1
|
Kimbrel NA, Garrett ME, Evans MK, Mellows C, Dennis MF, Hair LP, Hauser MA, Ashley-Koch AE, Beckham JC. Large epigenome-wide association study identifies multiple novel differentially methylated CpG sites associated with suicidal thoughts and behaviors in veterans. Front Psychiatry 2023; 14:1145375. [PMID: 37398583 PMCID: PMC10311443 DOI: 10.3389/fpsyt.2023.1145375] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/28/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction The U.S. suicide mortality rate has steadily increased during the past two decades, particularly among military veterans; however, the epigenetic basis of suicidal thoughts and behaviors (STB) remains largely unknown. Methods To address this issue, we conducted an epigenome-wide association study of DNA methylation (DNAm) of peripheral blood samples obtained from 2,712 U.S. military veterans. Results Three DNAm probes were significantly associated with suicide attempts, surpassing the multiple testing threshold (FDR q-value <0.05), including cg13301722 on chromosome 7, which lies between the genes SLC4A2 and CDK5; cg04724646 in PDE3A; and cg04999352 in RARRES3. cg13301722 was also found to be differentially methylated in the cerebral cortex of suicide decedents in a publicly-available dataset (p = 0.03). Trait enrichment analysis revealed that the CpG sites most strongly associated with STB in the present sample were also associated with smoking, alcohol consumption, maternal smoking, and maternal alcohol consumption, whereas pathway enrichment analysis revealed significant associations with circadian rhythm, adherens junction, insulin secretion, and RAP-1 signaling, each of which was recently associated with suicide attempts in a large, independent genome-wide association study of suicide attempts of veterans. Discussion Taken together, the present findings suggest that SLC4A2, CDK5, PDE3A, and RARRES3 may play a role in STB. CDK5, a member of the cyclin-dependent kinase family that is highly expressed in the brain and essential for learning and memory, appears to be a particularly promising candidate worthy of future study; however, additional work is still needed to replicate these finding in independent samples.
Collapse
Affiliation(s)
- Nathan A. Kimbrel
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, United States
- VA Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, United States
- VA Health Services Research and Development Center of Innovation to Accelerate Discovery and Practice Transformation, Durham, NC, United States
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | | | - Mariah K. Evans
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, United States
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Clara Mellows
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michelle F. Dennis
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, United States
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Lauren P. Hair
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, United States
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | | | | | - Jean C. Beckham
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, United States
- VA Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, United States
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
2
|
Peng H, Yu Y, Wang P, Yao Y, Wu X, Zheng Q, Wang J, Tian B, Wang Y, Ke T, Liu M, Tu X, Liu H, Wang QK, Xu C. NINJ2 deficiency inhibits preadipocyte differentiation and promotes insulin resistance through regulating insulin signaling. Obesity (Silver Spring) 2023; 31:123-138. [PMID: 36504350 DOI: 10.1002/oby.23580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Genetic variants in ninjurin-2 (NINJ2; nerve injury-induced protein 2) confer risk of ischemic strokes and coronary artery disease as well as endothelial activation and inflammation. However, little is known about NINJ2's in vivo functions and underlying mechanisms. METHODS The phenotypes of NINJ2 knockout mice were analyzed, and mechanisms of NINJ2 that regulate body weight, insulin resistance, and glucose homeostasis and lipogenesis were investigated in vivo and in vitro. RESULTS This study found that mice lacking NINJ2 showed impaired adipogenesis, increased insulin resistance, and abnormal glucose homeostasis, all of which are risk factors for strokes and coronary artery disease. Mechanistically, NINJ2 directly interacts with insulin receptor/insulin-like growth factor 1 receptor (INSR/IGF1R), and NINJ2 knockdown can block insulin-induced mitotic clonal expansion during preadipocyte differentiation by inhibiting protein kinase B/extracellular signal-regulated kinase (AKT/ERK) signaling and by decreasing the expression of key adipocyte transcriptional regulators CCAAT/enhancer-binding protein β (C/EBP-β), C/EBP-α, and peroxisome proliferator-activated receptor γ (PPAR-γ). Furthermore, the interaction between NINJ2 and INSR/IGF1R is needed for maintaining insulin sensitivity in adipocytes and muscle via AKT and glucose transporter type 4. Notably, adenovirus-mediated NINJ2 overexpression can ameliorate diet-induced insulin resistance in mice. CONCLUSIONS In conclusion, these findings reveal NINJ2 as an important new facilitator of insulin receptors, and the authors propose a unique regulatory mechanism between insulin signaling, adipogenesis, and insulin resistance.
Collapse
Affiliation(s)
- Huixin Peng
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yubing Yu
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Pengyun Wang
- Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yufeng Yao
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xinna Wu
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qian Zheng
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jing Wang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Beijia Tian
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yifan Wang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Tie Ke
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Mugen Liu
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xin Tu
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Huiying Liu
- Department of Respiratory and Critical Care Medicine, Southern of the Fifth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Qing K Wang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chengqi Xu
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
3
|
Abramova O, Soloveva K, Zorkina Y, Gryadunov D, Ikonnikova A, Fedoseeva E, Emelyanova M, Ochneva A, Andriushchenko N, Pavlov K, Pavlova O, Ushakova V, Syunyakov T, Andryushchenko A, Karpenko O, Savilov V, Kurmishev M, Andreuyk D, Gurina O, Chekhonin V, Kostyuk G, Morozova A. Suicide-Related Single Nucleotide Polymorphisms, rs4918918 and rs10903034: Association with Dementia in Older Adults. Genes (Basel) 2022; 13:2174. [PMID: 36421848 PMCID: PMC9690628 DOI: 10.3390/genes13112174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 08/19/2024] Open
Abstract
Dementia has enormous implications for patients and the health care system. Genetic markers are promising for detecting the risk of cognitive impairment. We hypothesized that genetic variants associated with suicide risk might significantly increase the risk of cognitive decline because suicide in older adults is often a consequence of cognitive impairment. We investigated several single-nucleotide polymorphisms that were initially associated with suicide risk in dementia older adults and identified the APOE gene alleles. The study was performed with subjects over the age of 65: 112 patients with dementia and 146 healthy volunteers. The MMSE score was used to assess cognitive functions. Study participants were genotyped using real-time PCR (APOE: rs429358, rs7412; genes associated with suicide: rs9475195, rs7982251, rs2834789, rs358592, rs4918918, rs3781878, rs10903034, rs165774, rs16841143, rs11833579 rs10898553, rs7296262, rs3806263, and rs2462021). Genotype analysis revealed the significance of APOEε4, APOEε2, and rs4918918 (SORBS1) when comparing dementia and healthy control groups. The association of APOEε4, APOEε2, and rs10903034 (IFNLR1) with the overall MMSE score was indicated. The study found an association with dementia of rs4918918 (SORBS1) and rs10903034 (IFNLR1) previously associated with suicide and confirmed the association of APOEε4 and APOEε2 with dementia.
Collapse
Affiliation(s)
- Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Kristina Soloveva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Dmitry Gryadunov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna Ikonnikova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Fedoseeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Marina Emelyanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Aleksandra Ochneva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Nika Andriushchenko
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
- Department of Biology, Shenzhen MSU-BIT University, Ruyi Rd. 299, Shenzhen 518172, China
| | - Konstantin Pavlov
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Olga Pavlova
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Valeriya Ushakova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
- M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Timur Syunyakov
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- International Centre for Education and Research in Neuropsychiatry (ICERN), Samara State Medical University, 443016 Samara, Russia
| | - Alisa Andryushchenko
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Olga Karpenko
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Victor Savilov
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Marat Kurmishev
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Denis Andreuyk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga Gurina
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Federal State Budgetary Educational Institution of Higher Education “Moscow State University of Food Production”, Volokolamskoye Highway 11, 125080 Moscow, Russia
| | - Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| |
Collapse
|
4
|
Dai L, Wang P, Du H, Guo Q, Li F, He X, Zou S. High-frequency Repetitive Transcranial Magnetic Stimulation (rTMS) Accelerates onset Time of Beneficial Treating Effects and Improves Clinical Symptoms of Depression. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:500-510. [PMID: 34736388 DOI: 10.2174/1871527320666211104123343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/12/2021] [Accepted: 07/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND In recent years, more and more patients with depression demonstrate suicidal intention and suicidal behavior. OBJECTIVE To evaluate the effectiveness of repetitive transcranial magnetic stimulation (rTMS) in treating depression with suicidal ideation. METHODS Eighty-nine depression patients with suicide intention were administrated drugs combined with four weeks of Active rTMS (n=40) or sham (n=49) rTMS treatment. The 24-item Hamilton Depression Rating Scale for Depression (HAMD-24) and Self-rating Idea of Suicide Scale (SIOSS) were used to evaluate suicide risk and depression severity at baseline, weeks 2 and 4. A 25% reduction in HAMD-24 score from baseline was defined as treatment response. More than a 20% reduction in HAMD-24 score from baseline within the first 2 weeks of treatment was defined as an early improvement. RESULTS No statistical significance was found for baseline sociodemographic and illness characteristics between the two groups (P >0.05). There was a significant difference for HAMD-24 and SIOSS scores between the two groups at weeks 2 and 4. Active rTMS group demonstrated a more significant score reduction compared to the Sham rTMS group at weeks 2 and 4. There was a significantly greater number of patients with early improvement observed in the Active rTMS group compared to those in the Sham rTMS group at weeks 2 (P <0.05). There was a significant difference in responder rates between the two groups at weeks 4 for HAMD-24 scores (P <0.05). CONCLUSION rTMS could accelerate the onset time of beneficial treating effects and improve clinical symptoms of depression. During the treatment course, cognitive disorder, sleep disorder, anxiety/ somatization, retardation, and hopelessness symptoms were improved dramatically, and suicidal ideation was reduced.
Collapse
Affiliation(s)
- Lilei Dai
- Department of Clinical Psychology, Jingmen NO.2 People\'s Hospital, Jingmen, China
| | - Peng Wang
- Department of Psychiatry, Affiliated Xi'an Central Hospital of Xi\'an Jiaotong University, Xi\'an, China
| | - Hui Du
- Department of Clinical Psychology, Jingmen NO.2 People\'s Hospital, Jingmen, China
| | - Qingshan Guo
- Department of Clinical Psychology, Jingmen NO.2 People\'s Hospital, Jingmen, China
| | - Fen Li
- Department of Clinical Psychology, Jingmen NO.2 People\'s Hospital, Jingmen, China
| | - Xinfu He
- Department of Clinical Psychology, Jingmen NO.2 People\'s Hospital, Jingmen, China
| | - Shaohong Zou
- Department of Clinical Psychology, Xinjiang Uygur Autonomous Region People\'s Hospital, Urumqi, China
| |
Collapse
|
5
|
Taheri M, Badrlou E, Hussen BM, Oskooei VK, Neishabouri SM, Ghafouri-Fard S. Association between genetic variants and risk of obsessive-compulsive disorder. Metab Brain Dis 2022; 37:525-530. [PMID: 34767156 DOI: 10.1007/s11011-021-00870-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/31/2021] [Indexed: 11/28/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a complex multi-gene disorder. In the current study, we genotyped six single nucleotide polymorphisms (SNPs) within MOCOS, NINJ2 and AKT1 genes in a cohort of Iranian patients with this disorder and healthy controls. C allele of rs1057251 has been found to increase risk of OCD (OR (95% CI) =6.39 (4.64-8.79), P value <0.001). This SNP has been associated with risk of OCD in codominant model (OR (95% CI) = 69.53 (25.02-193.21) and 147 (34.2-631.75) for TC and CC genotypes, respectively, P value <0.0001). The rs1057251 was also associated with risk of OCD in dominant (OR (95% CI) = 72.87 (26.28-202.03), P value <0.0001), recessive (OR (95% CI) = 7.43 (2.49-22.19), P value =0.0002), overdominant (OR (95% CI) = 20.2 (11.1-36.76), P value <0.0001) and log-additive (OR (95% CI) = 20.87 (13.83-56.14), P value <0.0001) models. The rs3809263 within NINJ2 was also associated with risk of OCD. The A allele of this SNP has been found to confer risk of OCD (OR (95% CI) =3.28 (2.41-4.48), P value <0.001). This SNP was associated with risk of OCD in codominant (P value <0.0001), dominant (P value <0.0001), overdominant (OR (95% CI) = 9.28 (5.23-16.46), P value<0.0001) and log-additive (OR (95% CI) = 5.25 (3.4-8.1), P value <0.0001) models. Other SNPs were not associated with risk of OCD in any inheritance model. Taken together, rs1057251 and rs3809263 can be considered as risk loci for OCD in Iranian population.
Collapse
Affiliation(s)
- Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Badrlou
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Vahid Kholghi Oskooei
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | | | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Sun Y, Chen X, Ou Z, Wang Y, Chen W, Zhao T, Liu C, Chen Y. Dysmyelination by Oligodendrocyte-Specific Ablation of Ninj2 Contributes to Depressive-Like Behaviors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103065. [PMID: 34787377 PMCID: PMC8787401 DOI: 10.1002/advs.202103065] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/21/2021] [Indexed: 05/04/2023]
Abstract
Depression is a mental disorder affecting more than 300 million people in the world. Abnormalities in white matter are associated with the development of depression. Here, the authors show that mice with oligodendrocyte-specific deletion of Nerve injury-induced protein 2 (Ninj2) exhibit depressive-like behaviors. Loss of Ninj2 in oligodendrocytes inhibits oligodendrocyte development and myelination, and impairs neuronal structure and activities. Ninj2 competitively inhibits TNFα/TNFR1 signaling pathway by directly binding to TNFR1 in oligodendrocytes. Loss of Ninj2 activates TNFα-induced necroptosis, and increases C-C Motif Chemokine Ligand 2 (Ccl2) production, which might mediate the signal transduction from oligodendrocyte to neurons. Inhibition of necroptosis by Nec-1s administration synchronously restores oligodendrocyte development, improves neuronal excitability, and alleviates depressive-like behaviors. This study thus illustrates the role of Ninj2 in the development of depression and myelination, reveals the relationship between oligodendrocytes and neurons, and provides a potential therapeutic target for depression.
Collapse
Affiliation(s)
- Yuxia Sun
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| | - Xiang Chen
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| | - Zhimin Ou
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| | - Yue Wang
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| | - Wenjing Chen
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| | - Tongjin Zhao
- Shanghai Key Laboratory of Metabolic Remodeling and HealthInstitute of Metabolism and Integrative BiologyZhongshan HospitalFudan UniversityShanghai200438China
| | - Changqin Liu
- Department of Endocrinology and DiabetesThe First Affiliated Hospital of Xiamen UniversityFujian Province Key Laboratory of Diabetes Translational MedicineXiamenFujian361101China
| | - Ying Chen
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| |
Collapse
|