1
|
Mousa AM, Alrumaihi FA. Putative role of 6-chogaol against tramadol-induced hepatotoxicity in albino rats via anti-inflammatory, antifibrotic, and antiapoptotic effects. Tissue Cell 2024; 91:102562. [PMID: 39276486 DOI: 10.1016/j.tice.2024.102562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Tramadol is a commonly used drug to relieve pain and avoid premature ejaculation in males with hepatotoxic effects, and 6-chogaol has potent anti-inflammatory and hepatoprotective properties. The work impetus is probing the hepatoprotective mechanisms of 6-chogaol against tramadol hepatoxicity. Twenty adult male rats were enrolled to obtain four equal groups [control group (G1), 6-chogaol group (G2), tramadol group (G3), and 6-chogaol+tramadol group (G4)]. Liver specimens were excised and processed to evaluate hepatocyte injury through histopathological (HP), immunohistochemical (IHC), flow cytometry, and biochemical investigations. The HP study exhibited hepatic injury in G3 hepatocytes (inflammatory cell infiltration, hepatic fibrosis, and disturbed liver structure). The IHC study showed a significant rise in caspase-3 and reduced PCNA immuno-expression (IE). Likewise, the flow cytometry and biochemical experiments exhibited a substantial elevation of apoptotic hepatocytes and the serum levels of IL-1β, IL-6, TNF-α, ALP, ALT, and AST in G3. In contrast, G4 rats significantly improved in all HP, IHC, flow cytometry, and biochemical parameters. Collectively, tramadol intake exerted harmful toxic effects on hepatocytes, whereas 6-Shogaol hampered these changes and served as a natural hepatoprotective agent. Therefore, we advise concurrent intake of 6-Shogaol supplement with tramadol to preserve the integrity of hepatic tissues.
Collapse
Affiliation(s)
- Ayman M Mousa
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt.
| | - Faris A Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
2
|
Dibaei M, Hosseini A, Lavasani H, Kiani-Dehkordi B, Rouini M. Assessment of metabolic interaction between curcumin and tramadol using the isolated perfused rat liver. Heliyon 2024; 10:e35070. [PMID: 39170468 PMCID: PMC11336359 DOI: 10.1016/j.heliyon.2024.e35070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction The presence of phytochemicals in herbal medicines can lead to herb-drug interactions, altering the levels of these compounds and conventional drugs in the bloodstream by influencing CYP450 activity. Considering curcumin's effect on the CYP enzymes responsible for tramadol metabolism, it is essential to assess the potential interaction between curcumin and tramadol when administered together. Materials and methods The pharmacokinetics of tramadol were examined in rats receiving either single or multiple doses of curcumin (80 mg/kg) compared to rats without curcumin treatment. Tramadol liver perfusion was conducted on all rat groups and perfusate samples were collected at specified intervals. Tramadol and its main metabolite were detected using an HPLC system coupled with a fluorescence detector. Results Tramadol concentrations were notably higher in the co-administered group compared to both the control and treatment groups. Conversely, lower concentrations of M1 were observed in the co-administered and treatment groups compared to the control group. The AUC0-60 parameters for tramadol were as follows: 32944.8 ± 1355.5, 22925.7 ± 1650.1, and 36548.0 ± 2808.4 ng⋅min/ml for the control, treatment, and co-administered groups, respectively. Both the co-administered and treatment groups exhibited a lower AUC0-60 of M1 compared to the control group. The lack of significant difference in Cmax and AUC0-60 of M1 between the treatment and co-administered groups suggests that single and multiple doses of curcumin have comparable effects on CYP2D6. Conclusions These results indicate a potential for drug interactions when curcumin and tramadol are taken together. Furthermore, the influence of curcumin on tramadol metabolism varied between single and multiple oral administrations of curcumin. Hence, it is vital to highlight this interaction in clinical settings and conduct additional research to fully understand the clinical implications of combining curcumin and tramadol.
Collapse
Affiliation(s)
- Maryam Dibaei
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hoda Lavasani
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Banafsheh Kiani-Dehkordi
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Rouini
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Elshebiney SA, Elgohary RA, El-Shamarka ME, Mabrouk M, Beheri HH. A novel tramadol-polycaprolactone implant could palliate heroin conditioned place preference and withdrawal in rats: behavioral and neurochemical study. Behav Pharmacol 2024; 35:280-292. [PMID: 38900102 DOI: 10.1097/fbp.0000000000000778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Drug dependence is a chronic brain disease characterized by craving and recurrent episodes of relapse. Tramadol HCl is a promising agent for withdrawal symptoms management, considering its relatively low abuse potential and safety. Oral administration, however, is not preferred in abstinence maintenance programs. Introducing an implantable, long-lasting formula is suggested to help outpatient abstinence programs achieve higher rates of treatment continuation. Tramadol implants (T350 and T650) were prepared on polycaprolactone polymer ribbons by the wet method. Male Wistar rats were adapted to heroin-conditioned place preference (CPP) at escalating doses (3-30 mg/kg, intraperitoneally, for 14 days). Implants were surgically implanted in the back skin of rats. After 14 days, the CPP score was recorded. Naloxone (1 mg/kg, intraperitoneally) was used to induce withdrawal on day 15, and symptoms were scored. Elevated plus maze and open field tests were performed for anxiety-related symptoms. Striata were analyzed for neurochemical changes reflected in dopamine, 3,4-dihydroxyphenyl acetic acid, gamma-aminobutyric acid, and serotonin levels. Brain oxidative changes including glutathione and lipid peroxides were assessed. The tramadol implants (T350 and T650) reduced heroin CPP and limited naloxone-induced withdrawal symptoms. The striata showed increased levels of 3,4-dihydroxyphenyl acetic acid, and serotonin and decreased levels of gamma-aminobutyric acid and dopamine after heroin withdrawal induction, which were reversed after implanting T350 and T650. Implants restore the brain oxidative state. Nonsignificant low naloxone-induced withdrawal score after the implant was used in naive subjects indicating low abuse potential of the implants. The presented tramadol implants were effective at diminishing heroin CPP and withdrawal in rats, suggesting further investigations for application in the management of opioid withdrawal.
Collapse
Affiliation(s)
- Shaimaa A Elshebiney
- Narcotics, Ergogenics, and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre (NRC)
| | - Rania A Elgohary
- Narcotics, Ergogenics, and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre (NRC)
| | - Marwa E El-Shamarka
- Narcotics, Ergogenics, and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre (NRC)
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre (NRC), Giza, Egypt
| | - Hanan H Beheri
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre (NRC), Giza, Egypt
| |
Collapse
|
4
|
Ölmeztürk Karakurt TC, Eren N, Subaşı F, Kuyrukluyıldız U, Çoban TA, Süleyman H, Mokhtare B. Effects of taxifolin on tramadol-induced oxidative and inflammatory liver injury in rats: an experimental study. Drug Chem Toxicol 2024; 47:457-462. [PMID: 37042292 DOI: 10.1080/01480545.2023.2199175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/31/2023] [Indexed: 04/13/2023]
Abstract
In this experimental study we aimed to investigate the biochemical and histopathological effects of concomitantly administered taxifolin on tramadol-induced liver damage in rats. The rats were divided into three groups; control group (CG), tramadol alone (TRG), and taxifolin + tramadol given (TTRG) groups. Malondialdehyde (MDA), total glutathione (tGSH), total oxidant status (TOS), total antioxidant status (TAS), nuclear factor-kappa beta (NF-kB), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) levels were measured in liver tissues. Liver tissues were also examined histopathologically. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were determined in blood samples. In tissue analyses, determinants of oxidative stress and inflammation, all were significantly higher in the TRG group compared with the control and TTRG groups. In the TTRG group, all oxidative stress and inflammation markers were significantly lower than in the TRG group. In addition, there was not any significant difference between the control and TTRG groups regarding the TOS and TAS status. Serum liver enzymes were also significantly higher in the TRG group than in the other two groups. In histopathological examinations, the control group had a normal histological appearance. Degenerative-necrotic hepatocytes and hemorrhage, which were seen at a severe level in the TRG group, were found to be moderate in the treated TTRG group. In addition, mononuclear cell infiltrations were found to be severe in the TRG group and mild in the treated TTRG group. Finally it was concluded that Taxifolin alleviated the toxic effects of tramadol on the liver including the histopathological and biochemical changes as well as the oxidative damage.
Collapse
Affiliation(s)
- Tülay Ceren Ölmeztürk Karakurt
- Anesthesiology and Reanimation Clinic, Erzincan Binali Yıldırım University, Mengücek Gazi Training and Research Hospital, Erzincan, Turkey
| | - Nurhan Eren
- Anesthesiology and Reanimation Clinic, Erzincan Binali Yıldırım University, Mengücek Gazi Training and Research Hospital, Erzincan, Turkey
| | - Faruk Subaşı
- Anesthesiology and Reanimation Clinic, Erzincan Binali Yıldırım University, Mengücek Gazi Training and Research Hospital, Erzincan, Turkey
| | - Ufuk Kuyrukluyıldız
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Taha Abdulkadir Çoban
- Department of Clinical Biochemistry, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Halis Süleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Behzad Mokhtare
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
5
|
Ezi S, Shadi M, Vafaei-Nezhad M, Vafaei-Nezhad S. Does Tramadol Exposure Have Unfavorable Effects on Hippocampus? A Review Study. ADDICTION & HEALTH 2024; 16:213-223. [PMID: 39439859 PMCID: PMC11491864 DOI: 10.34172/ahj.1481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 05/01/2024] [Indexed: 10/25/2024]
Abstract
Background Tramadol, one of the most common opioid pain relievers, acts upon the µ-receptor in the central nervous system (CNS) to alleviate pain associated with various situations like postoperative pain, arthritis, and muscular pain. Additionally, it has been utilized to address depression and anxiety disorders. Extensive research has shown that tramadol can potentially inflict irreversible harm on different regions of the CNS, including the cerebrum, cerebellum, amygdala, and, notably, the hippocampal formation. However, the precise mechanism behind these effects remains unclear. Within this study, we conducted a comprehensive examination of the impacts of tramadol on the CNS, specifically focusing on hippocampal formation. Methods In this study, we collected relevant articles published between 2000 and 2022 by conducting searches using specific keywords, including tramadol, tramadol hydrochloride, central nervous system, hippocampus, and hippocampal formation, in various databases. Findings The results of this study proposed several processes by which tramadol may impact the CNS, including the induction of apoptosis, autophagy, excessive production of free radicals, and dysfunction of cellular organelles. These processes ultimately lead to disturbances in neural cell function, particularly within the hippocampus. Furthermore, it is revealed that tramadol administration led to a significant decrease in the neural cell count and the volume of various regions within the brain and spinal cord. Conclusion Consequently, neuropsychological impairments, such as memory formation, attention deficits, and cognitive impairment, may happen. This finding highlights the potential impacts of tramadol on neural structures and warrants further investigation.
Collapse
Affiliation(s)
- Samira Ezi
- Department of Anatomical Sciences, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mehri Shadi
- Department of Anatomical Sciences, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Masood Vafaei-Nezhad
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Vafaei-Nezhad
- Department of Anatomical Sciences, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
6
|
Soares-Cardoso C, Leal S, Sá SI, Dantas-Barros R, Dinis-Oliveira RJ, Faria J, Barbosa J. Unraveling the Hippocampal Molecular and Cellular Alterations behind Tramadol and Tapentadol Neurobehavioral Toxicity. Pharmaceuticals (Basel) 2024; 17:796. [PMID: 38931463 PMCID: PMC11206790 DOI: 10.3390/ph17060796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Tramadol and tapentadol are chemically related opioids prescribed for the analgesia of moderate to severe pain. Although safer than classical opioids, they are associated with neurotoxicity and behavioral dysfunction, which arise as a concern, considering their central action and growing misuse and abuse. The hippocampal formation is known to participate in memory and learning processes and has been documented to contribute to opioid dependence. Accordingly, the present study assessed molecular and cellular alterations in the hippocampal formation of Wistar rats intraperitoneally administered with 50 mg/kg tramadol or tapentadol for eight alternate days. Alterations were found in serum hydrogen peroxide, cysteine, homocysteine, and dopamine concentrations upon exposure to one or both opioids, as well as in hippocampal 8-hydroxydeoxyguanosine and gene expression levels of a panel of neurotoxicity, neuroinflammation, and neuromodulation biomarkers, assessed through quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemical analysis of hippocampal formation sections showed increased glial fibrillary acidic protein (GFAP) and decreased cluster of differentiation 11b (CD11b) protein expression, suggesting opioid-induced astrogliosis and microgliosis. Collectively, the results emphasize the hippocampal neuromodulator effects of tramadol and tapentadol, with potential behavioral implications, underlining the need to prescribe and use both opioids cautiously.
Collapse
Affiliation(s)
- Cristiana Soares-Cardoso
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (C.S.-C.); (S.L.); (R.D.-B.); or (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Sandra Leal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (C.S.-C.); (S.L.); (R.D.-B.); or (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Susana I. Sá
- RISE-HEALTH, Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal;
| | - Rita Dantas-Barros
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (C.S.-C.); (S.L.); (R.D.-B.); or (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (C.S.-C.); (S.L.); (R.D.-B.); or (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- FOREN-Forensic Science Experts, Av. Dr. Mário Moutinho 33-A, 1400-136 Lisboa, Portugal
| | - Juliana Faria
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (C.S.-C.); (S.L.); (R.D.-B.); or (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Joana Barbosa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (C.S.-C.); (S.L.); (R.D.-B.); or (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
7
|
Shabani M, Jamali Z, Naserian A, Khezri S, Salimi A. Maintenance of mitochondrial function by sinapic acid protects against tramadol-induced toxicity in isolated mitochondria obtained from rat brain. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:889-897. [PMID: 37526689 DOI: 10.1007/s00210-023-02648-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
It is reported that tramadol can induce neurotoxic effects with the production of DNA damage, mitochondrial dysfunction, and oxidative stress. The current study aimed to evaluate the potential role of mitochondrial impairment in the pathogenesis of tramadol-induced neurotoxicity, and protective effect of sinapic acid (SA) against it in isolated mitochondria from rat brain. Mitochondria were isolated and were incubated with toxic concentrations (100 μM) of tramadol and then cotreated with tramadol + SA (10, 50, and 100 μM). Biomarkers of mitochondrial toxicity including succinate dehydrogenases (SDH) activity, reactive oxygen species (ROS), lipid peroxidation (LPO), mitochondrial membrane potential (MMP), GSH depletion, and mitochondrial swelling were assessed. Our results showed a significant decrease in SDH activity, and a significant increase in ROS, LPO, GSH depletion, MMP collapse, and mitochondrial swelling was detected in tramadol group. We observed that 50 and 100 μM SA cotreatment for 1 h efficiently ameliorated tramadol-caused damage in mitochondrial dysfunction, accumulation of ROS, LPO, GSH depletion, depolarization of mitochondrial membrane potential, and mitochondrial swelling. These data suggest that mitochondrial impairment and oxidative stress are mechanisms involved in the pathogenesis of tramadol-induced neurotoxicity. Also, results indicate that SA antagonizes against tramadol-induced mitochondrial toxicity and suggest SA may be a preventive/therapeutic agent for tramadol-induced neurotoxicity complications.
Collapse
Affiliation(s)
- Mohammad Shabani
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zhaleh Jamali
- Department of Addiction Studies, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Aida Naserian
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saleh Khezri
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ahmad Salimi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
8
|
Zeleke TK, Bazezew ZA, Abebe RB. The Burden of Inappropriate Prescriptions and Predictors for Hospitalized Patients with Liver Cirrhosis in Ethiopia. Hepat Med 2023; 15:129-140. [PMID: 37790886 PMCID: PMC10542506 DOI: 10.2147/hmer.s423351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/14/2023] [Indexed: 10/05/2023] Open
Abstract
Background Pathophysiological alterations in liver cirrhosis affect how medications are metabolized and eliminated. Therefore, when prescribing medicines for patients with cirrhosis, appropriate prescription of medication is an accepted standard of practice. Since patients with cirrhosis require a complex therapy plan, it necessitates regular reviews of medication utilization. However, no research was conducted in Ethiopia. The aim of this study was to figure out the predictors of inappropriate prescriptions and the pattern of prescription in patients with cirrhosis. Patients and methods A cross-sectional study design was carried out at Felege-Hiwot, a specialized and comprehensive referral hospital, from June 30, 2022, to November 30, 2022, in 123 hospitalized patients with cirrhosis. Patients were recruited using a simple random sampling procedure, and data were collected using an interviewer-administered questionnaire. For the purpose of identifying determinants of inappropriate prescription, logistic regression analyses have been carried out and statistical significance was defined by a p-value of less than 0.05 and a 95% confidence range. Results The burden of inappropriate prescriptions among patients with cirrhosis was 35.8%. An increased number of medications prescribed (AOR = 4.88 (1.05-22.68)), prescription by a general practitioner (AOR = 3.57 (95% CI 1.07-11.44)), increased level of bilirubin (AOR = 3.54 (95% CI 1.95-6.45)), and decreased level of albumin (AOR = 0.18 (95% CI 0.04-0.72)) were predictors for an inappropriate prescription. Conclusion It has been found that there were inappropriate prescriptions among patients with liver cirrhosis. Prescribers should pay close attention to patients who have prescribed with higher number of medications, increased level of bilirubin and decreased level of albumin. Moreover, educational level of prescribers needs to be upgraded in order to adopt evidence-based medication prescriptions and adhere to recommended practices.
Collapse
Affiliation(s)
- Tirsit Ketsela Zeleke
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Zegaye Agmassie Bazezew
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Rahel Belete Abebe
- Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
9
|
Gholami M, Hayes AW, Jamaati H, Sureda A, Motaghinejad M. Role of apoptosis and autophagy in mediating tramadol-induced neurodegeneration in the rat hippocampus. Mol Biol Rep 2023; 50:7393-7404. [PMID: 37453963 DOI: 10.1007/s11033-023-08641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Tramadol (TRA) is an analgesic prescribed for treating mild to moderate pains, the abuse of which has increased in recent years. Chronic tramadol consumption produces neurotoxicity, although the mechanisms are unclear. The present study investigated the involvement of apoptosis and autophagy signaling pathways and the mitochondrial system in TRA-induced neurotoxicity. MATERIALS AND METHODS Sixty adult male Wistar rats were divided into five groups that received standard saline or TRA in doses of 25, 50, 75, 100, or 150 mg/kg intraperitoneally for 21 days. On the 22nd day, the Open Field Test (OFT) was conducted. Jun N-Terminal Kinase (JNK), B-cell lymphoma-2 (Bcl-2), Beclin1, and Bcl-2-like protein 4 (Bax) proteins and tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) were measured in rat hippocampal tissue. RESULTS TRA at doses 75, 100, and 150 mg/kg caused locomotor dysfunction in rats and increased total and phosphorylated forms of JNK and Beclin-1, Bax, and Caspase-3. TRA at the three higher doses also increased the phosphorylated (inactive) form of Bcl-2 level while decreasing the unphosphorylated (active) form of Bcl-2. Similarly, the protein levels of TNF-α and IL-1β were increased dose-dependently. The mitochondrial respiratory chain enzymes were reduced at the three higher doses of TRA. CONCLUSION TRA activated apoptosis and autophagy via modulation of TNF-α or IL-1β/JNK/Bcl-2/Beclin1 and Bcl-2/Bax signaling pathways and dysfunction of mitochondrial respiratory chain enzymes.
Collapse
Affiliation(s)
- Mina Gholami
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Hamidreza Jamaati
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands and, Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Kamranian H, Asoudeh H, Sharif RK, Taheri F, Hayes AW, Gholami M, Alavi A, Motaghinejad M. Neuroprotective potential of trimetazidine against tramadol-induced neurotoxicity: role of PI3K/Akt/mTOR signaling pathways. Toxicol Mech Methods 2023; 33:607-623. [PMID: 37051630 DOI: 10.1080/15376516.2023.2202785] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 04/14/2023]
Abstract
Tramadol (TRA) causes neurotoxicity whereas trimetazidine (TMZ) is neuroprotective. The potential involvement of the PI3K/Akt/mTOR signaling pathway in the neuroprotection of TMZ against TRA-induced neurotoxicity was evaluated. Seventy male Wistar rats were divided into groups. Groups 1 and 2 received saline or TRA (50 mg/kg). Groups 3, 4, and 5 received TRA (50 mg/kg) and TMZ (40, 80, or 160 mg/kg) for 14 days. Group 6 received TMZ (160 mg/kg). Hippocampal neurodegenerative, mitochondrial quadruple complex enzymes, phosphatidylinositol-3-kinases (PI3Ks)/protein kinase B levels, oxidative stress, inflammatory, apoptosis, autophagy, and histopathology were evaluated. TMZ decreased anxiety and depressive-like behavior induced by TRA. TMZ in tramadol-treated animals inhibited lipid peroxidation, GSSG, TNF-α, and IL-1β while increasing GSH, SOD, GPx, GR, and mitochondrial quadruple complex enzymes in the hippocampus. TRA inhibited Glial fibrillary acidic protein expression and increased pyruvate dehydrogenase levels. TMZ reduced these changes. TRA decreased the level of JNK and increased Beclin-1 and Bax. TMZ decreased phosphorylated Bcl-2 while increasing the unphosphorylated form in tramadol-treated rats. TMZ activated phosphorylated PI3Ks, Akt, and mTOR proteins. TMZ inhibited tramadol-induced neurotoxicity by modulating the PI3K/Akt/mTOR signaling pathways and its downstream inflammatory, apoptosis, and autophagy-related cascades.
Collapse
Affiliation(s)
- Houman Kamranian
- Department of Psychiatry, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hadi Asoudeh
- Faculty of Pharmacy, Central Branch of Islamic Azad University, Tehran, Iran
| | | | - Fereshteh Taheri
- Department of Medicine, Islamic Azad University, Qom Branch, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA and Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Mina Gholami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Alavi
- Department of Medicine, Islamic Azad University, Qom Branch, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Mohammadnejad L, Soltaninejad K, Seyedabadi M, Ghasem Pouri SK, Shokrzadeh M, Mohammadi H. Evaluation of mitochondrial dysfunction due to oxidative stress in therapeutic, toxic and lethal concentrations of tramadol. Toxicol Res (Camb) 2021; 10:1162-1170. [PMID: 34956619 DOI: 10.1093/toxres/tfab096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/01/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Tramadol (TR) is a centrally acting analgesic drug that is used to relieve pain. The therapeutic (0.1-0.8 mg/l), toxic (1-2 mg/l) and lethal (>2 mg/l) ranges were reported for TR. The present study was designed to evaluate which doses of TR can induce liver mitochondrial toxicity. Mitochondria were isolated from the five rats' liver and were incubated with therapeutic to lethal concentrations (1.7-600 μM) of TR. Biomarkers of oxidative stress including: reactive oxygen species (ROS), lipid peroxidation (LPO), protein carbonyl content, glutathione (GSH) content, mitochondrial function, mitochondrial membrane potential (MMP) and mitochondrial swelling were assessed. Our results showed that ROS and LPO at 100 μM and protein carbonylation at 600 μM concentrations of TR were significantly increased. GSH was decreased specifically at 600 μM concentration. Mitochondrial function, MMP and mitochondrial swelling decreased in isolated rat liver mitochondria after exposure to 100 and 300 μM, respectively. This study suggested that TR at therapeutic and toxic levels by single exposure could not induce mitochondrial toxicity. But, in lethal concentration (≥100 μM), TR induced oxidative damage and mitochondria dysfunction. This study suggested that ROS overproduction by increasing of TR concentration induced mitochondrial dysfunction and caused mitochondrial damage via Complex II and membrane permeability transition pores disorders, MMP collapse and mitochondria swelling.
Collapse
Affiliation(s)
- Leila Mohammadnejad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Kambiz Soltaninejad
- Department of Forensic Toxicology, Legal Medicine Research Center, Legal Medicine Organization, Tehran 48157-33971, Iran
| | - Mohammad Seyedabadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Seyed Khosro Ghasem Pouri
- Department of Emergency Medicine, School of Medicine, Antimicrobial Resistance Research Center, Ghaem Shahr Razi Hospital, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Hamidreza Mohammadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| |
Collapse
|
12
|
Mousavi K, Manthari RK, Najibi A, Jia Z, Ommati MM, Heidari R. Mitochondrial dysfunction and oxidative stress are involved in the mechanism of tramadol-induced renal injury. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100049. [PMID: 34909675 PMCID: PMC8663991 DOI: 10.1016/j.crphar.2021.100049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/14/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
Tramadol (TMDL) is an opioid analgesic widely administered for the management of moderate to severe pain. On the other hand, TMDL is commonly abused in many countries because of its availability and cheap cost. Renal injury is related to high dose or chronic administration of TMDL. No precise mechanism for TMDL-induced renal damage has been identified so far. The current study aimed to evaluate the potential role of oxidative stress and mitochondrial impairment in the pathogenesis of TMDL-induced renal injury. For this purpose, rats were treated with TMDL (40 and 80 mg/kg, i.p, 28 consecutive days). A significant increase in serum Cr and BUN was detected in TMDL groups. On the other hand, TMDL (80 mg/kg) caused a substantial increase in urine glucose, ALP, protein, and γ-GT levels. Moreover, urine Cr was significantly decreased in TMDL-treated rats (40 and 80 mg/kg). Renal histopathological alterations included inflammation, necrosis, and tubular degeneration in the kidney of TMDL-treated animals. Reactive oxygen species (ROS) formation, increased oxidized glutathione (GSSG), lipid peroxidation, and protein carbonylation was increased, whereas total antioxidant capacity and reduced glutathione levels were considerably decreased in TMDL groups. Significant mitochondrial impairment was also detected in the form of mitochondrial depolarization, adenosine-tri-phosphate (ATP) depletion, mitochondrial permeabilization, lipid peroxidation, and decreased mitochondrial dehydrogenase activity in the kidney of TMDL (80 mg/kg)-treated animals. These data suggest mitochondrial impairment and oxidative stress as mechanisms involved in the pathogenesis of TMDL-induced renal injury.
Collapse
Affiliation(s)
- Khadijah Mousavi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM Institute of Science, Gandhi Institute of Technology and Management, Visakhapatnam, 530045, Andhra Pradesh, India
| | - Asma Najibi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zhipeng Jia
- College of Animal Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | - Mohammad Mehdi Ommati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- College of Life Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Aref ABM, Momenah MA, Jad MM, Semmler M, Mohamedaiin HS, Ahmed A, Mohamedien D. Tramadol Biological Effects: 4: Effective Therapeutic Efficacy of Lagenaria siceraria Preparation (Gamal & Aref1) and Melatonin on Cell Biological, Histochemical, and Histopathological Changes in the Kidney of Tramadol-Induced Male Mice. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-13. [PMID: 33829981 DOI: 10.1017/s1431927621000271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tramadol is used worldwide and is listed in many medical guidelines to treat both acute and chronic pains. There is a growing evidence of abuse of tramadol in some African and West Asian countries. Tramadol has some side effects. The present study designed to follow up the treatment of the cellular responses which might be induced in the kidney of tramadol mice. Treated mice received daily injection of tramadol dose (125 μg/100 g b.wt) for 20 and 40 days. Other mice received tramadol for 40 days and then were divided into three groups: the first received distilled water, the second received Lagenaria siceraria, and the third received melatonin daily for 40 days. Both the daily injection of tramadol for 20 and 40 days resulted in radical, extensive, and severe alterations in the normal histological architecture of the kidney. Treatment with Lagenaria siceraria or melatonin after tramadol administration for a long-term, markedly changed the collagen content and other chemical components, that may reach nearly normal levels. Such findings propose that although tramadol has many cytological and histopathological side effects on the kidneys of male mice, the treatments via Lagenaria siceraria and melatonin have effective therapeutic impacts on the tramadol side effects.
Collapse
Affiliation(s)
- Abdel-Baset M Aref
- Cell Biology and Histochemistry Division, Zoology Department, Faculty of Science, South Valley University, Qena, Egypt
- Institutional Animal Care and Use Committee of South Valley University (IACUC-SVU), Qena, Egypt
| | - Maha A Momenah
- Zoology Department, Faculty of Science, Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mariam M Jad
- Cell Biology and Histochemistry Division, Zoology Department, Faculty of Science, South Valley University, Qena, Egypt
- Institutional Animal Care and Use Committee of South Valley University (IACUC-SVU), Qena, Egypt
| | - Margit Semmler
- Institutional Animal Care and Use Committee of South Valley University (IACUC-SVU), Qena, Egypt
- Diabetes Research Institute, Düsseldorf University, Düsseldorf, Germany
| | - Hoda S Mohamedaiin
- Institutional Animal Care and Use Committee of South Valley University (IACUC-SVU), Qena, Egypt
- Zoology Department, Faculty of Science, South Valley University, Qena, Egypt
| | - Ahmed Ahmed
- Urology Department, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Dalia Mohamedien
- Histology Department, Faculty of Veterinary, South Valley University, Qena, Egypt
| |
Collapse
|
14
|
Barbosa J, Faria J, Garcez F, Leal S, Afonso LP, Nascimento AV, Moreira R, Pereira FC, Queirós O, Carvalho F, Dinis-Oliveira RJ. Repeated Administration of Clinically Relevant Doses of the Prescription Opioids Tramadol and Tapentadol Causes Lung, Cardiac, and Brain Toxicity in Wistar Rats. Pharmaceuticals (Basel) 2021; 14:ph14020097. [PMID: 33513867 PMCID: PMC7912343 DOI: 10.3390/ph14020097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022] Open
Abstract
Tramadol and tapentadol, two structurally related synthetic opioid analgesics, are widely prescribed due to the enhanced therapeutic profiles resulting from the synergistic combination between μ-opioid receptor (MOR) activation and monoamine reuptake inhibition. However, the number of adverse reactions has been growing along with their increasing use and misuse. The potential toxicological mechanisms for these drugs are not completely understood, especially for tapentadol, owing to its shorter market history. Therefore, in the present study, we aimed to comparatively assess the putative lung, cardiac, and brain cortex toxicological damage elicited by the repeated exposure to therapeutic doses of both prescription opioids. To this purpose, male Wistar rats were intraperitoneally injected with single daily doses of 10, 25, and 50 mg/kg tramadol or tapentadol, corresponding to a standard analgesic dose, an intermediate dose, and the maximum recommended daily dose, respectively, for 14 consecutive days. Such treatment was found to lead mainly to lipid peroxidation and inflammation in lung and brain cortex tissues, as shown through augmented thiobarbituric acid reactive substances (TBARS), as well as to increased serum inflammation biomarkers, such as C reactive protein (CRP) and tumor necrosis factor-α (TNF-α). Cardiomyocyte integrity was also shown to be affected, since both opioids incremented serum lactate dehydrogenase (LDH) and α-hydroxybutyrate dehydrogenase (α-HBDH) activities, while tapentadol was associated with increased serum creatine kinase muscle brain (CK-MB) isoform activity. In turn, the analysis of metabolic parameters in brain cortex tissue revealed increased lactate concentration upon exposure to both drugs, as well as augmented LDH and creatine kinase (CK) activities following tapentadol treatment. In addition, pneumo- and cardiotoxicity biomarkers were quantified at the gene level, while neurotoxicity biomarkers were quantified both at the gene and protein levels; changes in their expression correlate with the oxidative stress, inflammatory, metabolic, and histopathological changes that were detected. Hematoxylin and eosin (H & E) staining revealed several histopathological alterations, including alveolar collapse and destruction in lung sections, inflammatory infiltrates, altered cardiomyocytes and loss of striation in heart sections, degenerated neurons, and accumulation of glial and microglial cells in brain cortex sections. In turn, Masson's trichrome staining confirmed fibrous tissue deposition in cardiac tissue. Taken as a whole, these results show that the repeated administration of both prescription opioids extends the dose range for which toxicological injury is observed to lower therapeutic doses. They also reinforce previous assumptions that tramadol and tapentadol are not devoid of toxicological risk even at clinical doses.
Collapse
Affiliation(s)
- Joana Barbosa
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence: (J.B.); (R.J.D.-O.); Tel.: +351-224-157-216 (J.B.); +351-224-157-216 (R.J.D.-O.)
| | - Juliana Faria
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Fernanda Garcez
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Sandra Leal
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- Department of Biomedicine, Unit of Anatomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- CINTESIS—Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Luís Pedro Afonso
- Department of Pathology, Portuguese Institute of Oncology of Porto, 4200-072 Porto, Portugal;
| | - Ana Vanessa Nascimento
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Roxana Moreira
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Frederico C. Pereira
- Institute of Pharmacology and Experimental Therapeutics/iCBR, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal;
| | - Odília Queirós
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Félix Carvalho
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Ricardo Jorge Dinis-Oliveira
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence: (J.B.); (R.J.D.-O.); Tel.: +351-224-157-216 (J.B.); +351-224-157-216 (R.J.D.-O.)
| |
Collapse
|