1
|
Fan Y, Chen Y, Run X, Qiu H, Hu Q, Zhao X, Bao Z, Miao Z. Comprehensive analysis and experiments identified ANXA1 as an unfavorable prognosticator in glioma. Transl Oncol 2025; 53:102286. [PMID: 39842212 PMCID: PMC11791432 DOI: 10.1016/j.tranon.2025.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND ANXA1 was upregulated in gliomas in previous bulk sequencing studies. we examined the role of ANXA1 in glioma using bioinformatics analysis and experiments. METHODS Two cohorts were adopted to validate the prognostic value of ANXA1 in gliomas. Real-time quantitative PCR and western blotting were performed on samples for further validation. Using the data of GSE162631, ANXA1 expression was analyzed in different cells in glioblastoma specimen. In different groups, lentiviral vector or the empty vector was used to construct cell lines. Wound-healing assay, along with Transwell assay, was conducted to assess the migration and invasion of glioma cells. Animal studies were conducted to examine the role of ANXA1 in gliomas. RESULTS ANXA1 expression was associated with overall survival in glioma patients. In glioblastomas, ANXA1 expression was higher than in low-grade gliomas. Among patients receiving chemo- or radiotherapy, high ANXA1 expression presented a shorter overall survival. Single-cell sequencing showed that ANXA1 was expressed in a higher proportion and level in glioblastomas cells than in normal cells; whereas, ANXA1 was enriched in T cells among immune cells. As shown in experiments, knockdown of ANXA1 could attenuate the proliferation, migration and invasion of glioma cells in vitro and vivo, thereby improving the prognosis of animals. CONCLUSIONS ANXA1 can promote the proliferation, migration and invasion of glioma; its expression is positively correlated with immune response and poor prognosis of glioma. The cancer-promoting mechanisms of ANXA1 in glioma and its correlation with the functional status of glioma patients warrant further investigation.
Collapse
Affiliation(s)
- Yu Fan
- Department of neurosurgery, Jiangnan university Medical Center, Wuxi, Jiangsu province, 214002, PR China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu province, 214002, PR China
| | - Yanwen Chen
- Department of neurosurgery, Jiangnan university Medical Center, Wuxi, Jiangsu province, 214002, PR China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu province, 214002, PR China
| | - Xingda Run
- Department of neurosurgery, Jiangnan university Medical Center, Wuxi, Jiangsu province, 214002, PR China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu province, 214002, PR China
| | - Huaide Qiu
- Faculty of Rehabilitation Science, Nanjing Normal University of Special Education, Nanjing, 210023, China
| | - Qianxing Hu
- Department of neurosurgery, Jiangnan university Medical Center, Wuxi, Jiangsu province, 214002, PR China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu province, 214002, PR China
| | - Xudong Zhao
- Department of neurosurgery, Jiangnan university Medical Center, Wuxi, Jiangsu province, 214002, PR China; Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China.
| | - ZhongYuan Bao
- Department of neurosurgery, Jiangnan university Medical Center, Wuxi, Jiangsu province, 214002, PR China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu province, 214002, PR China.
| | - Zengli Miao
- Department of neurosurgery, Jiangnan university Medical Center, Wuxi, Jiangsu province, 214002, PR China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu province, 214002, PR China.
| |
Collapse
|
2
|
Wang J, Liu S, Zhang X. Investigation of circulating natural autoantibodies against ANXA1 and MYC as potential biomarkers in hepatocellular carcinoma. Adv Med Sci 2025; 70:136-140. [PMID: 39824386 DOI: 10.1016/j.advms.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/14/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
PURPOSE In this study, we examined novel autoantibodies targeting tumor-associated antigens (TAAs) as biomarkers for clinical assessment of hepatocellular carcinoma (HCC) in a Chinese population. METHODS AND METHODS A total of 119 patients with HCC and 130 healthy control (HC) volunteers who were age and gender matched were enrolled. The levels of circulating IgG antibodies were detected using an enzyme-linked immunosorbent test (ELISA) developed in-house with linear peptide antigens derived from Annexin A1(ANXA1) and proto-oncogene protein (MYC). The significant level was set at P < 0.025 as two tests were performed. RESULTS In comparison to the HC group, plasma level of ANXA1 autoantibodies was significantly elevated in HCC patients (t = -3.174, P = 0.002) but the change of plasma MYC autoantibody levels failed to reach the significance level (P > 0.025). There was a significant increase in these two plasma IgG autoantibodies in male HCC patients (ANXA1: t = -3.590, P < 0.001; MYC: t = -2.706, P = 0.007). Pearson correlation analysis demonstrated that both anti-ANXA1 and anti-MYC IgG levels had a positive correlation with BCLC staging (both P < 0.025) but a negative correlation with plasma albumin (Alb) (both P < 0.025). The area under the ROC curve (AUC) values were 0.613 for anti-ANXA1 IgG assay and 0.567 for anti-MYC IgG assay. The anti-ANAXA1 IgG assay showed a high sensitivity of 31.4 % against the specificity of 90.0 % for detection of BCLC stages C + D. CONCLUSIONS Plasma anti-ANXA1 and anti-MYC autoantibodies are likely to serve as a potential biomarker for clinical assessment of HCC prognosis, particularly in male patients.
Collapse
Affiliation(s)
- Jiaxin Wang
- Department of Endocrinology, The Second Clinical Medical College of Jilin University, Changchun, China
| | - Siqi Liu
- Department of Hepatopancreatobiliary Medicine, The Second Clinical Medical College of Jilin University, Changchun, China
| | - Xuan Zhang
- Department of Science and Technology, The Second Clinical Medical College of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Pessino G, Scotti C, Maggi M, Immuno-Hub Consortium. Hepatocellular Carcinoma: Old and Emerging Therapeutic Targets. Cancers (Basel) 2024; 16:901. [PMID: 38473265 DOI: 10.3390/cancers16050901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Liver cancer, predominantly hepatocellular carcinoma (HCC), globally ranks sixth in incidence and third in cancer-related deaths. HCC risk factors include non-viral hepatitis, alcohol abuse, environmental exposures, and genetic factors. No specific genetic alterations are unequivocally linked to HCC tumorigenesis. Current standard therapies include surgical options, systemic chemotherapy, and kinase inhibitors, like sorafenib and regorafenib. Immunotherapy, targeting immune checkpoints, represents a promising avenue. FDA-approved checkpoint inhibitors, such as atezolizumab and pembrolizumab, show efficacy, and combination therapies enhance clinical responses. Despite this, the treatment of hepatocellular carcinoma (HCC) remains a challenge, as the complex tumor ecosystem and the immunosuppressive microenvironment associated with it hamper the efficacy of the available therapeutic approaches. This review explores current and advanced approaches to treat HCC, considering both known and new potential targets, especially derived from proteomic analysis, which is today considered as the most promising approach. Exploring novel strategies, this review discusses antibody drug conjugates (ADCs), chimeric antigen receptor T-cell therapy (CAR-T), and engineered antibodies. It then reports a systematic analysis of the main ligand/receptor pairs and molecular pathways reported to be overexpressed in tumor cells, highlighting their potential and limitations. Finally, it discusses TGFβ, one of the most promising targets of the HCC microenvironment.
Collapse
Affiliation(s)
- Greta Pessino
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Maristella Maggi
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Immuno-Hub Consortium
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
4
|
Zheng Y, Jiang H, Yang N, Shen S, Huang D, Jia L, Ling J, Xu L, Li M, Yu K, Ren X, Cui Y, Lan X, Lin S, Lin X. Glioma-derived ANXA1 suppresses the immune response to TLR3 ligands by promoting an anti-inflammatory tumor microenvironment. Cell Mol Immunol 2024; 21:47-59. [PMID: 38049523 PMCID: PMC10757715 DOI: 10.1038/s41423-023-01110-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/07/2023] [Indexed: 12/06/2023] Open
Abstract
A highly immunosuppressive tumor microenvironment (TME) and the presence of the blood‒brain barrier are the two major obstacles to eliciting an effective immune response in patients with high-grade glioma (HGG). Here, we tried to enhance the local innate immune response in relapsed HGG by intracranially injecting poly(I:C) to establish a robust antitumor immune response in this registered clinical trial (NCT03392545). During the follow-up, 12/27 (44.4%) patients who achieved tumor control concomitant with survival benefit were regarded as responders in our study. We found that the T-cell receptor (TCR) repertoire in the TME was reshaped after poly(I:C) treatment. Based on the RNA-seq analysis of tumor samples, the expression of annexin A1 (ANXA1) was significantly upregulated in the tumor cells of nonresponders, which was further validated at the protein level. In vitro and in vivo experiments showed that ANXA1 could induce the production of M2-like macrophages and microglia via its surface receptor formyl peptide receptor 1 (FPR1) to establish a Treg cell-driven immunosuppressive TME and suppress the antitumor immune response facilitated by poly(I:C). The ANXA1/FPR1 signaling axis can inhibit the innate immune response of glioma patients by promoting an anti-inflammatory and Treg-driven TME. Moreover, ANXA1 could serve as a reliable predictor of response to poly(I:C), with a notable predictive accuracy rate of 92.3%. In light of these notable findings, this study unveils a new perspective of immunotherapy for gliomas.
Collapse
Affiliation(s)
- Yu Zheng
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Haihui Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China. National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, 100070, China
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Naixue Yang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Shaoping Shen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China. National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, 100070, China
| | - Daosheng Huang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Lemei Jia
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jing Ling
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Longchen Xu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Mingxiao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China. National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, 100070, China
| | - Kefu Yu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China. National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, 100070, China
| | - Xiaohui Ren
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China. National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, 100070, China
| | - Yong Cui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China. National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, 100070, China
| | - Xun Lan
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China. National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, 100070, China.
| | - Xin Lin
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| |
Collapse
|
5
|
Liu J, Sun Y, Chen W, Deng L, Chen M, Dong J. Proteomic analysis reveals the molecular mechanism of Astragaloside in the treatment of non-small cell lung cancer by inducing apoptosis. BMC Complement Med Ther 2023; 23:461. [PMID: 38102661 PMCID: PMC10722856 DOI: 10.1186/s12906-023-04305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Astragaloside III (AS III), a saponin-like metabolite derived from the traditional Chinese medicine Astragali Radix, has been shown to be effective in the treatment of cancer and heart failure, and a variety of digestive disorders. However, its molecular mechanism in the treatment of non-small cell lung cancer (NSCLC) is unknown. METHODS Human lung cancer A549 cells and NCI-H460 cells and a normal human lung epithelial cell BEAS-2B were treated with different concentrations of AS III. CCK-8 and EdU staining were used to determine the anti-proliferative effects of AS III in vitro. Quantitative proteomic analysis was performed on A549 cells treated with the indicated concentrations of AS III, and the expression levels of apoptosis-related proteins were examined by Western blotting. RESULTS AS III treatment significantly inhibited proliferation and increased apoptosis in A549 and H460 cells and modulated functional signaling pathways associated with apoptosis and metabolism. At the molecular level, AS III promoted a reduction in the expression of ANXA1 (p < 0.01), with increased levels of cleaved Caspase 3 and PARP 1. In addition, AS III treatment significantly decreased the LC3-I/LC3-II ratio. The results of experiment in vitro showed that AS III promoted NSCLC apoptosis by down-regulating the phosphorylation levels of P38, JNK, and AKT (p < 0.01), inhibiting the expression of Bcl-2 (p < 0.01), and up-regulating the expression of Bax (p < 0.01). CONCLUSION These findings provide a mechanism whereby AS III treatment induces apoptosis in NSCLC cells, which may be achieved in part via modulation of the P38, ERK and mTOR signaling pathways.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yan Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wenjing Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Lingling Deng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Mengmeng Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.
- Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Song Z, Wang X, Liu X, Luo Y, Qiu J, Yin A, Liu Y, Yi H, Xiao Z, Li A. Targeting of Annexin A1 in Tumor-associated Macrophages as a therapeutic strategy for hepatocellular carcinoma. Biochem Pharmacol 2023; 213:115612. [PMID: 37209858 DOI: 10.1016/j.bcp.2023.115612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common aggressive, malignant tumor with limited treatment options. Currently, immunotherapies have low success rates in the treatment of HCC. Annexin A1 (ANXA1) is a protein related to inflammation, immunity and tumorigenesis. However, the role of ANXA1 in liver tumorigenesis remains unknown. Therefore, we sought to explore the feasibility of ANXA1 as a therapeutic target for HCC. Here, we analyzed ANXA1 expression and localization by HCC microarray and immunofluorescence experiments. Using an in vitro culture system, monocytic cell lines and primary macrophages were employed to investigate the biological functions of cocultured HCC cells and cocultured T cells. In vivo, Ac2-26, human recombinant ANXA1 (hrANXA1), and cell depletion (macrophages or CD8 + T cells) experiments were further conducted to investigate the role of ANXA1 in the tumor microenvironment (TME). We found that ANXA1 was overexpressed in mesenchymal cells, especially macrophages, in human liver cancer. Moreover, the expression of ANXA1 in mesenchymal cells was positively correlated with programmed death-ligand 1 expression. Knockdown of ANXA1 expression inhibited HCC cell proliferation and migration by increasing the M1/M2 macrophage ratio and promoting T-cell activation. hrANXA1 promoted malignant growth and metastasis in mice by increasing the infiltration and M2 polarization of tumor-associated macrophages (TAMs), generating an immunosuppressive TME and suppressing the antitumor CD8 + T-cell response. Together, our findings reveal that ANXA1 may be an independent prognostic factor for HCC and demonstrate the clinical translational significance of ANXA1 for tumor immunotherapy in HCC.
Collapse
Affiliation(s)
- Zhenghui Song
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Xue Wang
- Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xinhui Liu
- Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yue Luo
- Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jieya Qiu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Aiqi Yin
- Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong 518028, China
| | - Yun Liu
- Department of Endocrinology and Metabolic Diseases, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou 423000, China
| | - Hong Yi
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhiqiang Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Aimin Li
- Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
7
|
Role of Annexin A1 Secreted by Neutrophils in Melanoma Metastasis. Cells 2023; 12:cells12030425. [PMID: 36766767 PMCID: PMC9913423 DOI: 10.3390/cells12030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Annexin A1 (AnxA1) is highly secreted by neutrophils and binds to formyl peptide receptors (FPRs) to trigger anti-inflammatory effects and efferocytosis. AnxA1 is also expressed in the tumor microenvironment, being mainly attributed to cancer cells. As recruited neutrophils are player cells at the tumor sites, the role of neutrophil-derived AnxA1 in lung melanoma metastasis was investigated here. Melanoma cells and neutrophils expressing AnxA1 were detected in biopsies from primary melanoma patients, which also presented higher levels of serum AnxA1 and augmented neutrophil-lymphocyte ratio (NLR) in the blood. Lung melanoma metastatic mice (C57BL/6; i.v. injected B16F10 cells) showed neutrophilia, elevated AnxA1 serum levels, and higher labeling for AnxA1 in neutrophils than in tumor cells at the lungs with metastasis. Peritoneal neutrophils collected from naïve mice were co-cultured with B16F10 cells or employed to obtain neutrophil-conditioned medium (NCM; 18 h incubation). B16F10 cells co-cultured with neutrophils or with NCM presented higher invasion, which was abolished if B16F10 cells were previously incubated with FPR antagonists or co-cultured with AnxA1 knockout (AnxA1-/-) neutrophils. The depletion of peripheral neutrophils during lung melanoma metastasis development (anti-Gr1; i.p. every 48 h for 21 days) reduced the number of metastases and AnxA1 serum levels in mice. Our findings show that AnxA1 secreted by neutrophils favors melanoma metastasis evolution via FPR pathways, addressing AnxA1 as a potential biomarker for the detection or progression of melanoma.
Collapse
|
8
|
Ji L, Wang J, Yang B, Zhu J, Wang Y, Jiao J, Zhu K, Zhang M, Zhai L, Gong T, Sun C, Qin J, Wang G. Urinary protein biomarker panel predicts esophageal squamous carcinoma from control cases and other tumors. Esophagus 2022; 19:604-616. [PMID: 35792948 DOI: 10.1007/s10388-022-00932-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/07/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE Discovery of noninvasive urinary biomarkers for the early diagnosis of esophageal squamous carcinoma (ESCC). METHODS We conducted proteomic analyses of 499 human urine samples obtained from healthy individuals (n = 321) and ESCC (n = 83), bladder cancer (n = 17), breast cancer (n = 12), colorectal cancer (n = 16), lung cancer (n = 33) and thyroid cancer (n = 17) patients from multiple medical centers. Those samples were divided into a discovery set (n = 247) and an independent validation set (n = 157). RESULTS Among urinary proteins identified in the comprehensive quantitative proteomics analysis, we selected a panel of three urinary biomarkers (ANXA1, S100A8, TMEM256), and established a logistic regression model in the discovery set that can correctly classify the majority of ESCC cases in the validation sets with the area under the curve (AUC) values of 0.825. This urinary biomarker panel not only discriminates ESCC patients from healthy individuals but also differentiates ESCC from other common tumors. Notably, the panel distinguishes stage I ESCC patients from healthy individuals with AUC values of 0.886. On the analysis of stage-specific biomarkers, another combination panel of protein (ANXA1, S100A8, SOD3, TMEM256) demonstrated a good AUC value of 0.792 for stage I ESCC. CONCLUSIONS Urinary biomarker panel represents a promising auxiliary diagnostic tool for ESCC, including early-stage ESCC.
Collapse
Affiliation(s)
- Linlin Ji
- Department of Thoracic Surgery, Baodi Clinical College, Tianjin Medical University, Tianjin, 301800, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Jianping Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Bo Yang
- Department of Thoracic Surgery, Baodi Clinical College, Tianjin Medical University, Tianjin, 301800, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Jianping Zhu
- Department of Thoracic Surgery, Henan Cancer Hospital, Zhengzhou, 450000, China
| | - Yini Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Jiaqi Jiao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Kai Zhu
- Department of Thoracic Surgery, Baodi Clinical College, Tianjin Medical University, Tianjin, 301800, China
| | - Min Zhang
- Department of Oncology, Baodi Clinical College, Tianjin Medical University, Tianjin, 301800, China
| | - Liqiang Zhai
- Department of Oncology, Baodi Clinical College, Tianjin Medical University, Tianjin, 301800, China
| | - Tongqing Gong
- Beijing Pineal Health Management Co., Ltd, Beijing, 102206, China
| | - Changqing Sun
- Joint Center for Translational Medicine, Baodi Clinical College, Tianjin Medical University, Tianjin, 301800, China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Guangshun Wang
- Department of Thoracic Surgery, Baodi Clinical College, Tianjin Medical University, Tianjin, 301800, China.
| |
Collapse
|
9
|
Hein T, Krammer PH, Weyd H. Molecular analysis of Annexin expression in cancer. BMC Cancer 2022; 22:994. [PMID: 36123610 PMCID: PMC9484247 DOI: 10.1186/s12885-022-10075-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
Background Uptake of apoptotic cells induces a tolerogenic phenotype in phagocytes and promotes peripheral tolerance. The highly conserved Annexin core domain, present in all members of the Annexin family, becomes exposed on the apoptotic cell-surface and triggers tolerogenic signalling in phagocytes via the Dectin-1 receptor. Consequently, Annexins exposed on tumour cells upon cell death are expected to induce tolerance towards tumour antigens, inhibiting tumour rejection. Methods Expression analysis for all Annexin family members was conducted in cancer cell lines of diverse origins. Presentation of Annexins on the cell surface during apoptosis of cancer cell lines was investigated using surface washes and immunoblotting. Expression data from the GEO database was analysed to compare Annexin levels between malignant and healthy tissue. Results Six Annexins at least were consistently detected on mRNA and protein level for each investigated cell line. AnxA1, AnxA2 and AnxA5 constituted the major part of total Annexin expression. All expressed Annexins translocated to the cell surface upon apoptosis induction in all cell lines. Human expression data indicate a correlation between immune infiltration and overall Annexin expression in malignant compared to healthy tissue. Conclusions This study is the first comprehensive analysis of expression, distribution and presentation of Annexins in cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10075-8.
Collapse
Affiliation(s)
- Tobias Hein
- Division of Immunogenetics, Tumour Immunology Program, German Cancer Research Centre, 69120, Heidelberg, Germany.,Faculty of Biosciences, Ruprecht-Karls-University Heidelberg, 69120, Heidelberg, Germany
| | - Peter H Krammer
- Division of Immunogenetics, Tumour Immunology Program, German Cancer Research Centre, 69120, Heidelberg, Germany
| | - Heiko Weyd
- Division of Immunogenetics, Tumour Immunology Program, German Cancer Research Centre, 69120, Heidelberg, Germany.
| |
Collapse
|
10
|
Pan X, Hui H, Teng X, Wei K. Overexpression of Annexin A1 is associated with the formation of capillaries in infantile hemangioma. Mol Clin Oncol 2022; 17:133. [PMID: 35949889 PMCID: PMC9353882 DOI: 10.3892/mco.2022.2566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/29/2022] [Indexed: 11/07/2022] Open
Abstract
Infantile hemangioma is a common benign tumor in infants. However, the molecular mechanism that controls the proliferation and differentiation of hemangioma is not well understood. Annexin A1 (ANX A1) is a phospholipid-binding protein involved in a variety of biological processes, including inflammation, cell proliferation and apoptosis. To explore the significance of ANX A1 in the process of proliferation or differentiation of hemangioma, proliferating and involuting hemangioma tissues were collected to detect the expression of ANX A1 using immunohistochemistry and western blotting. Normal skin tissues were used as the negative control. The results revealed that ANX A1 was upregulated in the proliferative phase of hemangioma, and its expression was decreased when the hemangioma entered the involuting phase. Additionally, in the proliferative phase, the strongest staining of ANX A1 was observed in newly born capillaries, and the staining of ANX A1 became weaker in enlarged vessels, indicating that ANX A1 plays an important role in promoting the formation of capillaries. The expression of hypoxia-inducible factor (HIF)-1α was positively associated with the expression trend of ANX A1, suggesting that the overexpression of ANX A1 may be associated with the increase of HIF-1α. In summary, the results of the present study revealed that the expression of ANX A1 was increased in proliferating hemangioma tissue, and that high expression of ANX A1 may be closely associated with the formation of capillaries in infantile hemangioma.
Collapse
Affiliation(s)
- Xinyuan Pan
- Department of Plastic Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Huang Hui
- Department of Orthopedics, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530001, P.R. China
| | - Xiaopin Teng
- Department of Plastic Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Kuicheng Wei
- Department of Orthopedics, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530001, P.R. China
| |
Collapse
|
11
|
Kelly L, McGrath S, Rodgers L, McCall K, Tulunay Virlan A, Dempsey F, Crichton S, Goodyear CS. Annexin-A1; the culprit or the solution? Immunology 2022; 166:2-16. [PMID: 35146757 PMCID: PMC9426623 DOI: 10.1111/imm.13455] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/23/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Annexin‐A1 has a well‐defined anti‐inflammatory role in the innate immune system, but its function in adaptive immunity remains controversial. This glucocorticoid‐induced protein has been implicated in a range of inflammatory conditions and cancers, as well as being found to be overexpressed on the T cells of patients with autoimmune disease. Moreover, the formyl peptide family of receptors, through which annexin‐A1 primarily signals, has also been implicated in these diseases. In contrast, treatment with recombinant annexin‐A1 peptides resulted in suppression of inflammatory processes in murine models of inflammation. This review will focus on what is currently known about annexin‐A1 in health and disease and discuss the potential of this protein as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Lauren Kelly
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Sarah McGrath
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Lewis Rodgers
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Kathryn McCall
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Aysin Tulunay Virlan
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Fiona Dempsey
- Medannex Ltd, 1 Lochrin Square, Fountainbridge, Edinburgh, EH3 9QA
| | - Scott Crichton
- Medannex Ltd, 1 Lochrin Square, Fountainbridge, Edinburgh, EH3 9QA
| | - Carl S Goodyear
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| |
Collapse
|
12
|
Li P, Li L, Li Z, Wang S, Li R, Zhao W, Feng Y, Huang S, Li L, Qiu H, Xia S. Annexin A1 promotes the progression of bladder cancer via regulating EGFR signaling pathway. Cancer Cell Int 2022; 22:7. [PMID: 34991599 PMCID: PMC8740017 DOI: 10.1186/s12935-021-02427-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/23/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Bladder cancer (BLCA) is one of the most common malignancies worldwide. One of the main reasons for the unsatisfactory management of BLCA is the complex molecular biological mechanism. Annexin A1 (ANXA1), a Ca2+-regulated phospholipid-binding protein, has been demonstrated to be implicated in the progression and prognosis of many cancers. However, the expression pattern, biological function and mechanism of ANXA1 in BLCA remain unclear. METHODS The clinical relevance of ANXA1 in BLCA was investigated by bioinformatics analysis based on TCGA and GEO datasets. Immunohistochemical (IHC) analysis was performed to detect the expression of ANXA1 in BLCA tissues, and the relationships between ANXA1 and clinical parameters were analyzed. In vitro and in vivo experiments were conducted to study the biological functions of ANXA1 in BLCA. Finally, the potential mechanism of ANXA1 in BLCA was explored by bioinformatics analysis and verified by in vitro and in vivo experiments. RESULTS Bioinformatics and IHC analyses indicated that a high expression level of ANXA1 was strongly associated with the progression and poor prognosis of patients with BLCA. Functional studies demonstrated that ANXA1 silencing inhibited the proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) of BLCA cells in vitro, and suppressed the growth of xenografted bladder tumors in vivo. Mechanistically, loss of ANXA1 decreased the expression and phosphorylation level of EGFR and the activation of downstream signaling pathways. In addition, knockdown of ANXA1 accelerated ubiquitination and degradation of P-EGFR to downregulate the activation of EGFR signaling. CONCLUSIONS These findings indicate that ANXA1 is a reliable clinical predictor for the prognosis of BLCA and promotes proliferation and migration by activating EGFR signaling in BLCA. Therefore, ANXA1 may be a promising biomarker for the prognosis of patients with BLCA, thus shedding light on precise and personalized therapy for BLCA in the future.
Collapse
Affiliation(s)
- Piao Li
- Department of Oncology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, Hubei, 430030, People's Republic of China
| | - Lingling Li
- Department of Oncology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, Hubei, 430030, People's Republic of China
| | - Zhou Li
- Department of Oncology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, Hubei, 430030, People's Republic of China
| | - Shennan Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, Hubei, 430030, People's Republic of China
| | - Ruichao Li
- Department of Geriatric, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, Hubei, 430030, People's Republic of China
| | - Yanqi Feng
- Department of Oncology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, Hubei, 430030, People's Republic of China
| | - Shanshan Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, Hubei, 430030, People's Republic of China
| | - Lu Li
- Department of Oncology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, Hubei, 430030, People's Republic of China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, Hubei, 430030, People's Republic of China
| | - Shu Xia
- Department of Oncology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, Hubei, 430030, People's Republic of China.
| |
Collapse
|
13
|
Araújo TG, Mota STS, Ferreira HSV, Ribeiro MA, Goulart LR, Vecchi L. Annexin A1 as a Regulator of Immune Response in Cancer. Cells 2021; 10:2245. [PMID: 34571894 PMCID: PMC8464935 DOI: 10.3390/cells10092245] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 01/01/2023] Open
Abstract
Annexin A1 is a 37 kDa phospholipid-binding protein that is expressed in many tissues and cell types, including leukocytes, lymphocytes and epithelial cells. Although Annexin A1 has been extensively studied for its anti-inflammatory activity, it has been shown that, in the cancer context, its activity switches from anti-inflammatory to pro-inflammatory. Remarkably, Annexin A1 shows pro-invasive and pro-tumoral properties in several cancers either by eliciting autocrine signaling in cancer cells or by inducing a favorable tumor microenvironment. Indeed, the signaling of the N-terminal peptide of AnxA1 has been described to promote the switching of macrophages to the pro-tumoral M2 phenotype. Moreover, AnxA1 has been described to prevent the induction of antigen-specific cytotoxic T cell response and to play an essential role in the induction of regulatory T lymphocytes. In this way, Annexin A1 inhibits the anti-tumor immunity and supports the formation of an immunosuppressed tumor microenvironment that promotes tumor growth and metastasis. For these reasons, in this review we aim to describe the role of Annexin A1 in the establishment of the tumor microenvironment, focusing on the immunosuppressive and immunomodulatory activities of Annexin A1 and on its interaction with the epidermal growth factor receptor.
Collapse
Affiliation(s)
- Thaise Gonçalves Araújo
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil; (T.G.A.); (S.T.S.M.); (H.S.V.F.); (M.A.R.)
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| | - Sara Teixeira Soares Mota
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil; (T.G.A.); (S.T.S.M.); (H.S.V.F.); (M.A.R.)
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| | - Helen Soares Valença Ferreira
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil; (T.G.A.); (S.T.S.M.); (H.S.V.F.); (M.A.R.)
| | - Matheus Alves Ribeiro
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil; (T.G.A.); (S.T.S.M.); (H.S.V.F.); (M.A.R.)
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| | - Lara Vecchi
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| |
Collapse
|
14
|
The Association of Annexin A1 and Chemosensitivity to Osimertinib in Lung Cancer Cells. Cancers (Basel) 2021; 13:cancers13164106. [PMID: 34439260 PMCID: PMC8394458 DOI: 10.3390/cancers13164106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 02/02/2023] Open
Abstract
Simple Summary Annexin A1 (ANXA1) is associated with the growth and resistance to chemotherapy drugs in lung cancer cells. In this study, the association of ANXA1 with chemosensitivity to Osimertinib, a third generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) was studied. The knockdown of ANXA1 increased chemosensitivity to Osimertinib and decreased tumorigenesis, invasion and migration of lung cancer cells with EGFR mutations. The study showed that ANXA1 plays critical roles in chemosensitivity to Osimertinib in lung cancer cells with EGFR mutations. Abstract Annexin A1 (ANXA1) has been reported to promote tumor growth and resistance to chemotherapy drugs in lung cancer cells. In this study, we focused on the association of ANXA1 and chemosensitivity with a third generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), Osimertinib, in lung cancer cells with EGFR mutations. The overexpression of ANXA1 was observed in the lung cancer cells studied. The downregulation of ANXA1 with small interference RNA (siRNA) decreased the growth of lung cancer cells. In lung cancer cells with EGFR mutations, the knockdown of ANXA1 increased the chemosensitivity to Osimertinib, and decreased the tumorigenesis, invasion and migration of lung cancer cells. Further study showed that the knockdown of ANXA1 inhibited the phosphorylation of EGFR and down-stream Akt pathways and promoted apoptosis in lung cancer cells treated with Osimertinib. A mice xenograft lung cancer model was established in our study and showed that ANXA1 siRNA enhanced the effects of Osimertinib in vivo. Our study results showed that ANXA1 plays critical roles in chemosensitivity to EGFR-TKI in lung cancer cells with the EGFR mutation. Our efforts may be used in the development of lung cancer treatment strategies in the future.
Collapse
|
15
|
Ju L, Zhu L, Wu H, Yu M, Yin X, Jia Z, Feng L, Ying S, Xia H, Zhang S, Lou J, Yang J. miR221 regulates cell migration by targeting annexin a1 expression in human mesothelial MeT-5A cells neoplastic-like transformed by multi-walled carbon nanotube. Genes Environ 2021; 43:34. [PMID: 34340715 PMCID: PMC8327461 DOI: 10.1186/s41021-021-00209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
Background Multi-walled carbon nanotube (MWCNT) is one of the most widely used manufactured nanomaterials, however, its potential harmful effect on human health is of great concern. Previously we have shown the acute and chronic exposure to MWCNT induced different responses in human mesothelial MeT-5A cells. In the current study, MeT-5A cells were continuously subjected to MWCNT exposure at 10 μg/cm2 for 48 h per passage, up to a whole year, to further clarify the carcinogesis and its potential mechanisms of MWCNT. Results After one-year MWCNT treatment, MeT-5A cells exhibited neoplastic-like properties, including morphological changes, anchorage-independent growth, increased cell proliferation and cell migration. Further examination revealed the expression of microRNA 221 (miR221) was gradually decreased, while the annexin a1 expression was increased at both the mRNA and protein level during the exposure. Bioinformatic analysis indicated that annexin a1 is a target for miR221 regulation, and it was confirmed by transfecting cells with miR221 mimics, which resulted in the downregulation of annexin a1. Detailed analyses demonstrated miR221 was involved in the regulation of cell migration, e.g., downregulation of miR221 or overexpression of ANNEXIN A1, contributed to the increased cell migration. In contrast, overexpression of miR221 or downregulation of ANNEXIN A1 slowed cell migration. Conclusions Taken together, these results point to a neoplastic-transforming property of MWCNT, and the miR221-annexin a1 axis is involved in the regulation of cell migration in the transformed cells. Supplementary Information The online version contains supplementary material available at 10.1186/s41021-021-00209-y.
Collapse
Affiliation(s)
- Li Ju
- Hangzhou Medical College, Hangzhou, 310013, China
| | - Lijin Zhu
- Hangzhou Medical College, Hangzhou, 310013, China
| | - Hao Wu
- Hangzhou Medical College, Hangzhou, 310013, China
| | - Min Yu
- Hangzhou Medical College, Hangzhou, 310013, China
| | - Xianhong Yin
- Jiading District Center for Disease Control and Prevention, Shanghai, 201800, China
| | - Zhenyu Jia
- Hangzhou Medical College, Hangzhou, 310013, China
| | | | - Shibo Ying
- Hangzhou Medical College, Hangzhou, 310013, China
| | - Hailing Xia
- Hangzhou Medical College, Hangzhou, 310013, China
| | - Shuzhi Zhang
- Hangzhou Medical College, Hangzhou, 310013, China
| | - Jianlin Lou
- Hangzhou Medical College, Hangzhou, 310013, China.
| | - Jun Yang
- Hangzhou Normal University, School of Public Health, Hangzhou, 310036, China.
| |
Collapse
|
16
|
Deng C, Liu X, Zhang C, Li L, Wen S, Gao X, Liu L. ANXA1-GSK3β interaction and its involvement in NSCLC metastasis. Acta Biochim Biophys Sin (Shanghai) 2021; 53:912-924. [PMID: 34002210 DOI: 10.1093/abbs/gmab067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Indexed: 12/09/2022] Open
Abstract
Although initially discovered and extensively studied for its role in inflammation, Annexin A1 (ANXA1) has been reported to be closely related to cancer in recent years, and its role in cancer is specific to tumor types and tissues. In the present study, we identified ANXA1 as an interaction partner of glycogen synthase kinase 3 beta (GSK3β), a multi-functional serine/threonine kinase tightly associated with cell fate determination and cancer, and assessed the functional significance of GSK3β-ANXA1 interaction in the metastasis of non-small cell lung cancer (NSCLC). We confirmed the interaction between GSK3β and ANXA1 in vitro and in H1299 and A549 cells by Glutathione-S-transferase (GST) pull-down assay and co-immunoprecipitation. We found that ANXA1 negatively regulated the phosphorylation of GSK3β and inhibited the epithelial-mesenchymal transformation (EMT) process and migration and invasion of NSCLC cells. By functional rescue assay, we confirmed that ANXA1 inhibited EMT through the regulation of GSK3β activity and thereby inhibited the migration and invasion of NSCLC cells. Our study sheds light on the function of ANXA1 and GSK3β and provides new elements for the understanding of NSCLC pathogenesis.
Collapse
Affiliation(s)
- Chunmiao Deng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Xiaohui Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Cuiqiong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Lu Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Shiyuan Wen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Xuejuan Gao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Langxia Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
17
|
Dora D, Rivard C, Yu H, Pickard SL, Laszlo V, Harko T, Megyesfalvi Z, Dinya E, Gerdan C, Szegvari G, Hirsch FR, Dome B, Lohinai Z. Characterization of Tumor-Associated Macrophages and the Immune Microenvironment in Limited-Stage Neuroendocrine-High and -Low Small Cell Lung Cancer. BIOLOGY 2021; 10:502. [PMID: 34200100 PMCID: PMC8228874 DOI: 10.3390/biology10060502] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 12/23/2022]
Abstract
This study aims to characterize tumor-infiltrating macrophages (TAMs), myeloid-derived suppressor cells (MDSC), and the related molecular milieu regulating anti-tumor immunity in limited-stage neuroendocrine (NE)-high and NE-low small cell lung cancer. Primary tumors and matched lymph node (LN) metastases of 32 resected, early-stage SCLC patients were analyzed by immunohistochemistry (IHC) with antibodies against pan-macrophage marker CD68, M2-macrophage marker CD163, and MDSC marker CD33. Area-adjusted cell counting on TMAs showed that TAMs are the most abundant cell type in the TME, and their number in tumor nests exceeds the number of CD3 + T-cells (64% vs. 38% in NE-low and 71% vs. 18% in NE-high). Furthermore, the ratio of CD163-expressing M2-polarized TAMs in tumor nests was significantly higher in NE-low vs. NE-high tumors (70% vs. 31%). TAM density shows a strong positive correlation with CD45 and CD3 in tumor nests, but not in the stroma. fGSEA analysis on a targeted RNAseq oncological panel of 2560 genes showed that NE-high tumors exhibited increased enrichment in pathways related to cell proliferation, whereas in NE-low tumors, immune response pathways were significantly upregulated. Interestingly, we identified a subset of NE-high tumors representing an immune-oasis phenotype, but with a different gene expression profile compared to NE-low tumors. In contrast, we found that a limited subgroup of NE-low tumors is immune-deserted and express distinct cellular pathways from NE-high tumors. Furthermore, we identified potential molecular targets based on our expression data in NE-low and immune-oasis tumor subsets, including CD70, ANXA1, ITGB6, TP63, IFI27, YBX3 and CXCR2.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary;
| | - Christopher Rivard
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.R.); (H.Y.); (S.L.P.); (F.R.H.)
| | - Hui Yu
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.R.); (H.Y.); (S.L.P.); (F.R.H.)
| | - Shivaun Lueke Pickard
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.R.); (H.Y.); (S.L.P.); (F.R.H.)
| | - Viktoria Laszlo
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Piheno ut 1, 1121 Budapest, Hungary; (V.L.); (T.H.); (Z.M.); (C.G.); (G.S.)
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, 1122 Budapest, Hungary
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Tunde Harko
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Piheno ut 1, 1121 Budapest, Hungary; (V.L.); (T.H.); (Z.M.); (C.G.); (G.S.)
| | - Zsolt Megyesfalvi
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Piheno ut 1, 1121 Budapest, Hungary; (V.L.); (T.H.); (Z.M.); (C.G.); (G.S.)
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, 1122 Budapest, Hungary
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Elek Dinya
- Institute of Digital Health Sciences, Faculty of Public Services, Semmelweis University, 1094 Budapest, Hungary;
| | - Csongor Gerdan
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Piheno ut 1, 1121 Budapest, Hungary; (V.L.); (T.H.); (Z.M.); (C.G.); (G.S.)
| | - Gabor Szegvari
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Piheno ut 1, 1121 Budapest, Hungary; (V.L.); (T.H.); (Z.M.); (C.G.); (G.S.)
| | - Fred R. Hirsch
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.R.); (H.Y.); (S.L.P.); (F.R.H.)
- Tisch Cancer Institute, Center for Thoracic Oncology, Mount Sinai Health System, New York, NY 1190, USA
| | - Balazs Dome
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Piheno ut 1, 1121 Budapest, Hungary; (V.L.); (T.H.); (Z.M.); (C.G.); (G.S.)
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, 1122 Budapest, Hungary
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Zoltan Lohinai
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Piheno ut 1, 1121 Budapest, Hungary; (V.L.); (T.H.); (Z.M.); (C.G.); (G.S.)
| |
Collapse
|
18
|
Mordvinov VA, Minkova GA, Kovner AV, Ponomarev DV, Lvova MN, Zaparina O, Romanenko SA, Shilov AG, Pakharukova MY. A tumorigenic cell line derived from a hamster cholangiocarcinoma associated with Opisthorchis felineus liver fluke infection. Life Sci 2021; 277:119494. [PMID: 33862109 DOI: 10.1016/j.lfs.2021.119494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/19/2021] [Accepted: 04/01/2021] [Indexed: 01/23/2023]
Abstract
AIMS The food-born trematode Opisthorchis felineus colonizes bile ducts of the liver of fish-eating mammals including humans. There is growing evidence that this liver fluke is a risk factor for cholangiocarcinoma (CCA). Cancer cell lines are necessary for drug screening and for identifying protein markers of CCA. The aim was to establish a cell line derived from cholangiocarcinoma associated with opisthorchiasis felinea. MAIN METHODS Allotransplantation, immunohistochemistry, karyotype analysis, cell culture techniques, immunocytochemistry and real-time PCR. KEY FINDINGS Here we repot the establishment of first CCA cell line, CCA-OF, from a primary tumor of an experimental CCA in Syrian hamsters treated with low doses of dimethyl nitrosamine and associated with O. felineus infection. The cell line was found to be allotransplantable. Expression of epithelial and mesenchymal markers (cytokeratin 7, glycosyltransferase exostosin 1, Ca2+-dependent phospholipid-binding protein annexin A1 and vimentin) was demonstrated by immunostaining of the primary tumors, CCA-OF cells, and allotransplants. CCA-OF cells were found to express presumed CCA biomarkers previously detected in both human and experimental tumors associated with the liver fluke infection. The cells were diploid-like (2n = 42-46) with complex chromosomal rearrangements and have morphological features of epithelial-like cells. The usefulness of the CCA-OF cell model for antitumor activity testing was demonstrated by an analysis of effects of resveratrol treatment. It was shown that resveratrol treatment inhibited the proliferation and the migration ability of CCA-OF cells. SIGNIFICANCE Thus, the allotransplantable CCA-OF cell line can be used in studies on helminth-associated cholangiocarcinogenesis and for the testing of antitumor drugs.
Collapse
Affiliation(s)
- Viatcheslav A Mordvinov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Galina A Minkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Anna V Kovner
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Dmitriy V Ponomarev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Maria N Lvova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Oxana Zaparina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Svetlana A Romanenko
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 8/2 Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Alexander G Shilov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Maria Y Pakharukova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentiev Ave., Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
| |
Collapse
|
19
|
Role of Annexin A1 in Squamous Cell Lung Cancer Progression. DISEASE MARKERS 2021; 2021:5520832. [PMID: 33959206 PMCID: PMC8075699 DOI: 10.1155/2021/5520832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 11/18/2022]
Abstract
Lung cancer remains the primary cause of cancer-related death worldwide, and its molecular mechanisms of tumor progression need further characterization to improve the clinical management of affected patients. The role of Annexin A1 (ANXA1) in tumorigenesis and cancer progression in general and especially in lung cancer remains to be controversial and seems to be highly tissue specific and inconsistent among tumor initiation, progression, and metastasis. In the current study, we investigated ANXA1 expression in 81 squamous cell lung cancer (SQCLC), 86 pulmonary adenocarcinoma (AC), and 30 small cell lung cancer (SCLC) patient-derived tissue samples and its prognostic impact on patient's survival. Mechanistically, we analyzed the impact of ANXA1 expression on proliferation and migration of SQCLC cell lines using CRISPR-Cas9 and mammalian overexpression vectors. Strong expression of ANXA1 was significantly correlated to longer overall survival only in SQCLC patients (P = 0.019). Overexpression of ANXA1 promoted proliferation in SQCLC cell lines but suppressed their migration, while knockout of ANXA1 promoted cell migration and suppressed proliferation. In conclusion, ANXA1 expression might elongate patients' survival by inhibiting tumor cell migration and subsequent metastasis.
Collapse
|
20
|
Li L, Wang Z, Lu T, Li Y, Pan M, Yu D, Hu G. Expression and Functional Relevance of ANXA1 in Hypopharyngeal Carcinoma with Lymph Node Metastasis. Onco Targets Ther 2021; 14:1387-1399. [PMID: 33658802 PMCID: PMC7920586 DOI: 10.2147/ott.s292287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/11/2021] [Indexed: 12/27/2022] Open
Abstract
Purpose The purpose of this study is to investigate the expression and functional role of Annexin (ANXA1) in lymph node (LN) metastasis of hypopharyngeal carcinoma (HSCC). Methods Differentially expressed genes in tissue from HSCC with or without LN metastasis were obtained from a previous RNA sequencing experiment. The presence of LN metastasis is determined by pathological diagnosis after neck dissection. ANXA1 expression was detected by qRT-PCR and Western blotting. Immunohistochemistry was used to detect the expression of ANXA1 in 74 cases of HSCC and normal control tissues. We also evaluated the clinical significance of ANXA1 in HSCC. Differentially expressed genes related to ANXA1 were analyzed using bioinformatic tools, and potential mechanisms of action of ANXA1 were assessed using in vitro experiments. In these in vitro experiments, cell proliferation was detected by CCK8 staining, and colony formation, migration and invasion were assessed using Transwell assays, and apoptosis as well as cell cycle status were quantified by flow cytometry. Results ANXA1 was significantly downregulated in HSCC with LN metastasis. The survival rate of patients with low ANXA1 expression was significantly worse than that of patients with high ANXA1 expression (p<0.05). Silencing ANXA1 in cell culture experiments promoted the proliferation, migration and invasion of FaDu cells, inhibited apoptosis, and increased the proportion of cells in S phase. We furthermore found that the mRNA expression of ANXA1 was positively correlated with Yap1 expression (p<0.0001). Our in vitro experiments showed that ANXA1 regulates the expression of Yap1, and over-expression of Yap1 could reverse the effect of ANXA1 silencing on cancer cell progression. Conclusion Our findings suggest that ANXA1 is a putative LN metastasis suppressor gene in tumor, which may suppress the LN metastasis of HSCC by regulating the expression of Yap1.
Collapse
Affiliation(s)
- Lei Li
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhihai Wang
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Tao Lu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yanshi Li
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Min Pan
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dan Yu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Guohua Hu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
21
|
Zhao X, Ma W, Li X, Li H, Li J, Li H, He F. ANXA1 enhances tumor proliferation and migration by regulating epithelial-mesenchymal transition and IL-6/JAK2/STAT3 pathway in papillary thyroid carcinoma. J Cancer 2021; 12:1295-1306. [PMID: 33531975 PMCID: PMC7847635 DOI: 10.7150/jca.52171] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/01/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Annexin A1 (ANXA1) was discovered to show various effects during tumor initiation and development in a tumor-specific manner. However, the function of ANXA1 in papillary thyroid carcinoma (PTC) has not been reported. Methods: Bioinformatic analyses, RT-PCR and immunohistochemistry were employed to determine the ANXA1 expression level in PTC. Both gain- and loss-of-function studies, including CCK-8, EdU assay, transwell experiment and wound-healing assay were used to investigate the role of ANXA1 in PTC progression. GSEA enrichment analysis was utilized to explore the potential mechanisms of ANXA1 mediated downstream signaling, and ELISA, RT-PCR and western blot were used to confirm the relevance. Results: ANXA1 expression was prominently upregulated in PTC tumor tissues. Ectopic expression of ANXA1 expedited PTC cell proliferation, migration and invasion, whereas ANXA1 knockdown exhibited the opposing trends. Mechanistic investigations showed that ANXA1 regulated epithelial-mesenchymal transition (EMT) and activated the IL-6/JAK2/STAT3 pathway to contribute to PTC malignant behaviors. In particular, loss of ANXA1 retarded tumor burden and suppressed lung metastasis in vivo. Conclusions: In conclusion, our findings identified ANXA1 as a pivotal oncogene during PTC carcinogenesis and ANXA1 might function as a promising therapeutic target and prognostic marker for PTC.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Weiguo Ma
- Department of Medical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, China
| | - Xinyu Li
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Haijun Li
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Jin Li
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Hongle Li
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, China
| | - Fucheng He
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| |
Collapse
|
22
|
Chen P, Min J, Wu H, Zhang H, Wang C, Tan G, Zhang F. Annexin A1 is a potential biomarker of bone metastasis in small cell lung cancer. Oncol Lett 2020; 21:141. [PMID: 33552260 PMCID: PMC7798093 DOI: 10.3892/ol.2020.12402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Small cell lung cancer (SCLC) is a subtype of lung cancer with a poor prognosis, with bone metastasis being one of the main causes of treatment failure. Therefore, investigating new biomarkers associated with bone metastasis may result in positive treatment outcomes. The present study detected the expression levels of annexin A1 (ANXA1) in the serum of 82 patients with SCLC using ELISA. ANXA1 expression in patients with SCLC with bone metastasis was significantly higher compared with that in patients without bone metastasis. Receiver operating characteristic analysis revealed that ANXA1 expression was significant in the diagnosis of bone metastasis in SCLC. ANXA1 was inhibited in SBC-5 cells and overexpressed in SBC-3 cells. Results revealed that ANXA1 was able to enhance SCLC cell proliferation, invasion, migration and bone adhesion in vitro. In vivo xenograft bone metastasis assays indicated that ANXA1 had the potential to promote the bone-metastasis ability of SCLC cells in NOD/SCID mice. Furthermore, ANXA1 increased parathyroid hormone-related protein secretion and enhanced Smad2 phosphorylation following TGF-β treatment in SCLC cells. Overall, ANXA1 may be involved in the pathogenesis of bone metastasis in SCLC and may be a potential biomarker for the diagnosis of SCLC.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Air Force Military Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Jie Min
- Department of Oncology, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Hong Wu
- Department of Pharmacy, Air Force Military Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Helong Zhang
- Department of Oncology, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Chaoli Wang
- Department of Pharmacy, Air Force Military Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Guangguo Tan
- Department of Pharmacy, Air Force Military Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Feng Zhang
- Department of Oncology, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710000, P.R. China
| |
Collapse
|
23
|
Doxorubicin-Conjugated Innovative 16-mer DNA Aptamer-Based Annexin A1 Targeted Anti-Cancer Drug Delivery. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:1074-1086. [PMID: 32854062 PMCID: PMC7452223 DOI: 10.1016/j.omtn.2020.07.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/17/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Aptamers are small, functional single-stranded DNA or RNA oligonucleotides that bind to their targets with high affinity and specificity. Experimentally, aptamers are selected by the systematic evolution of ligands by exponential enrichment (SELEX) method. Here, we have used rational drug designing and bioinformatics methods to design the aptamers, which involves three different steps. First, finding a probable aptamer-binding site, and second, designing the recognition and structural parts of the aptamers by generating a virtual library of sequences, selection of specific sequence via molecular docking, molecular dynamics (MD) simulation, binding energy calculations, and finally evaluating the experimental affinity. Following this strategy, a 16-mer DNA aptamer was designed for Annexin A1 (ANXA1). In a direct binding assay, DNA1 aptamer bound to the ANXA1 with dissociation constants value of 83 nM. Flow cytometry and fluorescence microscopy results also showed that DNA1 aptamer binds specifically to A549, HepG2, U-87 MG cancer cells that overexpress ANXA1 protein, but not to MCF7 and L-02, which are ANXA1 negative cells. We further developed a novel system by conjugating DNA1 aptamer with doxorubicin and its efficacy was studied by cellular uptake and cell viability assay. Also, anti-tumor analysis showed that conjugation of doxorubicin with aptamer significantly enhances targeted therapy against tumors while minimizing overall adverse effects on mice health.
Collapse
|
24
|
A distinctive protein signature induced by lysophosphatidic acid receptor 6 (LPAR6) expression in hepatocellular carcinoma cells. Biochem Biophys Res Commun 2020; 526:1150-1156. [PMID: 32321639 DOI: 10.1016/j.bbrc.2020.04.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 04/10/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most commonly diagnosed liver malignancy, ranking third in the overall global cancer-related mortality. A complex network of interacting proteins controls HCC growth and progression. Lysophosphatidic acid receptors (LPAR) are commonly overexpressed in HCC. In particular, we have previously reported that the expression of LPAR6 sustains tumorigenesis and growth of HCC and results in a poor prognosis in HCC patients. Here, we applied a comparative proteomic approach to compare protein expression in both LPAR6 expressing (HLE-LPAR6) and nonexpressing HCC cells (HLE-neo). We found changes in the expression levels of 19 proteins, which include carbohydrate metabolism enzymes, redox and detoxification enzymes, and gene-expression regulatory proteins. Our findings support the role of LPAR6 in controlling the expression of a distinctive protein signature in HCC cells, which can offer a valuable resource for the identification of potential theranostic biomarkers.
Collapse
|
25
|
Upregulation of annexin A1 protein expression in the intratumoral vasculature of human non-small-cell lung carcinoma and rodent tumor models. PLoS One 2020; 15:e0234268. [PMID: 32497150 PMCID: PMC7272081 DOI: 10.1371/journal.pone.0234268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/21/2020] [Indexed: 12/23/2022] Open
Abstract
Annexin A1 (anxA1) is an immunomodulatory protein that has been proposed as a tumor vascular target for antitumor biologic agents, yet to date the vascular expression of anxA1 in specific tumor indications has not been systematically assessed. Attempts to evaluate vascular anxA1 expression by immunohistochemistry are complicated by a lack of available antibodies that are both specific for anxA1 and bind the N-terminal–truncated form of anxA1 that has previously been identified in tumor vasculature. To study the vascular expression pattern of anxA1 in non–small-cell lung carcinoma (NSCLC), we isolated an antibody capable of binding N-terminal–truncated anxA127-346 and employed it in immunohistochemical studies of human lung specimens. Lung tumor specimens evaluated with this antibody revealed vascular (endothelial) anxA1 expression in five of eight tumor samples studied, but no vascular anxA1 expression was observed in normal lung tissue. Tumor microarray analysis further demonstrated positive vascular staining for anxA1 in 30 of 80 NSCLC samples, and positive staining of neoplastic cells was observed in 54 of 80 samples. No correlation was observed between vascular and parenchymal anxA1 expression. Two rodent tumor models, B16-F10 and Py230, were determined to have upregulated anxA1 expression in the intratumoral vasculature. These data validate anxA1 as a potential vascular anti-tumor target in a subset of human lung tumors and identify rodent models which demonstrate anxA1 expression in tumor vasculature.
Collapse
|
26
|
Zhuang C, Wang P, Sun T, Zheng L, Ming L. Expression levels and prognostic values of annexins in liver cancer. Oncol Lett 2019; 18:6657-6669. [PMID: 31807177 PMCID: PMC6876331 DOI: 10.3892/ol.2019.11025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023] Open
Abstract
Annexins are a superfamily of calcium-dependent phospholipid-binding proteins that are implicated in a wide range of biological processes. The annexin superfamily comprises 13 members in humans (ANXAs), the majority of which are frequently dysregulated in cancer. However, the expression patterns and prognostic values of ANXAs in liver cancer are currently largely unknown. The present study aimed to analyze the expression levels of ANXAs and survival data in patients with liver cancer from the Oncomine, GEPIA, Kaplan-Meier plotter and cBioPortal for Cancer Genomics databases. The results demonstrated that ANXA1, A2, A3, A4 and A5 were upregulated, whereas ANXA10 was downregulated in liver cancer compared with normal liver tissues. The expression of ANXA10 was associated with pathological stage. High expression levels of ANXA2 and A5 were significantly associated with poor overall survival (OS) rate whereas ANXA7 and A10 were associated with increased OS. The prognostic values of ANXAs in liver cancer were determined based on sex and clinical stage, which revealed that ANXA2, A5, A7 and A10 were associated with OS in male, but not in female patients. In addition, the potential biological functions of ANXAs were identified by Gene Ontology functional annotation and Kyoto Encyclopedia of Genes Genomes pathway analysis; the results demonstrated that ANXAs may serve a role in liver cancer through the neuroactive ligand-receptor interaction pathway. In conclusion, the results of the present study suggested that ANXA1, A2, A3, A4, A5 and A10 may be potential therapeutic targets for liver cancer treatment, and that ANXA2, A5, A7 and A10 may be potential prognostic biomarkers of liver cancer.
Collapse
Affiliation(s)
- Chunbo Zhuang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Pei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ting Sun
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lei Zheng
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Liang Ming
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
27
|
Annexin-A1 – A Blessing or a Curse in Cancer? Trends Mol Med 2019; 25:315-327. [DOI: 10.1016/j.molmed.2019.02.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/24/2022]
|
28
|
Guan X, Fang Y, Long J, Zhang Y. Annexin 1-nuclear factor-κB-microRNA-26a regulatory pathway in the metastasis of non-small cell lung cancer. Thorac Cancer 2019; 10:665-675. [PMID: 30756482 PMCID: PMC6449244 DOI: 10.1111/1759-7714.12982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/24/2018] [Accepted: 12/28/2018] [Indexed: 12/16/2022] Open
Abstract
Background Annexin 1 (ANXA1) expression is associated with the malignant tumor phenotype, making it an attractive therapeutic target. However, little is known about the regulation of ANXA1 in non‐small cell lung cancer (NSCLC). Methods We investigated the biological roles of ANXA1 in tumor growth, migration, and invasion, and explored the possibility of ANXA1 as a potential therapeutic target for the treatment of NSCLC. Results Our findings revealed that ANXA1 enhanced nuclear factor (NF)‐κB activation in NSCLC cells by interaction with inhibitor of NF‐κB kinase complex subunit, IKKγ. We also found that NF‐κB could negatively regulate microRNA (miR)‐26a, and miR‐26a was regulated through the ANXA1–NF‐κB regulatory pathway. NF‐κB activation negatively regulated by miR‐26a was confirmed in NSCLC. Conclusion Together, these results provide evidence of the mechanisms of the ANXA1–NF‐κB–miR‐26a regulatory pathway in the invasion and migration in NSCLC.
Collapse
Affiliation(s)
- Xiaoying Guan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao, China.,State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying Fang
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Xinzao, China
| | - Jie Long
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Xinzao, China
| | - Yajie Zhang
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Xinzao, China
| |
Collapse
|
29
|
mTOR Activation in Liver Tumors Is Associated with Metabolic Syndrome and Non-Alcoholic Steatohepatitis in Both Mouse Models and Humans. Cancers (Basel) 2018; 10:cancers10120465. [PMID: 30469530 PMCID: PMC6315895 DOI: 10.3390/cancers10120465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/12/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) can cause liver fibrosis and cirrhosis, with final progression to hepatocellular carcinoma (HCC) in some cases. Various factors have been suggested to be involved in the development of NASH. Considering the many possible contributing factors, we postulated that mechanisms of progression from NASH to HCC could differ depending on the risk factors. In the present study, we applied two mouse models of NASH⁻HCC and performed histopathological and proteome analyses of mouse liver tumors. Furthermore, to compare the mechanisms of NASH⁻HCC progression in mice and humans, we investigated HCCs in humans with a background of metabolic syndrome and NASH, as well as HCCs associated with hepatitis virus infection by immunohistochemistry. It was demonstrated that upstream regulators associated with the mammalian target of rapamycin (mTOR) pathway were altered in liver tumors of mice with metabolic syndrome characteristics (TSOD mice) using proteome analysis. Immunohistochemical analysis showed that mTOR was characteristically phosphorylated in liver tumors of TSOD mice and HCCs from metabolic syndrome cases in humans. These results indicated that the mTOR pathway is characteristically activated in liver tumors with metabolic syndrome and NASH, unlike liver tumors with other etiologies.
Collapse
|
30
|
Raulf N, Lucarelli P, Thavaraj S, Brown S, Vicencio JM, Sauter T, Tavassoli M. Annexin A1 regulates EGFR activity and alters EGFR-containing tumour-derived exosomes in head and neck cancers. Eur J Cancer 2018; 102:52-68. [PMID: 30142511 DOI: 10.1016/j.ejca.2018.07.123] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/29/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the 6th most common cancer with approximately half a million cases diagnosed each year worldwide. HNSCC has a poor survival rate which has not improved for over 30 years. The molecular pathogenesis of HNSCCs remains largely unresolved; there is high prevalence of p53 mutations and EGFR overexpression; however, the contribution of these molecular changes to disease development and/or progression remains unknown. We have recently identified microRNA miR-196a to be highly overexpressed in HNSCC with poor prognosis. Oncogenic miR-196a directly targets Annexin A1 (ANXA1). Although increased ANXA1 expression levels have been associated with breast cancer development, its role in HNSCC is debatable and its functional contribution to HNSCC development remains unclear. METHODS ANXA1 mRNA and protein expression levels were determined by RNA Seq analysis and immunohistochemistry, respectively. Gain- and loss-of-function studies were performed to analyse the effects of ANXA1 modulation on cell proliferation, mechanism of activation of EGFR signalling as well as on exosome production and exosomal phospho-EGFR. RESULTS ANXA1 was found to be downregulated in head and neck cancer tissues, both at mRNA and protein level. Its anti-proliferative effects were mediated through the intracellular form of the protein. Importantly, ANXA1 downregulation resulted in increased phosphorylation and activity of EGFR and its downstream PI3K-AKT signalling. Additionally, ANXA1 modulation affected exosome production and influenced the release of exosomal phospho-EGFR. CONCLUSIONS ANXA1 acts as a tumour suppressor in HNSCC. It is involved in the regulation of EGFR activity and exosomal phospho-EGFR release and could be an important prognostic biomarker.
Collapse
Affiliation(s)
- N Raulf
- Department of Molecular Oncology, King's College London, Guy's Hospital Campus, Hodgkin Building, London SE1 1UL, UK
| | - P Lucarelli
- Faculté des Sciences, de La Technologie et de La Communication, University of Luxembourg, 6, Avenue Du Swing, 4367 Belvaux, Luxembourg
| | - S Thavaraj
- Department of Head and Neck Pathology, Mucosal and Salivary Biology, Guy's Hospital Campus, King's College London, SE1 9RT, UK
| | - S Brown
- DCT3 Oral and Maxillofacial Histopathology, Department of Head & Neck Pathology, Guy's Hospital Campus, King's College London, SE1 9RT, UK
| | - J M Vicencio
- Research Department of Cancer Biology, Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - T Sauter
- Faculté des Sciences, de La Technologie et de La Communication, University of Luxembourg, 6, Avenue Du Swing, 4367 Belvaux, Luxembourg
| | - M Tavassoli
- Department of Molecular Oncology, King's College London, Guy's Hospital Campus, Hodgkin Building, London SE1 1UL, UK.
| |
Collapse
|
31
|
Cai T, Guan X, Wang H, Fang Y, Long J, Xie X, Zhang Y. MicroRNA-26a regulates ANXA1, rather than DAL-1, in the development of lung cancer. Oncol Lett 2018; 15:5893-5902. [PMID: 29552220 DOI: 10.3892/ol.2018.8048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/26/2018] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to investigate the expression and role of microRNA-26a (miR-26a) in lung cancer, and to verify whether differentially expressed in adenocarcinoma of the lung (DAL-1) is the target protein of miR-26a. mRNA expression levels of miR-26a and DAL-1 were detected using reverse transcription-quantitative polymerase chain reaction. Protein expression levels of DAL-1 and annexin A1 (ANXA1) were evaluated by western blot analysis. Cell Counting Kit-8, Transwell and wound scratch healing assays were used to characterize the function of miR-26a in lung cancer cells. The association of DAL-1 with miR-26a or ANXA1 was determined by dual-luciferase reporter or two-dimensional gel electrophoresis assays. miR-26a revealed decreased expression levels in lung cancer tissues compared with normal lung tissues, and decreased expression levels in lung cancer cells compared with 16HBE cells. Inhibition of miR-26a promoted lung cancer cell growth, migration and invasion. The DAL-1 protein exhibited downregulated expression levels in lung cancer tissues. DAL-1 was not the direct target gene of miR-26a. The two-dimensional gel electrophoresis assay confirmed that DAL-1 and ANXA1 were associated proteins. Expression levels of the ANXA1 protein were increased following DAL-1 gene silencing. The altered expression level of miR-26a affected the expression of ANXA1, and not of DAL-1. miR-26a demonstrated decreased expression levels in lung cancer cells, and it has an important effect on the biological function of lung cancer cells. However, DAL-1 was not a target gene of miR-26a. As a DAL-1 associated protein, ANXA1 was regulated by miR-26a.
Collapse
Affiliation(s)
- Tonghui Cai
- Department of Pathology, Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China.,Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiaoying Guan
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Hongyan Wang
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Ying Fang
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jie Long
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiaobin Xie
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Yajie Zhang
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| |
Collapse
|
32
|
Alli-Shaik A, Wee S, Lim LHK, Gunaratne J. Phosphoproteomics reveals network rewiring to a pro-adhesion state in annexin-1-deficient mammary epithelial cells. Breast Cancer Res 2017; 19:132. [PMID: 29233185 PMCID: PMC5727667 DOI: 10.1186/s13058-017-0924-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/29/2017] [Indexed: 12/18/2022] Open
Abstract
Background Annexin-1 (ANXA1) plays pivotal roles in regulating various physiological processes including inflammation, proliferation and apoptosis, and deregulation of ANXA1 functions has been associated with tumorigenesis and metastasis events in several types of cancer. Though ANXA1 levels correlate with breast cancer disease status and outcome, its distinct functional involvement in breast cancer initiation and progression remains unclear. We hypothesized that ANXA1-responsive kinase signaling alteration and associated phosphorylation signaling underlie early events in breast cancer initiation events and hence profiled ANXA1-dependent phosphorylation changes in mammary gland epithelial cells. Methods Quantitative phosphoproteomics analysis of mammary gland epithelial cells derived from ANXA1-heterozygous and ANXA1-deficient mice was carried out using stable isotope labeling with amino acids in cell culture (SILAC)-based mass spectrometry. Kinase and signaling changes underlying ANXA1 perturbations were derived by upstream kinase prediction and integrated network analysis of altered proteins and phosphoproteins. Results We identified a total of 8110 unique phosphorylation sites, of which 582 phosphorylation sites on 372 proteins had ANXA1-responsive changes. A majority of these phosphorylation changes occurred on proteins associated with cytoskeletal reorganization spanning the focal adhesion, stress fibers, and also the microtubule network proposing new roles for ANXA1 in regulating microtubule dynamics. Comparative analysis of regulated global proteome and phosphoproteome highlighted key differences in translational and post-translational effects of ANXA1, and suggested closely coordinated rewiring of the cell adhesion network. Kinase prediction analysis suggested activity modulation of calmodulin-dependent protein kinase II (CAMK2), P21-activated kinase (PAK), extracellular signal-regulated kinase (ERK), and IκB kinase (IKK) upon loss of ANXA1. Integrative analysis revealed regulation of the WNT and Hippo signaling pathways in ANXA1-deficient mammary epithelial cells, wherein there is downregulation of transcriptional effects of TEA domain family (TEAD) suggestive of ANXA1-responsive transcriptional rewiring. Conclusions The phosphoproteome landscape uncovered several novel perspectives for ANXA1 in mammary gland biology and highlighted its involvement in key signaling pathways modulating cell adhesion and migration that could contribute to breast cancer initiation. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0924-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Asfa Alli-Shaik
- Translational Biomedical Proteomics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Sheena Wee
- Translational Biomedical Proteomics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Lina H K Lim
- Department of Physiology, Immunology Programme, Centre for Life Sciences, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Jayantha Gunaratne
- Translational Biomedical Proteomics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Singapore, 138673, Singapore. .,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Singapore.
| |
Collapse
|
33
|
Wan YM, Tian J, Qi L, Liu LM, Xu N. ANXA1 affects cell proliferation, invasion and epithelial-mesenchymal transition of oral squamous cell carcinoma. Exp Ther Med 2017; 14:5214-5218. [PMID: 29201239 DOI: 10.3892/etm.2017.5148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/19/2017] [Indexed: 12/14/2022] Open
Abstract
Annexin A1 (ANXA1) acts either as a tumor suppressor or an oncogene in different tumor types. Several clinical studies revealed that the expression of ANXA1 is associated with the pathologic differentiation grade in oral squamous cell carcinoma (OSCC) patients. However, the direct function of ANXA1 in OSCC progression has remained to be fully clarified. The present study was designed to investigate the role of ANXA1 in OSCC cell proliferation and invasion in vitro. Furthermore, whether ANXA1 was involved in transforming growth factor β1 (TGFβ1)/epidermal growth factor (EGF)-induced epithelial-mesenchymal transition (EMT) in OSCC was explored. Tca-8113 and SCC-9 cells were transfected with ANXA1-pcDNA3.1 plasmid to overexpress ANXA1. Subsequently, cell proliferation and invasion were examined using MTT and Transwell-Matrigel invasion assays. TGFβ1 and EGF were used to induce EMT in Tca-8113 and SCC-9 cells, and the expression of epithelial (E)-cadherin, neural (N)-cadherin and vimentin was determined by western blot analysis. The results demonstrated that ANXA1 overexpression induced a significant decrease of cell growth and invasiveness in Tca-8113 and SCC-9 cells. The expression of E-cadherin was significantly increased, while the expression of vimentin and N-cadherin was significantly decreased in ANXA1-overexpressing Tca-8113 and SCC-9 cells. ANXA1 expression was significantly decreased in TGFβ1/EGF-treated cells. Furthermore TGFβ1/EGF-induced EMT in OSCC cell lines was attenuated by ANXA1 overexpression. In conclusion, to the best of our knowledge, the present study was the first to evidence that ANXA1 inhibits OSCC cell proliferation and invasion in vitro. TGFβ1/EGF-induced EMT was reversed by ANXA1 in OSCC. ANXA1 was suggested to be a potential marker for OSCC as well as a novel treatment.
Collapse
Affiliation(s)
- Ying-Ming Wan
- Department of Stomatology, Affiliated Hospital of Jilin Medical University, Jilin 132021, P.R. China
| | - Jing Tian
- Department of Physiology, Jilin Medical University, Jilin 132013, P.R. China
| | - Ling Qi
- Department of Pathology, Jilin Medical University, Jilin 132013, P.R. China
| | - Li-Mei Liu
- Department of Stomatology, Affiliated Hospital of Jilin Medical University, Jilin 132021, P.R. China
| | - Ning Xu
- Department of Stomatology, Affiliated Hospital of Jilin Medical University, Jilin 132021, P.R. China
| |
Collapse
|
34
|
Han G, Lu K, Huang J, Ye J, Dai S, Ye Y, Zhang L. Effect of Annexin A1 gene on the proliferation and invasion of esophageal squamous cell carcinoma cells and its regulatory mechanisms. Int J Mol Med 2016; 39:357-363. [PMID: 28035369 PMCID: PMC5358711 DOI: 10.3892/ijmm.2016.2840] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to examine the effect of Annexin A1 (ANXA1) on the proliferation, migration and invasion of esophageal squamous cell carcinoma (ESCC) cells and its possible mechanisms of action. After constructing the ANXA1 overexpression plasmid, we transfected this plasmid and/or microRNA (miRNA)‑196a mimic into ESCC cells (Eca109 cell line). Methyl thiazolyl tetrazolium (MTT) assay and Transwell chamber assay were performed to determine cell proliferation, migration and invasion, respectively. Western blot analysis was used to examine the protein expression levels of ANXA1, Snail and E-cadherin. RT-PCR was used to detect the expression of miRNA-196a. Our results revealed that ANXA1 expression was upregulated in the cells transfected with the ANXA1 overexpression plasmid, and cell proliferation, migration and invasion were significantly increased (p=0.004, p<0.001 and p=0.011, respectively). In the cells transfected with the miRNA‑196a mimic, miRNA‑196a expression was significantly upregulated (p<0.001). However, miRNA-196a expression was downregulated in the cells transfected with the ANXA1 overexpression plasmid. In addition, in the cells transfected with the miRNA‑196a mimic, cell proliferation, migration and invasion were significantly decreased (p=0.027, p=0.009 and p=0.021, respectively). In the cells transfected with the ANXA1 overexpression plasmid, the expression of Snail was upregulated and that of E-cadherin was downregulated. However, the opposite was observed in the cells transfected with the miRNA‑196a mimic. Our findings thus demonstrate that ANXA1 promotes the proliferation of Eca109 cells, and increases the expression of Snail, whereas it inhibits that of E-cadherin, thus enhancing the migration and invasion of ESCC cells. miRNA-196a negatively regulates the expression of ANXA1, thereby inhibiting the proliferation, invasion and metastasis of ESCC cells.
Collapse
Affiliation(s)
- Gaohua Han
- Department of Oncology, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Kaijin Lu
- Department of Chest Surgery, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Junxing Huang
- Department of Oncology, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Jun Ye
- Central Laboratory, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Shengbin Dai
- Department of Oncology, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Yunyao Ye
- Department of Oncology, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Lixin Zhang
- Central Laboratory, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
35
|
Identification of specific biomarkers for gastric adenocarcinoma by ITRAQ proteomic approach. Sci Rep 2016; 6:38871. [PMID: 27941907 PMCID: PMC5150883 DOI: 10.1038/srep38871] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/14/2016] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to identify biomarkers for gastric cancer (GC) by iTRAQ. Using proteins extracted from a panel of 4 pairs of gastric adenocarcinoma samples (stage III-IV, Her-2 negative), we identified 10 up regulated and 9 down regulated proteins in all four pairs of GC samples compared to adjacent normal gastric tissue. The up regulated proteins are mainly involved in cell motility, while the down regulated proteins are mitochondrial enzymes involved in energy metabolism. The expression of three up regulated proteins (ANXA1, NNMT, fibulin-5) and one of the down regulated proteins (UQCRC1) was validated by Western Blot in 97 GC samples. ANXA1 was up regulated in 61.36% of stage I/II GC samples compared to matched adjacent normal gastric tissue, and its expression increased further in stage III/IV samples. Knockdown of ANXA1 by siRNA significantly inhibited GC cell migration and invasion, whereas over expression of ANXA1 promoted migration and invasion. We found decreased expression of UQCRC1 in all stages of GC samples. Our data suggest that increased cell motility and decreased mitochondrial energy metabolism are important hallmarks during the development of GC.
Collapse
|
36
|
Shrum B, Costello P, McDonald W, Howlett C, Donnelly M, McAlister VC. In vitro three dimensional culture of hepatocellular carcinoma to measure prognosis and responsiveness to chemotherapeutic agents. Hepatobiliary Surg Nutr 2016; 5:204-8. [PMID: 27275461 DOI: 10.21037/hbsn.2016.01.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Understanding the prognosis of hepatocellular carcinoma (HCC) informs plans for care. Tumor morphology and molecular markers have been correlated with outcomes. Three-dimensional tissue culture (3DTC) allows for direct in vitro measurement of a tumor's ability to grow and metastasize. The impact of chemotherapeutic agents, alone or in combinations, may also be measured. METHODS All patients with a presumed diagnosis of HCC were eligible for this study including those undergoing resection, chemoembolization and transplantation. Concomitant diseases and outcomes were recorded. One mm(3) HCC specimens were grown in multiwell plates containing gel media, without and with chemotherapeutic agents. RESULTS Tumors were sampled from 17 patients. Only 13 had HCC, all of whom had liver transplantation. Of the confirmed HCC patients, 6 (46%) are alive and disease free 82 months following transplantation, 1 (7%) is alive with recurrence of disease and 6 (46%) died, with a mean survival of 12 months post liver transplant. Ten of thirteen 3DTC samples grew, having an average migration distance of 108.3µm in the first 24 hours. Two of three patients who had prior chemoembolization had successful 3DTC. Migration distances (µm) were 188.8±104.3, 104.5±111.7 and 39.6±32.4 for tumors categorized as high, intermediate and low grade, respectively. Tumor migration was inhibited by irinotecan, paclitaxel and docetaxel (-68%±7%, -61%±19% and -60%±21%, respectively) whereas the effect was variable with 5 fluorouracil (5FU) and doxorubicin (-12%±51% and 9%±76%, respectively). CONCLUSIONS It is feasible to grow tissue from HCC in 3DTC to study the tumor's capacity to grow and migrate and its responsiveness to commonly used chemotherapeutic protocols.
Collapse
Affiliation(s)
- Brad Shrum
- 1 General Surgery Experimental Laboratory, University Hospital, London, ON, Canada ; 2 Department of Pathology, London Health Sciences Centre, London, ON, Canada
| | - Penny Costello
- 1 General Surgery Experimental Laboratory, University Hospital, London, ON, Canada ; 2 Department of Pathology, London Health Sciences Centre, London, ON, Canada
| | - Warren McDonald
- 1 General Surgery Experimental Laboratory, University Hospital, London, ON, Canada ; 2 Department of Pathology, London Health Sciences Centre, London, ON, Canada
| | - Christopher Howlett
- 1 General Surgery Experimental Laboratory, University Hospital, London, ON, Canada ; 2 Department of Pathology, London Health Sciences Centre, London, ON, Canada
| | - Marisa Donnelly
- 1 General Surgery Experimental Laboratory, University Hospital, London, ON, Canada ; 2 Department of Pathology, London Health Sciences Centre, London, ON, Canada
| | - Vivian C McAlister
- 1 General Surgery Experimental Laboratory, University Hospital, London, ON, Canada ; 2 Department of Pathology, London Health Sciences Centre, London, ON, Canada
| |
Collapse
|
37
|
Fang Y, Guan X, Cai T, Long J, Wang H, Xie X, Zhang Y. Knockdown of ANXA1 suppresses the biological behavior of human NSCLC cells in vitro. Mol Med Rep 2016; 13:3858-66. [PMID: 27035116 PMCID: PMC4838122 DOI: 10.3892/mmr.2016.5022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 01/14/2016] [Indexed: 12/20/2022] Open
Abstract
Annexin A1 (ANXA1) is a member of the annexin superfamily. Previous studies have reported that ANXA1 is highly expressed in various types of malignant tumor; however, its role in the progression of non‑small cell lung cancer (NSCLC) remains to be fully clarified. The present study aimed to investigate the oncogenic role of ANXA1 in NSCLC cells in vitro. RNA interference was used to downregulate ANXA1 expression in A549 and H1299 cells using a small interfering RNA lentiviral vector. Subsequently, cell proliferation and migration were detected using Cell Counting kit‑8, clone formation, wound healing and Transwell chamber assays. Successful transfection was confirmed using fluorescence microscopy, which demonstrated that ANXA1 had been efficiently inhibited. ANXA1 knockdown suppressed the proliferation, migration and invasion of NSCLC cells. In conclusion, the present study provided evidence suggesting that ANXA1 may contribute to the growth and invasion of NSCLC cell lines, and ANXA1 may be exploited as an in vitro therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Ying Fang
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Xiaoying Guan
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Tonghui Cai
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Jie Long
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Hongyan Wang
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Xiaobin Xie
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Yajie Zhang
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
38
|
Wei D, Zeng Y, Xing X, Liu H, Lin M, Han X, Liu X, Liu J. Proteome Differences between Hepatitis B Virus Genotype-B- and Genotype-C-Induced Hepatocellular Carcinoma Revealed by iTRAQ-Based Quantitative Proteomics. J Proteome Res 2016; 15:487-98. [PMID: 26709725 DOI: 10.1021/acs.jproteome.5b00838] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatitis B virus (HBV) is the main cause of hepatocellular carcinoma (HCC) in southeast Asia where HBV genotype B and genotype C are the most prevalent. Viral genotypes have been reported to significantly affect the clinical outcomes of HCC. However, the underlying molecular differences among different genotypes of HBV virus infected HCC have not been revealed. Here, we applied isobaric tags for relative and absolute quantitation (iTRAQ) technology integrated with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis to identify the proteome differences between the HBV genotypes B- and C-induced HCC. In brief, a total of 83 proteins in the surrounding noncancerous tissues and 136 proteins in the cancerous tissues between HBV genotype-B- and genotype-C-induced HCC were identified, respectively. This information revealed that there might be different molecular mechanisms of the tumorigenesis and development of HBV genotypes B- and C-induced HCC. Furthermore, our results indicate that the two proteins ARFIP2 and ANXA1 might be potential biomarkers for distinguishing the HBV genotypes B- and C-induced HCC. Thus, the quantitative proteomic analysis revealed molecular differences between the HBV genotypes B- and C-induced HCC, and might provide fundamental information for further deep study.
Collapse
Affiliation(s)
- Dahai Wei
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University , Fuzhou 350025, People's Republic of China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University , Fuzhou 350025, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University , Fuzhou 350007, People's Republic of China
| | - Xiaohua Xing
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University , Fuzhou 350025, People's Republic of China
| | - Hongzhi Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University , Fuzhou 350025, People's Republic of China
| | - Minjie Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University , Fuzhou 350025, People's Republic of China
| | - Xiao Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University , Fuzhou 350025, People's Republic of China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University , Fuzhou 350025, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University , Fuzhou 350007, People's Republic of China
| |
Collapse
|