potential target for the prevention and treatment of CIPN. A reduction of NF-κB activation and inflammatory responses by enhancing the transcription of IκB-α promoter is proposed in the mechanism.
Collapse
Affiliation(s)
- Xuelin Huang
- Department of Anesthesia and Pain Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, Guangdong, China
| | - Jie Deng
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Ting Xu
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Wenjun Xin
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Yuehong Zhang
- Department of Ophthalmology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, Guangdong, China. .,Department of Ophthalmology, The Second Affiliated Hospital of South China University of Technology, 602 Renminbei Road, Guangzhou, 510180, China.
| | - Xiangcai Ruan
- Department of Anesthesia and Pain Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, Guangdong, China. .,Department of Anesthesia and Pain Medicine, The Second Affiliated Hospital of South China University of Technology, 602 Renminbei Road, Guangzhou, 510180, China.
| |
Collapse
|