1
|
Xie L, Li H, Xiao M, Chen N, Zang X, Liu Y, Ye H, Tang C. Epigenetic insights into Fragile X Syndrome. Front Cell Dev Biol 2024; 12:1432444. [PMID: 39220684 PMCID: PMC11362040 DOI: 10.3389/fcell.2024.1432444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Fragile X Syndrome (FXS) is a genetic neurodevelopmental disorder closely associated with intellectual disability and autism spectrum disorders. The core of the disease lies in the abnormal expansion of the CGG trinucleotide repeat sequence at the 5'end of the FMR1 gene. When the repetition exceeds 200 times, it causes the silencing of the FMR1 gene, leading to the absence of the encoded Fragile X mental retardation protein 1 (FMRP). Although the detailed mechanism by which the CGG repeat expansion triggers gene silencing is yet to be fully elucidated, it is known that this process does not alter the promoter region or the coding sequence of the FMR1 gene. This discovery provides a scientific basis for the potential reversal of FMR1 gene silencing through interventional approaches, thereby improving the symptoms of FXS. Epigenetics, a mechanism of genetic regulation that does not depend on changes in the DNA sequence, has become a new focus in FXS research by modulating gene expression in a reversible manner. The latest progress in molecular genetics has revealed that epigenetics plays a key role in the pathogenesis and pathophysiological processes of FXS. This article compiles the existing research findings on the role of epigenetics in Fragile X Syndrome (FXS) with the aim of deepening the understanding of the pathogenesis of FXS to identify potential targets for new therapeutic strategies.
Collapse
Affiliation(s)
- Liangqun Xie
- The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Department of Obstetrics and Gynecology, The First College of Clinical Medical Science, Yichang Central People’s Hospital, Three Gorges University, Yichang, Hubei, China
| | - Huiying Li
- Department of Obstetrics and Gynecology, The First College of Clinical Medical Science, Yichang Central People’s Hospital, Three Gorges University, Yichang, Hubei, China
| | - MengLiang Xiao
- Department of Obstetrics and Gynecology, The First College of Clinical Medical Science, Yichang Central People’s Hospital, Three Gorges University, Yichang, Hubei, China
| | - Ningjing Chen
- Department of Obstetrics and Gynecology, The First College of Clinical Medical Science, Yichang Central People’s Hospital, Three Gorges University, Yichang, Hubei, China
| | - Xiaoxiao Zang
- The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yingying Liu
- Department of Obstetrics and Gynecology, The First College of Clinical Medical Science, Yichang Central People’s Hospital, Three Gorges University, Yichang, Hubei, China
| | - Hong Ye
- Department of Obstetrics and Gynecology, The First College of Clinical Medical Science, Yichang Central People’s Hospital, Three Gorges University, Yichang, Hubei, China
| | - Chaogang Tang
- The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
2
|
Wang Y, Liu Z, Li L, Zhang Z, Zhang K, Chu M, Liu Y, Mao X, Wu D, Xu D, Zhao J. Anti-ferroptosis exosomes engineered for targeting M2 microglia to improve neurological function in ischemic stroke. J Nanobiotechnology 2024; 22:291. [PMID: 38802919 PMCID: PMC11129432 DOI: 10.1186/s12951-024-02560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Stroke is a devastating disease affecting populations worldwide and is the primary cause of long-term disability. The inflammatory storm plays a crucial role in the progression of stroke. In the acute phase of ischemic stroke, there is a transient increase in anti-inflammatory M2 microglia followed by a rapid decline. Due to the abundant phospholipid in brain tissue, lipid peroxidation is a notable characteristic of ischemia/reperfusion (I/R), constituting a structural foundation for ferroptosis in M2 microglia. Slowing down the decrease in M2 microglia numbers and controlling the inflammatory microenvironment holds significant potential for enhancing stroke recovery. RESULTS We found that the ferroptosis inhibitor can modulate inflammatory response in MCAO mice, characterizing that the level of M2 microglia-related cytokines was increased. We then confirmed that different subtypes of microglia exhibit distinct sensitivities to I/R-induced ferroptosis. Adipose-derived stem cells derived exosome (ADSC-Exo) effectively decreased the susceptibility of M2 microglia to ferroptosis via Fxr2/Atf3/Slc7a11, suppressing the inflammatory microenvironment and promoting neuronal survival. Furthermore, through plasmid engineering, a more efficient M2 microglia-targeted exosome, termed M2pep-ADSC-Exo, was developed. In vivo and in vitro experiments demonstrated that M2pep-ADSC-Exo exhibits significant targeting specificity for M2 microglia, further inhibiting M2 microglia ferroptosis and improving neurological function in ischemic stroke mice. CONCLUSION Collectively, we illustrated a novel potential therapeutic mechanism that Fxr2 in ADSC-Exo could alleviate the M2 microglia ferroptosis via regulating Atf3/Slc7all expression, hence inhibiting the inflammatory microenvironment, improving neurofunction recovery in cerebral I/R injury. We obtained a novel exosome, M2pep-ADSC-Exo, through engineered modification, which exhibits improved targeting capabilities toward M2 microglia. This provides a new avenue for the treatment of stroke.
Collapse
Affiliation(s)
- Yong Wang
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201100, China
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Zhuohang Liu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Luyu Li
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Zengyu Zhang
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Kai Zhang
- Department of Cardiovascular Medicine, Pujiang Traditional Chinese Medicine Hospital, Zhejiang, 322200, China
| | - Min Chu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Yang Liu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Xueyu Mao
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Di Wu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Dongsheng Xu
- College of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 200120, China
| | - Jing Zhao
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201100, China.
- Institute of Healthy Yangtze River Delta, Shanghai Jiao Tong University, Shanghai, 200001, China.
| |
Collapse
|
3
|
Liao F, Zhong Q, Liang X, Zhao W, Liang T, Zhu L, Li T, Long J, Su L. A Potential Immune-Related miRNAs Regulatory Network and Corresponding Diagnostic Efficacy in Schizophrenia. Neurochem Res 2023:10.1007/s11064-023-03940-w. [PMID: 37100927 DOI: 10.1007/s11064-023-03940-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/27/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
PURPOSE Immune-related pathways actively participate in the progression of schizophrenia (SCZ), however, roles of immune-related miRNAs in SCZ are still unclear. METHODS A microarray expression study was conducted to explored roles of immune-related genes in SCZ. Functional enrichment analysis by using "clusterProfiler" was used to identify molecular alterations of SCZ. Protein-protein interaction (PPI) network was constructed and helped core molecular factors identification. Based on The Cancer Genome Atlas (TCGA) database, clinical significances of hub immune-related genes in cancers were also been explored. Then, correlation analyses were used to determine immune-related miRNAs. We further validated that hsa-miR-1299 could be an effective diagnostic biomarker for SCZ via analyzing multi-cohorts' data and quantitative real-time PCR (qRT-PCR). RESULTS A total of 455 mRNAs and 70 miRNAs that were differentially expressed between SCZ and control samples. Functional enrichment analysis based on differentially expressed genes (DEGs) hinted that immune-related pathways were significantly correlated with SCZ. Furthermore, a total of 35 immune-related genes that involved in disease onset and showed significant co-expressed relationships. Hub immune-related gene CCL4 and CCL22 are valuable in tumor diagnosis and survival prediction. Furthermore, we also identified 22 immune-related miRNAs that play important roles in this disease. An immune-related miRNAs-mRNAs regulatory network was constructed to provide miRNAs regulatory roles in SCZ. Core miRNAs expression status of hsa-miR-1299 were also validated in another cohort, which suggested its diagnostic performance for SCZ. CONCLUSIONS Our study reports the downregulation of some miRNAs in the process of SCZ are important. Shared genomics characteristics between SCZ and cancers also provide novel insights for cancers. A significant alteration of hsa-miR-1299 expression is effective as biomarker for the diagnosis of SCZ, suggesting that this miRNA could be a specific biomarker.
Collapse
Affiliation(s)
- Fangping Liao
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Qingqing Zhong
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Xueying Liang
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Wanshen Zhao
- Traditional Chinese medicine department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tian Liang
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Lulu Zhu
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Tongshun Li
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Jianxiong Long
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China.
| | - Li Su
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China.
| |
Collapse
|
4
|
Wang X, Wang J, An Z, Yang A, Qiu M, Tan Z. CircXPO1 Promotes Glioblastoma Malignancy by Sponging miR-7-5p. Cells 2023; 12:831. [PMID: 36980172 PMCID: PMC10047377 DOI: 10.3390/cells12060831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 03/10/2023] Open
Abstract
Mounting evidence suggests that circular RNAs play important roles in the development and progression of cancers. However, their function in glioblastomas (GBM) is still unclear. By circRNA array analysis, we found that circXPO1 (hsa_circ_102737) was significantly upregulated in GBM, and qPCR analysis verified that the circXPO1 expression level was increased in both GBM tissues and cell lines. Functional studies demonstrated that the knockdown of circXPO1 in GBM cell lines repressed cell proliferation and migration; conversely, the overexpression of circXPO1 promoted the malignancy of GBM cells. In line with these findings, circXPO1 inhibition effectively suppressed gliomagenesis in the in situ transplantation model of nude mice. Through bioinformatic analyses and dual-luciferase reporter assays, we showed that circXPO1 directly bound to miR-7-5p, which acted as a tumor suppressor through the negative regulation of RAF1. In conclusion, our studies suggest that the circXPO1/miR-7-5p/RAF1 axis promotes brain tumor formation and may be a potential therapeutic target for GBM treatment.
Collapse
|
5
|
Guo C, Lv H, Bai Y, Guo M, Li P, Tong S, He K. Circular RNAs in extracellular vesicles: Promising candidate biomarkers for schizophrenia. Front Genet 2023; 13:997322. [PMID: 36685830 PMCID: PMC9852742 DOI: 10.3389/fgene.2022.997322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023] Open
Abstract
As one of common and severe mental illnesses, schizophrenia is difficult to be diagnosed exactly. Both its pathogenesis and the causes of its development are still uncertain because of its etiology complexity. At present, the diagnosis of schizophrenia is mainly based on the patient's symptoms and signs, lacking reliable biomarkers that can be used for diagnosis. Circular RNAs in extracellular vesicles (EV circRNAs) can be used as promising candidate biomarkers for schizophrenia and other diseases, for they are not only high stability and disease specificity, but also are rich in contents and easy to be detected. The review is to focus on the research progress of the correlation between circRNAs and schizophrenia, and then to explores the possibility of EV circRNAs as new biomarkers for the schizophrenia diagnosis.
Collapse
Affiliation(s)
- Chuang Guo
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Haibing Lv
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Yulong Bai
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Meng Guo
- Network Center, Inner Mongolia Minzu University, Tongliao, China
| | - Pengfei Li
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Shuping Tong
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Kuanjun He
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China,*Correspondence: Kuanjun He,
| |
Collapse
|
6
|
Deng W, Chao R, Zhu S. Emerging roles of circRNAs in leukemia and the clinical prospects: An update. Immun Inflamm Dis 2023; 11:e725. [PMID: 36705414 PMCID: PMC9801069 DOI: 10.1002/iid3.725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are a new category of endogenous non-protein coding RNAs (ncRNAs), and show the characteristics of high conservation, stability, and tissue specificity. Due to rapid advances in next-generation sequencing and transcriptome profiling technologies, circRNAs have been widely discovered in many organisms and participated in the development and progress of a variety of diseases. As a type of molecular sponge, circRNAs mainly absorb micro RNAs competitively and interplay with RNA-binding proteins to modulate the splicing as well as transcription of target genes. METHODS This review is based on a literature search using the Medline database. Search terms used were "circular RNAs and leukemia," "circRNAs and leukemia," "circRNAs and acute lymphoblastic leukemia," "circRNAs and chronic lymphoblastic leukemia," "circRNAs and acute myeloid leukemia," "circRNAs and chronic myeloid leukemia," and "circRNAs, biomarker, and hematological system." RESULTS CircRNAs have been proven as potential biomarkers and therapeutic targets in a variety of tumors. Recent research has found that circRNAs aberrantly exist in hematological cancers, especially leukemia, and are significantly associated with the incidence, progress, and metastasis of diseases as well as the prognosis of patients. CONCLUSION The current work summarizes the latest findings on circRNAs in various types of leukemia, aiming to propose prospective therapies and new drug screening methods for the treatment of leukemia.
Collapse
Affiliation(s)
- Wei Deng
- Department of Pediatric General Internal MedicineGansu Provincial Maternity and Child‐Care HospitalLanzhou CityGansu ProvincePeople's Republic of China
| | - Rong Chao
- Department of Pediatric General Internal MedicineGansu Provincial Maternity and Child‐Care HospitalLanzhou CityGansu ProvincePeople's Republic of China
| | - Shengdong Zhu
- Department of Pediatric General Internal MedicineGansu Provincial Maternity and Child‐Care HospitalLanzhou CityGansu ProvincePeople's Republic of China
| |
Collapse
|
7
|
Zhang Y, Chen J, He S, Xiao Y, Liu A, Zhang D, Li X. Systematic identification of aberrant non-coding RNAs and their mediated modules in rotator cuff tears. Front Mol Biosci 2022; 9:940290. [PMID: 36111133 PMCID: PMC9470226 DOI: 10.3389/fmolb.2022.940290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Rotator cuff tears (RCT) is the most common cause of shoulder dysfunction, however, its molecular mechanisms remain unclear. Non-coding RNAs(ncRNAs), such as long ncRNA (lncRNA), microRNA (miRNA) and circular RNA (circRNA), are involved in a variety of diseases, but little is known about their roles in RCT. Therefore, the purpose of this study is to identify dysregulated ncRNAs and understand how they influence RCT. Methods: We performed RNA sequencing and miRNA sequencing on five pairs of torn supraspinatus muscles and matched unharmed subscapularis muscles to identify RNAs dysregulated in RCT patients. To better comprehend the fundamental biological processes, we carried out enrichment analysis of these dysregulated mRNAs or the co-expressed genes of dysregulated ncRNAs. According to the competing endogenous RNA (ceRNA) theory, we finally established ceRNA networks to explore the relationship among dysregulated RNAs in RCT. Results: A total of 151 mRNAs, 38 miRNAs, 20 lncRNAs and 90 circRNAs were differentially expressed between torn supraspinatus muscles and matched unharmed subscapularis muscles, respectively. We found that these dysregulated mRNAs, the target mRNAs of these dysregulated miRNAs or the co-expressed mRNAs of these dysregulated ncRNAs were enriched in muscle structure development, actin-mediated cell contraction and actin binding. Then we constructed and analyzed the ceRNA network and found that the largest module in the ceRNA network was associated with vasculature development. Based on the topological properties of the largest module, we identified several important ncRNAs including hsa_circ_0000722, hsa-miR-129-5p and hsa-miR-30c-5p, whose interacting mRNAs related to muscle diseases, fat and inflammation. Conclusion: This study presented a systematic dissection of the expression profile of mRNAs and ncRNAs in RCT patients and revealed some important ncRNAs which may contribute to the development of RCT. Such results could provide new insights for further research on RCT.
Collapse
Affiliation(s)
- Yichong Zhang
- Department of Orthopedics and Trauma, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education/Peking University), Peking University People’s Hospital, Beijing, China
| | - Jianhai Chen
- Department of Orthopedics and Trauma, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education/Peking University), Peking University People’s Hospital, Beijing, China
| | - Shengyuan He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Aiyu Liu
- Central Laboratory, Peking University People’s Hospital, Beijing, China
| | - Dianying Zhang
- Department of Orthopedics and Trauma, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education/Peking University), Peking University People’s Hospital, Beijing, China
- *Correspondence: Dianying Zhang, ; Xia Li,
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
- *Correspondence: Dianying Zhang, ; Xia Li,
| |
Collapse
|
8
|
Sabaie H, Gholipour M, Asadi MR, Abed S, Sharifi-Bonab M, Taheri M, Hussen BM, Brand S, Neishabouri SM, Rezazadeh M. Identification of key long non-coding RNA-associated competing endogenous RNA axes in Brodmann Area 10 brain region of schizophrenia patients. Front Psychiatry 2022; 13:1010977. [PMID: 36405929 PMCID: PMC9671706 DOI: 10.3389/fpsyt.2022.1010977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Schizophrenia (SCZ) is a serious mental condition with an unknown cause. According to the reports, Brodmann Area 10 (BA10) is linked to the pathology and cortical dysfunction of SCZ, which demonstrates a number of replicated findings related to research on SCZ and the dysfunction in tasks requiring cognitive control in particular. Genetics' role in the pathophysiology of SCZ is still unclear. Therefore, it may be helpful to understand the effects of these changes on the onset and progression of SCZ to find novel mechanisms involved in the regulation of gene transcription. In order to determine the molecular regulatory mechanisms affecting the SCZ, the long non-coding RNA (lncRNA)-associated competing endogenous RNAs (ceRNAs) axes in the BA10 area were determined using a bioinformatics approach in the present work. A microarray dataset (GSE17612) consisted of brain post-mortem tissues of the BA10 area from SCZ patients and matched healthy subjects was downloaded from the Gene Expression Omnibus (GEO) database. This dataset included probes for both lncRNAs and mRNAs. Using the R software's limma package, the differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were found. The RNA interactions were also discovered using the DIANA-LncBase and miRTarBase databases. In the ceRNA network, positive correlations between DEmRNAs and DElncRNAs were evaluated using the Pearson correlation coefficient. Finally, lncRNA-associated ceRNA axes were built by using the co-expression and DElncRNA-miRNA-DEmRNA connections. We identified the DElncRNA-miRNA-DEmRNA axes, which included two key lncRNAs (PEG3-AS1, MIR570HG), seven key miRNAs (hsa-miR-124-3p, hsa-miR-17-5p, hsa-miR-181a-5p, hsa-miR-191-5p, hsa-miR-26a-5p, hsa-miR-29a-3p, hsa-miR-29b-3p), and eight key mRNAs (EGR1, ETV1, DUSP6, PLOD2, CD93, SERPINB9, ANGPTL4, TGFB2). Furthermore, DEmRNAs were found to be enriched in the "AGE-RAGE signaling pathway in diabetic complications", "Amoebiasis", "Transcriptional misregulation in cancer", "Human T-cell leukemia virus 1 infection", and "MAPK signaling pathway". This study offers research targets for examining significant molecular pathways connected to the pathogenesis of SCZ, even though the function of these ceRNA axes still needs to be investigated.
Collapse
Affiliation(s)
- Hani Sabaie
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Asadi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samin Abed
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mirmohsen Sharifi-Bonab
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Serge Brand
- Center for Affective, Stress and Sleep Disorders, Psychiatric Clinics of the University of Basel, Basel, Switzerland
| | | | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|