1
|
Xue JD, Xiang WF, Cai MQ, Lv XY. Biological functions and therapeutic potential of SRY related high mobility group box 5 in human cancer. Front Oncol 2024; 14:1332148. [PMID: 38835366 PMCID: PMC11148273 DOI: 10.3389/fonc.2024.1332148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/26/2024] [Indexed: 06/06/2024] Open
Abstract
Cancer is a heavy human burden worldwide, with high morbidity and mortality. Identification of novel cancer diagnostic and prognostic biomarkers is important for developing cancer treatment strategies and reducing mortality. Transcription factors, including SRY associated high mobility group box (SOX) proteins, are thought to be involved in the regulation of specific biological processes. There is growing evidence that SOX transcription factors play an important role in cancer progression, including tumorigenesis, changes in the tumor microenvironment, and metastasis. SOX5 is a member of SOX Group D of Sox family. SOX5 is expressed in various tissues of human body and participates in various physiological and pathological processes and various cellular processes. However, the abnormal expression of SOX5 is associated with cancer of various systems, and the abnormal expression of SOX5 acts as a tumor promoter to promote cancer cell viability, proliferation, invasion, migration and EMT through multiple mechanisms. In addition, the expression pattern of SOX5 is closely related to cancer type, stage and adverse clinical outcome. Therefore, SOX5 is considered as a potential biomarker for cancer diagnosis and prognosis. In this review, the expression of SOX5 in various human cancers, the mechanism of action and potential clinical significance of SOX5 in tumor, and the therapeutic significance of Sox5 targeting in cancer were reviewed. In order to provide a new theoretical basis for cancer clinical molecular diagnosis, molecular targeted therapy and scientific research.
Collapse
Affiliation(s)
- Juan-di Xue
- The School of Basic Medicine Sciences of Lanzhou University, Lanzhou, China
| | - Wan-Fang Xiang
- School/Hospital of Stomatology of Lanzhou University, Lanzhou, China
| | - Ming-Qin Cai
- School/Hospital of Stomatology of Lanzhou University, Lanzhou, China
| | - Xiao-Yun Lv
- The School of Basic Medicine Sciences of Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Wu B, Wang X, Yu R, Xue X. CircWHSC1 serves as a prognostic biomarker and promotes malignant progression of non-small-cell lung cancer via miR-590-5p/SOX5 axis. ENVIRONMENTAL TOXICOLOGY 2023; 38:2440-2449. [PMID: 37417879 DOI: 10.1002/tox.23879] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/17/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023]
Abstract
Dysregulated circWHSC1 has been shown to play potential roles in diverse cancer types, including ovarian cancer, endometrial cancer and hepatocellular carcinoma (HCC). The objective of this study was to investigate its expression, underlying role and regulatory mechanism in non-small-cell lung cancer (NSCLC). The expression of circWHSC1 was determined by real-time PCR. After knockdown of circWHSC1 expression in NSCLC cells, the proliferation, migration, and invasion were detected using CCK-8, colony formation, and Transwell assays, and the effects of circWHSC1 on NSCLC tumorigenesis in vivo was also investigated. With the help of luciferase reporter and pull-down assays, we further explored the downstream mechanism of circWHSC1 in NSCLC cells. CircWHSC1 was highly expressed in NSCLC tissues and cell lines. The inhibition of circWHSC1 suppressed the malignant properties of NSCLC cells, as evidenced by the reduction of proliferation, migration and invasion. CircWHSC1 sponged miR-590-5p and functioned as an oncogene in NSCLC by increasing sex determining region Y-boxprotein 5 (SOX5) expression. CircWHSC1 may contribute to the oncogenicity of NSCLC via the regulation of miR-590-5p/SOX5 axis, which might be a novel therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Bin Wu
- Pulmonary and Critical Care Medicine, The People's Hospital of Long hua district, Shenzhen, China
- Pulmonary and Critical Care Medicine, South China Hospital of Shenzhen University, Shenzhen, China
| | - Xisheng Wang
- Medical Research Center, The People's Hospital of Long hua district, Shenzhen, China
| | - Ruilin Yu
- Pulmonary and Critical Care Medicine, The People's Hospital of Long hua district, Shenzhen, China
| | - Xingkui Xue
- Medical Research Center, The People's Hospital of Long hua district, Shenzhen, China
| |
Collapse
|
3
|
Advance of SOX Transcription Factors in Hepatocellular Carcinoma: From Role, Tumor Immune Relevance to Targeted Therapy. Cancers (Basel) 2022; 14:cancers14051165. [PMID: 35267473 PMCID: PMC8909699 DOI: 10.3390/cancers14051165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is one of the deadliest human health burdens worldwide. However, the molecular mechanism of HCC development is still not fully understood. Sex determining region Y-related high-mobility group box (SOX) transcription factors not only play pivotal roles in cell fate decisions during development but also participate in the initiation and progression of cancer. Given the significance of SOX factors in cancer and their ‘undruggable’ properties, we summarize the role and molecular mechanism of SOX family members in HCC and the regulatory effect of SOX factors in the tumor immune microenvironment (TIME) of various cancers. For the first time, we analyze the association between the levels of SOX factors and that of immune components in HCC, providing clues to the pivotal role of SOX factors in the TIME of HCC. We also discuss the opportunities and challenges of targeting SOX factors for cancer. Abstract Sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) factors belong to an evolutionarily conserved family of transcription factors that play essential roles in cell fate decisions involving numerous developmental processes. In recent years, the significance of SOX factors in the initiation and progression of cancers has been gradually revealed, and they act as potential therapeutic targets for cancer. However, the research involving SOX factors is still preliminary, given that their effects in some leading-edge fields such as tumor immune microenvironment (TIME) remain obscure. More importantly, as a class of ‘undruggable’ molecules, targeting SOX factors still face considerable challenges in achieving clinical translation. Here, we mainly focus on the roles and regulatory mechanisms of SOX family members in hepatocellular carcinoma (HCC), one of the fatal human health burdens worldwide. We then detail the role of SOX members in remodeling TIME and analyze the association between SOX members and immune components in HCC for the first time. In addition, we emphasize several alternative strategies involved in the translational advances of SOX members in cancer. Finally, we discuss the alternative strategies of targeting SOX family for cancer and propose the opportunities and challenges they face based on the current accumulated studies and our understanding.
Collapse
|
4
|
Li Q, Wang W, Yang T, Li D, Huang Y, Bai G, Li Q. LINC00520 up-regulates SOX5 to promote cell proliferation and invasion by miR-4516 in human hepatocellular carcinoma. Biol Chem 2022; 403:665-678. [PMID: 35089659 DOI: 10.1515/hsz-2021-0316] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common human cancers. Long non-coding RNA (lncRNA) has been demonstrated to play an important role in regulating tumor development. The current study aims to explore the specific role of LINC00520 during HCC progression. The present study identified that LINC00520 was upregulated in HCC tissues and indicated poor patient survival. Overexpression of LINC00520 promoted HCC cell proliferation, migration and invasion, while LINC00520 downregulation led to the opposite effects. Besides, LINC00520 knockdown was found to inhibit tumor growth in vivo. Furthermore, LINC00520 acted as a sponge of miR-4516 to regulate SRY-related high mobility group box 5 (SOX5). In addition, the inhibition of miR-4516 partly reversed the inhibitory effect of LINC00520 silencing on HCC cell proliferation, migration and invasion. In conclusion, the inhibition of LINC00520 suppressed HCC cell proliferation, migration and invasion through mediating miR-4516/SOX5 axis. Therefore, our study provides a basis for the development of treatment strategies for HCC.
Collapse
Affiliation(s)
- Qing Li
- Department of Internal Medicine, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Wei Wang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Tao Yang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Dongsheng Li
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Yinpeng Huang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Guang Bai
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Qiang Li
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| |
Collapse
|
5
|
Chen R, Zhang C, Cheng Y, Wang S, Lin H, Zhang H. LncRNA UCC promotes epithelial-mesenchymal transition via the miR-143-3p/SOX5 axis in non-small-cell lung cancer. J Transl Med 2021; 101:1153-1165. [PMID: 33824420 DOI: 10.1038/s41374-021-00586-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/10/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been found to play regulatory roles in cancers; for example, UCC was reported to promote colorectal cancer progression. However, the function of UCC in non-small-cell lung cancer (NSCLC) remains unclear. Therefore, mRNA and protein levels were assessed using qPCR and western blots. Cell viability was assessed by colony-formation assays. The interaction between lncRNAs and miRNAs was detected by dual-luciferase reporter and RIP assays. The tumorigenesis of NSCLC cells in vivo was determined by xenograft assays. LncRNA UCC was highly expressed in both NSCLC tissues and cells. Knockdown of UCC expression suppressed the proliferation of NSCLC cells. In addition, a dual-luciferase reporter system and RIP assays showed that UCC specifically bound to miR-143-3p and acted as a sponge of miR-143-3p in NSCLC cells. The miR-143-3p inhibitor rescued the inhibitory effect of sh-UCC on the proliferation of NSCLC cells. Moreover, miR-143-3p and UCC showed opposite effects on the expression of SOX5, which promoted EMT in NSCLC cells. In addition, in a mouse model, knockdown of UCC expression alleviated EMT and NSCLC progression in vivo, which was consistent with the in vitro results. In the current study, we found that UCC induced the proliferation and migration of NSCLC cells both in vitro and in vivo by inducing the expression of SOX5 via miR-143-3p and subsequently promoted EMT in NSCLC.
Collapse
Affiliation(s)
- Ri Chen
- Department of Cardiothoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Chunfan Zhang
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, PR China
| | - Yuanda Cheng
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, PR China
| | - Shaoqiang Wang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, JiNing, Shandong, PR China
| | - Hang Lin
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Heng Zhang
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, PR China.
| |
Collapse
|
6
|
Bousali M, Papatheodoridis G, Paraskevis D, Karamitros T. Hepatitis B Virus DNA Integration, Chronic Infections and Hepatocellular Carcinoma. Microorganisms 2021; 9:1787. [PMID: 34442866 PMCID: PMC8398950 DOI: 10.3390/microorganisms9081787] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B Virus (HBV) is an Old World virus with a high mutation rate, which puts its origins in Africa alongside the origins of Homo sapiens, and is a member of the Hepadnaviridae family that is characterized by a unique viral replication cycle. It targets human hepatocytes and can lead to chronic HBV infection either after acute infection via horizontal transmission usually during infancy or childhood or via maternal-fetal transmission. HBV has been found in ~85% of HBV-related Hepatocellular Carcinomas (HCC), and it can integrate the whole or part of its genome into the host genomic DNA. The molecular mechanisms involved in the HBV DNA integration is not yet clear; thus, multiple models have been described with respect to either the relaxed-circular DNA (rcDNA) or the double-stranded linear DNA (dslDNA) of HBV. Various genes have been found to be affected by HBV DNA integration, including cell-proliferation-related genes, oncogenes and long non-coding RNA genes (lincRNAs). The present review summarizes the advances in the research of HBV DNA integration, focusing on the evolutionary and molecular side of the integration events along with the arising clinical aspects in the light of WHO's commitment to eliminate HBV and viral hepatitis by 2030.
Collapse
Affiliation(s)
- Maria Bousali
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - George Papatheodoridis
- Department of Gastroenterology, “Laiko” General Hospital of Athens, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Dimitrios Paraskevis
- Department of Hygiene Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Timokratis Karamitros
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
- Laboratory of Medical Microbiology, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
7
|
Zhang Y, Wu W, Sun Q, Ye L, Zhou D, Wang W. linc‑ROR facilitates hepatocellular carcinoma resistance to doxorubicin by regulating TWIST1‑mediated epithelial‑mesenchymal transition. Mol Med Rep 2021; 23:340. [PMID: 33760121 PMCID: PMC7974311 DOI: 10.3892/mmr.2021.11979] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/22/2020] [Indexed: 01/28/2023] Open
Abstract
Long non‑coding RNAs are associated with cancer progression. Long intergenic non‑protein coding RNA (linc)‑regulator of reprogramming (ROR) enhances tumor development in hepatocellular carcinoma (HCC). However, the effect of chemoresistance and its underlying mechanisms in HCC are not completely understood. The present study aimed to identify the effect of ROR on sensitivity to doxorubicin (DOX) in HCC cells. In the present study, Cell Counting Kit‑8 and EdU assays were performed to assess cell viability and proliferation, respectively. In addition, E‑cadherin and vimentin protein expression levels were assessed via western blotting and immunofluorescence.The results of the present study demonstrated that HCC cells with high linc‑ROR expression levels were more resistant to DOX, and linc‑ROR knockdown increased HCC cell DOX sensitivity compared with the control group. The results indicated that compared with the NC siRNA group, linc‑ROR knockdown notably suppressed epithelial‑mesenchymal transition by downregulating twist family bHLH transcription factor 1 (TWIST1) expression. TWIST1 knockdown displayed a similar effect on HCC cell DOX sensitivity to linc‑ROR knockdown. Moreover, linc‑ROR knockdown‑induced HCC cell DOX sensitivity was inhibited by TWIST1 overexpression. The present study provided evidence that linc‑ROR promoted HCC resistance to DOX by inducing EMT via interacting with TWIST1. Therefore, linc‑ROR might serve as a therapeutic target for reducing DOX resistance in HCC.
Collapse
Affiliation(s)
- Yuanbiao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Weiding Wu
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Qiang Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Longyun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Dongkai Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
8
|
Yuan WM, Fan YG, Cui M, Luo T, Wang YE, Shu ZJ, Zhao J, Zheng J, Zeng Y. SOX5 Regulates Cell Proliferation, Apoptosis, Migration and Invasion in KSHV-Infected Cells. Virol Sin 2020; 36:449-457. [PMID: 33231856 DOI: 10.1007/s12250-020-00313-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022] Open
Abstract
Kaposi's sarcoma (KS) originates from vascular endothelial cells, with KS-associated herpesvirus (KSHV) as the etiological agent. SRY-box transcription factor 5 (SOX5) plays different roles in various types of cancer, although its role in KS remains poorly understood. In this study, we identified the role of SOX5 in KS tissues and KSHV-infected cells and elucidated the molecular mechanism. Thirty-two KS patients were enrolled in this study. Measurement of SOX5 mRNA and protein levels in human KS tissues and adjacent control tissues revealed lower levels in KS tissues, with KS patients having higher SOX5 level in the early stages of the disease compared to the later stages. And SOX5 mRNA and protein was also lower in KSHV-infected cells (iSLK-219 and iSLK-BAC) than normal cells (iSLK-Puro). Additionally, SOX5 overexpression inhibited cell proliferation and promoted apoptosis and decreased KSHV-infected cell migration and invasion. Moreover, we found that SOX5 overexpression suppressed the epithelial-to-mesenchymal transition of KSHV-infected cells. These results suggest SOX5 is a suppressor factor during KS development and a potential target for KS treatment.
Collapse
Affiliation(s)
- Wu-Mei Yuan
- Department of Stomatology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832000, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease and Department of Biochemistry, School of Medicine, Shihezi University, Shihezi, 832000, China
| | - Ya-Ge Fan
- Key Laboratory of Xinjiang Endemic and Ethnic Disease and Department of Biochemistry, School of Medicine, Shihezi University, Shihezi, 832000, China
| | - Meng Cui
- Key Laboratory of Xinjiang Endemic and Ethnic Disease and Department of Biochemistry, School of Medicine, Shihezi University, Shihezi, 832000, China
| | - Ting Luo
- Key Laboratory of Xinjiang Endemic and Ethnic Disease and Department of Biochemistry, School of Medicine, Shihezi University, Shihezi, 832000, China
| | - Ya-E Wang
- Department of Stomatology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832000, China
| | - Zhan-Jun Shu
- AIDS Research Office, National Traditional Chinese Medicine Research Base in Xinjiang and the Sixth People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, 830000, China
| | - Juan Zhao
- Key Laboratory of Xinjiang Endemic and Ethnic Disease and Department of Biochemistry, School of Medicine, Shihezi University, Shihezi, 832000, China
| | - Jun Zheng
- Department of Stomatology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832000, China. .,Key Laboratory of Xinjiang Endemic and Ethnic Disease and Department of Biochemistry, School of Medicine, Shihezi University, Shihezi, 832000, China.
| | - Yan Zeng
- Key Laboratory of Xinjiang Endemic and Ethnic Disease and Department of Biochemistry, School of Medicine, Shihezi University, Shihezi, 832000, China.
| |
Collapse
|
9
|
Feng M, Fang F, Fang T, Jiao H, You S, Wang X, Zhao W. Sox13 promotes hepatocellular carcinoma metastasis by transcriptionally activating Twist1. J Transl Med 2020; 100:1400-1410. [PMID: 32461589 DOI: 10.1038/s41374-020-0445-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
SRY (sex-determining region Y)-box 13 (Sox13), a member of group D of the SRY-related high mobility group (HMG) box (Sox) family, is a critical regulator of embryonic development and cartilage formation. Few studies have investigated the role of Sox13 in tumorigenesis. The present study reveals the clinical significance and biological function of Sox13 in hepatocellular carcinoma (HCC). First, the expression of Sox13 in HCC samples was evaluated by qRT-PCR and western blotting, and its association with clinicopathological features and prognosis was determined. We found that Sox13 expression was higher in tumor tissue than in paired nontumor tissue. The upregulation of Sox13 was associated with poor differentiation, metastasis, recurrence and poor overall, and tumor-free survival of HCC patients. The function of Sox13 on HCC cell migration and invasion was then assessed by Transwell assay, and the results demonstrated that Sox13 promoted HCC cell invasion, migration, and epithelial-to-mesenchymal transition (EMT). Notably, the invasion, migration, and EMT of HCC cells induced by Sox13 overexpression could be abolished by Twist1 depletion, and Sox13 was positively correlated with Twist1 at both the mRNA and protein levels. Mechanistically, we revealed that Sox13 activated Twist1 transcription and consequently upregulated Twist1 expression. Furthermore, Sox13 formed a heterodimer with Sox5, and this heterodimer functionally cooperated to enhance the transcriptional activity of Twist1. Our findings suggest that Sox13 serves as an oncogene in HCC, and might be a novel prognostic and therapeutic candidate.
Collapse
Affiliation(s)
- Min Feng
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Building 6, No. 209, South Hubin Road, 361004, Xiamen, China
| | - Fei Fang
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Building 6, No. 209, South Hubin Road, 361004, Xiamen, China
| | - Ting Fang
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Building 6, No. 209, South Hubin Road, 361004, Xiamen, China
| | - Hui Jiao
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Building 6, No. 209, South Hubin Road, 361004, Xiamen, China
| | - Song You
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Building 6, No. 209, South Hubin Road, 361004, Xiamen, China
| | - Xiaomin Wang
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Building 6, No. 209, South Hubin Road, 361004, Xiamen, China.
| | - Wenxiu Zhao
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Building 6, No. 209, South Hubin Road, 361004, Xiamen, China.
| |
Collapse
|
10
|
Xu M, Huang S, Dong X, Chen Y, Li M, Shi W, Wang G, Huang C, Wang Q, Liu Y, Sun P, Yang S, Xiang R, Chang A. A novel isoform of ATOH8 promotes the metastasis of breast cancer by regulating RhoC. J Mol Cell Biol 2020; 13:59-71. [PMID: 33049034 PMCID: PMC8035989 DOI: 10.1093/jmcb/mjaa050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/20/2020] [Accepted: 08/02/2020] [Indexed: 12/24/2022] Open
Abstract
Metastases are the main cause of cancer-related mortality in breast cancer. Although significant progress has been made in the field of tumor metastasis, the exact molecular mechanisms involved in tumor metastasis are still unclear. Here, we report that ATOH8-V1, a novel isoform of ATOH8, is highly expressed in breast cancer and is a negative prognostic indicator of survival for patients. Forced expression of ATOH8-V1 dramatically enhances, while silencing of ATOH8-V1 decreases the metastasis of breast cancer cell lines. Moreover, ATOH8-V1 directly binds to the RhoC promoter and stimulates the expression of RhoC, which in turn enhances the metastasis of breast cancer. Altogether, our data demonstrate that ATOH8-V1 is a novel pro-metastatic factor that enhances cancer metastasis, suggesting that ATOH8-V1 is a potential therapeutic target for treatment of metastatic cancers.
Collapse
Affiliation(s)
- Mengyao Xu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shan Huang
- School of Medicine, Nankai University, Tianjin 300071, China.,Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Medical Center, Winston-Salem, NC 27157, USA
| | - Xiaoli Dong
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yanan Chen
- School of Medicine, Nankai University, Tianjin 300071, China.,International Collaborative Innovation Center of Medicine, Nankai University, Tianjin 300071, China
| | - Miao Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Wen Shi
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Guanwen Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Chongbiao Huang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Qiong Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yanhua Liu
- School of Medicine, Nankai University, Tianjin 300071, China.,International Collaborative Innovation Center of Medicine, Nankai University, Tianjin 300071, China
| | - Peiqing Sun
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Medical Center, Winston-Salem, NC 27157, USA
| | - Shuang Yang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Rong Xiang
- School of Medicine, Nankai University, Tianjin 300071, China.,International Collaborative Innovation Center of Medicine, Nankai University, Tianjin 300071, China
| | - Antao Chang
- School of Medicine, Nankai University, Tianjin 300071, China.,Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Medical Center, Winston-Salem, NC 27157, USA.,International Collaborative Innovation Center of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
Chen J, Dang Y, Feng W, Qiao C, Liu D, Zhang T, Wang Y, Tian D, Fan D, Nie Y, Wu K, Xia L. SOX18 promotes gastric cancer metastasis through transactivating MCAM and CCL7. Oncogene 2020; 39:5536-5552. [PMID: 32616889 DOI: 10.1038/s41388-020-1378-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/06/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
The therapeutic strategies for advanced gastric cancer (GC) remain unsatisfying and limited. Therefore, it is still imperative to fully elucidate the mechanisms underlying GC metastasis. Here, we report a novel role of SRY-box transcription factor 18 (SOX18), a member of the SOX family, in promoting GC metastasis. The elevated expression of SOX18 was positively correlated with distant metastasis, higher AJCC stage, and poor prognosis in human GC. SOX18 expression was an independent and significant risk factor for the recurrence and survival in GC patients. Up-regulation of SOX18 promoted GC invasion and metastasis, whereas down-regulation of SOX18 decreased GC invasion and metastasis. Melanoma cell adhesion molecule (MCAM) and C-C motif chemokine ligand 7 (CCL7) are direct transcriptional targets of SOX18. Knockdown of MCAM and CCL7 significantly decreased SOX18-mediated GC invasion and metastasis, while the stable overexpression of MCAM and CCL7 reversed the decrease in cell invasion and metastasis that was induced by the inhibition of SOX18. A mechanistic investigation indicated that the upregulation of SOX18 that was mediated by the CCL7-CCR1 pathway relied on the ERK/ELK1 pathway. SOX18 knockdown significantly reduced CCL7-enhanced GC invasion and metastasis. Furthermore, BX471, a specific CCR1 inhibitor, significantly reduced the SOX18-mediated GC invasion and metastasis. In human GC tissues, SOX18 expression was positively correlated with CCL7 and MCAM expression, and patients with positive coexpression of SOX18/CCL7 or SOX18/MCAM had the worst prognosis. In conclusion, we defined a CCL7-CCR1-SOX18 positive feedback loop that played a pivotal role in GC metastasis, and targeting this pathway may be a promising therapeutic option for the clinical management of GC.
Collapse
Affiliation(s)
- Jie Chen
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Yunzhi Dang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Weibo Feng
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Chenyang Qiao
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Danfei Liu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Tongyue Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Dean Tian
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Daiming Fan
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Yongzhan Nie
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Kaichun Wu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
12
|
Wei H, Wu Q, Shi Y, Luo A, Lin S, Feng X, Jiang J, Zhang M, Wang F, Tan W. MicroRNA-15a/16/SOX5 axis promotes migration, invasion and inflammatory response in rheumatoid arthritis fibroblast-like synoviocytes. Aging (Albany NY) 2020; 12:14376-14390. [PMID: 32678069 PMCID: PMC7425471 DOI: 10.18632/aging.103480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/27/2020] [Indexed: 12/26/2022]
Abstract
Fibroblast-like synoviocytes (FLSs) are key effector cells in the pathogenesis of rheumatoid arthritis (RA) and display a unique aggressive tumor-like phenotype with remarkable hyperplasia, increased cell migration and invasion. How FLSs undergo these changes in RA remains unknown. We previously reported a novel function of transcription factor SOX5 in RA-FLSs that promote cell migration and invasion. In this study, we found that miR-15a/16 directly targets the SOX5 3’UTR and suppresses SOX5 expression. Moreover, miR-15a/16 is significantly down-regulated in RA-FLSs, which negatively correlates with SOX5 expression. Transfection with miR-15a/16 mimics in RA-FLSs inhibits cell migration, invasion, IL-1β and TNFα expression. Overexpression SOX5 in RA-FLSs decreases miR-15a/16 expression and rescues miR-15a/16-mediated inhibitory effect. Furthermore, RA patients with the lower baseline serum miR-15a/16 level present poor response of 3 months disease-modifying antirheumatic drugs (DMARDs) therapy. Collectively, this study reveals that miR-15a/16/SOX5 axis functions as a key driver of RA-FLSs invasion, migration and inflammatory response in a mutual negative feedback loop and correlates with DMARDs treatment response in RA.
Collapse
Affiliation(s)
- Hua Wei
- Division of Rheumatology, Clinical Medical College, Yangzhou University, Jiangsu Province, China
| | - Qin Wu
- Division of Rheumatology, Clinical Medical College, Yangzhou University, Jiangsu Province, China
| | - Yumeng Shi
- Division of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China
| | - Aishu Luo
- Division of Rheumatology, The First People's Hospital of Yancheng, Jiangsu Province, China
| | - Shiyu Lin
- Division of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China
| | - Xiaoke Feng
- Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Jiangsu Province, China
| | - Jintao Jiang
- Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Jiangsu Province, China
| | - Miaojia Zhang
- Division of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China
| | - Fang Wang
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China
| | - Wenfeng Tan
- Division of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China
| |
Collapse
|
13
|
Liu Q, Cai Y, Xiong H, Deng Y, Dai X. CCRDB: a cancer circRNAs-related database and its application in hepatocellular carcinoma-related circRNAs. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5520605. [PMID: 31219565 PMCID: PMC6585150 DOI: 10.1093/database/baz063] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/30/2019] [Accepted: 04/09/2019] [Indexed: 01/28/2023]
Abstract
Circular RNAs (circRNAs) are widely expressed in human cells and tissues and can form a covalently closed exon circularization, which have stable patterns and play important regulatory roles in physiological or pathological process. There is still lack of a comprehensively disease-related knowledge base for in-depth analysis of circRNAs. In this paper, a cancer circRNAs-related database (CCRDB) was established. The CCRDB’s initial circRNAs data were collected by sequencing experimental data of 10 samples from 5 patients with hepatocellular carcinoma (HCC), where a total of 11 501 circRNAs were found and can easily be expanded by collecting and analyzing external data sources such as circBASE (1). Using CCRDB, we have further studied the relationships between circRNAs and HCC and found that circRNAs (hsa_circ_ 0002130, hsa_circ_0084615, hsa_circ_0001445, hsa_circ_0001727 and hsa_circ_0001361) and the corresponding genes ID [C3 (2, 3), ASPH (4), SMARCA5 (5), ZKSCAN1 (6) and FNDC3B (7)], respectively, might be the potential biomarker targets for HCC. Furthermore, our experiment also found that some new circRNAs chromosome sites chr12:23998917 24048958 and chr16:72090429 72093087 and the corresponding genes ID (SOX5 (8) and HP (9), respectively), might be the potential biomarker targets for HCC. These results indicate that CCRDB can effectively reveal the relationships between circRNAs and HCC. As the first circRNAs database to provide analysis and comparison functions, it is of great significance for researchers to further study the rules of circRNAs, to understand the causes of circRNAs in disease discovery and to find target genes for therapeutic approaches.
Collapse
Affiliation(s)
- Qingyu Liu
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yanning Cai
- Jinan University, No. 601, West Huangpu Avenue, Guangzhou, Guangdong, China
| | - Haiquan Xiong
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yiyun Deng
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xianhua Dai
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
14
|
Mehta GA, Khanna P, Gatza ML. Emerging Role of SOX Proteins in Breast Cancer Development and Maintenance. J Mammary Gland Biol Neoplasia 2019; 24:213-230. [PMID: 31069617 PMCID: PMC6790170 DOI: 10.1007/s10911-019-09430-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/21/2019] [Indexed: 12/26/2022] Open
Abstract
The SOX genes encode a family of more than 20 transcription factors that are critical regulators of embryogenesis and developmental processes and, when aberrantly expressed, have been shown to contribute to tumor development and progression in both an oncogenic and tumor suppressive role. Increasing evidence demonstrates that the SOX proteins play essential roles in multiple cellular processes that mediate or contribute to oncogenic transformation and tumor progression. In the context of breast cancer, SOX proteins function both as oncogenes and tumor suppressors and have been shown to be associated with tumor stage and grade and poor prognosis. Experimental evidence demonstrates that a subset of SOX proteins regulate critical aspects of breast cancer biology including cancer stemness and multiple signaling pathways leading to altered cell proliferation, survival, and tumor development; EMT, cell migration and metastasis; as well as other tumor associated characteristics. This review will summarize the role of SOX family members as important mediators of tumorigenesis in breast cancer, with an emphasis on the triple negative or basal-like subtype of breast cancer, as well as examine the therapeutic potential of these genes and their downstream targets.
Collapse
Affiliation(s)
- Gaurav A Mehta
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, CINJ 4558, New Brunswick, NJ, 08903, USA
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Pooja Khanna
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, CINJ 4558, New Brunswick, NJ, 08903, USA
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Michael L Gatza
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, CINJ 4558, New Brunswick, NJ, 08903, USA.
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
- Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
15
|
You J, Zhao Q, Fan X, Wang J. SOX5 promotes cell invasion and metastasis via activation of Twist-mediated epithelial-mesenchymal transition in gastric cancer. Onco Targets Ther 2019; 12:2465-2476. [PMID: 31040690 PMCID: PMC6452794 DOI: 10.2147/ott.s197087] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Sex-determining region Y-box protein 5 (SOX5) has been demonstrated to be implicated in oncogenic function in various types of cancers. However, the role of SOX5 in gastric cancer (GC) remains poorly elucidated. Herein, we investigated the role and the underlying mechanism of SOX5 in GC progression. Methods SOX5 mRNA and protein expression were detected by quantitative real-time PCR (qRT-PCR), Western blot and immunohistochemistry in human GC specimens, and their clinical significance was evaluated. The effects of SOX5 knockdown or overexpression on GC cell behavior were determined by proliferation, wound-healing and transwell assays in vitro, and metastasis assays in vivo; and epithelial-mesenchymal transition (EMT)-related markers were detected by qRT-PCR, Western blot and immunofluorescence staining. Results The up-regulated expression of SOX5 in GC specimens was significantly correlated with clinical metastasis and poor prognosis for patients with GC. Besides, SOX5 promoted GC cell migration and invasion in vitro, as well as GC cell metastasis in vivo. Mechanically, Twist-mediated EMT was likely involved in SOX5-facilitated GC cell behavior. Conclusion SOX5 has an important function in GC progression. In addition, SOX5 promotes GC cell invasion and metastasis via activation of Twist-mediated EMT, thus providing a potential therapeutic target for GC metastasis.
Collapse
Affiliation(s)
- Jianxiong You
- Department of Interventional Radiotherapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China,
| | - Qing Zhao
- Department of Interventional Radiotherapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China,
| | - Xindong Fan
- Department of Interventional Radiotherapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China,
| | - Jingbing Wang
- Department of Interventional Radiotherapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China,
| |
Collapse
|
16
|
The role of SOX family members in solid tumours and metastasis. Semin Cancer Biol 2019; 67:122-153. [PMID: 30914279 DOI: 10.1016/j.semcancer.2019.03.004] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a heavy burden for humans across the world with high morbidity and mortality. Transcription factors including sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) proteins are thought to be involved in the regulation of specific biological processes. The deregulation of gene expression programs can lead to cancer development. Here, we review the role of the SOX family in breast cancer, prostate cancer, renal cell carcinoma, thyroid cancer, brain tumours, gastrointestinal and lung tumours as well as the entailing therapeutic implications. The SOX family consists of more than 20 members that mediate DNA binding by the HMG domain and have regulatory functions in development, cell-fate decision, and differentiation. SOX2, SOX4, SOX5, SOX8, SOX9, and SOX18 are up-regulated in different cancer types and have been found to be associated with poor prognosis, while the up-regulation of SOX11 and SOX30 appears to be favourable for the outcome in other cancer types. SOX2, SOX4, SOX5 and other SOX members are involved in tumorigenesis, e.g. SOX2 is markedly up-regulated in chemotherapy resistant cells. The SoxF family (SOX7, SOX17, SOX18) plays an important role in angio- and lymphangiogenesis, with SOX18 seemingly being an attractive target for anti-angiogenic therapy and the treatment of metastatic disease in cancer. In summary, SOX transcription factors play an important role in cancer progression, including tumorigenesis, changes in the tumour microenvironment, and metastasis. Certain SOX proteins are potential molecular markers for cancer prognosis and putative potential therapeutic targets, but further investigations are required to understand their physiological functions.
Collapse
|
17
|
Sun C, Ban Y, Wang K, Sun Y, Zhao Z. SOX5 promotes breast cancer proliferation and invasion by transactivation of EZH2. Oncol Lett 2019; 17:2754-2762. [PMID: 30854049 PMCID: PMC6365965 DOI: 10.3892/ol.2019.9914] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/15/2018] [Indexed: 11/08/2022] Open
Abstract
Sex determining region Y-box protein 5 (SOX5) is a transcriptional factor and serves important roles in various cancer types; however, the pathological role of SOX5 in patients with breast cancer remains unclear. In the present study, the expression and potential role of SOX5 in patients with breast cancer and in breast cancer cells was investigated. The data indicated that SOX5 was highly expressed in breast cancer tissues compared with adjacent healthy tissues, and overexpression of SOX5 was associated with a reduced overall survival rate in patients with breast cancer. Gain and loss of function studies with MTT, colony formation, wound healing and Matrigel invasion assays demonstrated that SOX5 significantly promoted breast cancer cell proliferation and invasion. The chromatin immunoprecipitation (ChIP) assay sequence, quantitative ChIP and luciferase reporter assays were used to identify enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) as a downstream target gene of SOX5. Furthermore, it was determined that ectopic expression of SOX5 increased EZH2 expression at the mRNA and protein level, while the knockdown of SOX5 decreased EZH2 expression. Additionally, the biological effect of SOX5 was investigated, and it was determined to be dependent on the regulation of EZH2 expression. The present results may provide important insights into the biological significance of SOX5 serving as a candidate therapeutic target in breast cancer progression.
Collapse
Affiliation(s)
- Chuntao Sun
- Department of Interventional Radiology, Weifang City People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Yunqing Ban
- Imaging Center, The 5th Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Kai Wang
- Department of Breast Surgery, Weifang City People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Yanming Sun
- Department of Interventional Radiology, Weifang City People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Zhihua Zhao
- Department of Nuclear Medicine, Weifang City People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
18
|
Downregulation of miR-139-5p promotes prostate cancer progression through regulation of SOX5. Biomed Pharmacother 2019; 109:2128-2135. [DOI: 10.1016/j.biopha.2018.09.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022] Open
|
19
|
Chen X, Zheng Q, Li W, Lu Y, Ni Y, Ma L, Fu Y. SOX5 induces lung adenocarcinoma angiogenesis by inducing the expression of VEGF through STAT3 signaling. Onco Targets Ther 2018; 11:5733-5741. [PMID: 30254466 PMCID: PMC6140741 DOI: 10.2147/ott.s176533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background and objectives Angiogenesis is the main cause of lung adenocarcinoma (LAC) poor prognosis. This study aimed to investigate the effect of sex-determining region Y-box protein 5 (SOX5) expression on angiogenesis of LAC and explore its possible mechanism. Patients and methods The effect on angiogenesis was tested by tube formation assays using human umbilical vein endothelial cells cocultured with A549 cells. Lentivirus shRNA of SOX5 and lentivirus of SOX5 overexpression system were used to establish LAC cell lines, which expressed SOX5 of different levels. SOX5 downstream signaling targets were analyzed by real-time qPCR and Western blot. We collected 90 LAC cases and the tissues were examined by immunohistochemistry for SOX5 and vascular endothelial growth factor (VEGF). Results We found that SOX5 overexpression in A549 cells significantly promoted tube formation capacity of the cocultured human umbilical vein endothelial cells. SOX5 increased VEGF expression and signal transducer activator of transcription 3 phosphorylation; however, SOX5 had no effect on extracellular signal-regulated kinase and protein kinase B pathway. Furthermore, the expression of SOX5 and VEGF had a significantly positive correlation (r=0.399, P=0.001) according to the tissue microarray data. Conclusion These findings suggest that SOX5 induces angiogenesis by activating signal transducer activator of transcription 3/VEGF signaling and confer its candidacy as a potential therapeutic target in LAC.
Collapse
Affiliation(s)
- Xin Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China,
| | - Qi Zheng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China,
| | - Weidong Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China,
| | - Yuan Lu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China,
| | - Yiming Ni
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China,
| | - Liang Ma
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China,
| | - Yufei Fu
- Zhejiang Key Laboratory of Gastro-Intestinal Pathophysiology, Zhejiang Hospital of Traditional Chinese Medicine, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P. R. China,
| |
Collapse
|
20
|
Xu L, Zheng L, Wang Z, Li C, Li S, Xia X, Zhang P, Li L, Zhang L. TNF-α-Induced SOX5 Upregulation Is Involved in the Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells Through KLF4 Signal Pathway. Mol Cells 2018; 41:575-581. [PMID: 29890823 PMCID: PMC6030245 DOI: 10.14348/molcells.2018.2359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/11/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a common systemic skeletal disease characterized by reduced bone mass and microarchitecture deterioration. Although differentially expressed SOX5 has been found in bone marrow from ovariectomized mice, its role in osteogenic differentiation in human mesenchymal stem cells (hMSCs) from bone marrow in PMOP remains unknown. In this study, we investigated the biological function of SOX5 and explore its molecular mechanism in hMSCs from patients with PMOP. Our findings showed that the mRNA and protein expression levels of SOX5 were upregulated in hMSCs isolated from bone marrow samples of PMOP patients. We also found that SOX5 overexpression decreased the alkaline phosphatase (ALP) activity and the gene expression of osteoblast markers including Collagen I, Runx2 and Osterix, which were increased by SOX5 knockdown using RNA interference. Furthermore, TNF-α notably upregulated the SOX5 mRNA expression level, and SOX5 knockdown reversed the effect of TNF-α on osteogenic differentiation of hMSCs. In addition, SOX5 overexpression increased Kruppel-like factor 4 (KLF4) gene expression, which was decreased by SOX5 silencing. KLF4 knockdown abrogated the suppressive effect of SOX5 overexpression on osteogenic differentiation of hMSCs. Taken together, our results indicated that TNF-α-induced SOX5 upregulation inhibited osteogenic differentiation of hMSCs through KLF4 signal pathway, suggesting that SOX5 might be a novel therapeutic target for PMOP treatment.
Collapse
Affiliation(s)
- Lijun Xu
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052,
China
| | - Lili Zheng
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052,
China
| | - Zhifang Wang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052,
China
| | - Chong Li
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052,
China
| | - Shan Li
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052,
China
| | - Xuedi Xia
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052,
China
| | - Pengyan Zhang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052,
China
| | - Li Li
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052,
China
| | - Lixia Zhang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052,
China
| |
Collapse
|
21
|
Shi Y, Wu Q, Xuan W, Feng X, Wang F, Tsao BP, Zhang M, Tan W. Transcription Factor SOX5 Promotes the Migration and Invasion of Fibroblast-Like Synoviocytes in Part by Regulating MMP-9 Expression in Collagen-Induced Arthritis. Front Immunol 2018; 9:749. [PMID: 29706965 PMCID: PMC5906798 DOI: 10.3389/fimmu.2018.00749] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/26/2018] [Indexed: 11/13/2022] Open
Abstract
Objectives Fibroblast-like synoviocytes (FLS) exhibit a unique aggressive phenotype in rheumatoid arthritis (RA). Increased FLS migration and subsequent invasion of the extracellular matrix are essential to joint destruction in RA. Our previous research reported that transcription factor SOX5 was highly expressed in RA-FLS. Here, the effects of SOX5 in RA-FLS migration and invasion will be investigated. Methods The migration and invasion of RA-FLS were evaluated using a transwell chamber assay. The expression of several potential SOX5-targeted genes, including matrix metalloproteinases (MMP-1, 2, 3 and 9), chemokines (CCL4, CCL2, CCR5 and CCR2), and pro-inflammatory cytokines (TNF-α and IL-6), were examined in RA-FLS using SOX5 gain- and loss-of-function study. The molecular mechanisms of SOX5-mediated MMP-9 expressions were assayed by luciferase reporter gene and chromatin immunoprecipitation (ChIP) studies. The in vivo effect of SOX5 on FLS migration and invasion was examined using collagen-induced arthritis (CIA) in DBA/1J mice. Results Knockdown SOX5 decreased lamellipodium formation, migration, and invasion of RA-FLS. The expression of MMP-9 was the only gene tested to be concomitantly affected by silencing or overexpressing SOX5. ChIP assay revealed that SOX5 was bound to the MMP-9 promoter in RA-FLS. The overexpression of SOX5 markedly enhanced the MMP-9 promoter activity, and specific deletion of a putative SOX5-binding site in MMP-9 promoter diminished this promoter-driven transcription in FLS. Locally knocked down SOX5 inhibited MMP-9 expression in the joint tissue and reduced pannus migration and invasion into the cartilage in CIA mice. Conclusion SOX5 plays a novel role in mediating migration and invasion of FLS in part by regulating MMP-9 expression in RA.
Collapse
Affiliation(s)
- Yumeng Shi
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qin Wu
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenhua Xuan
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoke Feng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fang Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Betty P Tsao
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Miaojia Zhang
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenfeng Tan
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Jiang W, Yuan Q, Jiang Y, Huang L, Chen C, Hu G, Wan R, Wang X, Yang L. Identification of Sox6 as a regulator of pancreatic cancer development. J Cell Mol Med 2018; 22:1864-1872. [PMID: 29369542 PMCID: PMC5824410 DOI: 10.1111/jcmm.13470] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/26/2017] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer (PC) is an aggressive malignancy associated with a poor prognosis and low responsiveness to chemotherapy and radiotherapy. Most patients with PC have metastatic disease at diagnosis, which partly accounts for the high mortality from this disease. Here, we explored the role of the transcription factor sex‐determining region Y‐box (Sox) 6 in the invasiveness of PC cells. We showed that Sox6 is down‐regulated in patients with PC in association with metastatic disease. Sox6 overexpression suppressed PC cell proliferation and migration in vitro and tumour growth and liver metastasis in vivo. Sox6 inhibited epithelial‐mesenchymal transition (EMT), and Akt signalling. Sox6 was shown to interact with the promoter of Twist1, a helix–loop–helix transcription factor involved in the induction of EMT, and to modulate the expression of Twist1 by recruiting histone deacetylase 1 to the promoter of the Twist1 gene. Twist1 overexpression reversed the effect of Sox6 on inhibiting EMT, confirming that the effect of Sox6 on suppressing tumour invasiveness is mediated by the modulation of Twist1 expression. These results suggest a novel mechanism underlying the aggressive behaviour of PC cells and identify potential therapeutic targets for the treatment of PC.
Collapse
Affiliation(s)
- Weiliang Jiang
- Department of Gastroenterology, School of Medicine, Shanghai General Hospital/First People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, School of Medicine, Institute of Pancreatic Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Qiongying Yuan
- Department of Gastroenterology, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Yuanye Jiang
- Department of Gastroenterology, The Central Hospital of Putuo District, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Huang
- Department of Gastroenterology, School of Medicine, Shanghai General Hospital/First People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, School of Medicine, Institute of Pancreatic Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Congying Chen
- Department of Gastroenterology, School of Medicine, Shanghai General Hospital/First People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, School of Medicine, Institute of Pancreatic Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyong Hu
- Department of Gastroenterology, School of Medicine, Shanghai General Hospital/First People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, School of Medicine, Institute of Pancreatic Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Wan
- Department of Gastroenterology, School of Medicine, Shanghai General Hospital/First People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, School of Medicine, Institute of Pancreatic Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Xingpeng Wang
- Department of Gastroenterology, School of Medicine, Shanghai General Hospital/First People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, School of Medicine, Institute of Pancreatic Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Lijuan Yang
- Department of Gastroenterology, School of Medicine, Shanghai General Hospital/First People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, School of Medicine, Institute of Pancreatic Disease, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
23
|
Wang Y, Qin T, Hu W, Chen B, Dai M, Xu G. Genome-Wide Methylation Patterns in Androgen-Independent Prostate Cancer Cells: A Comprehensive Analysis Combining MeDIP-Bisulfite, RNA, and microRNA Sequencing Data. Genes (Basel) 2018; 9:genes9010032. [PMID: 29324665 PMCID: PMC5793184 DOI: 10.3390/genes9010032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/21/2017] [Accepted: 12/30/2017] [Indexed: 12/18/2022] Open
Abstract
This study aimed to investigate the mechanisms underlying the development of the androgen-independent phenotype in prostate cancer. Methylation patterns were detected in androgen-independent and androgen-dependent lymph node carcinoma of the prostate (LNCaP) prostate carcinoma cells based on methylated DNA immunoprecipitation-bisulfite sequencing data and differentially methylated regions (DMRs) were identified. Differentially expressed genes (DEGs) and micro RNAs (miRNAs) with DMRs (named MDEGs and MDEmiRNAs) were identified by combining transcriptome and methylation data, and transcription factor (TF)-DEGs with DMRs in promoter (PMDEGs) and MDEmiRNA-MDEGs networks were constructed. Furthermore, a time-course analysis of gene transcription during androgen deprivation was performed based on microarray data and DMRs, MDEGs, and DEmiRNAs were validated. In total, 18,447 DMRs, 3369 MDEGs, 850 PMDEGs, and 1 MDEmiRNA (miR-429) were identified. A TF-target network (94 PMDEGs and 5 TFs) and a miRNA–target network (172 MDEGs and miR-429) were constructed. Based on the time-course analysis of genes in the networks, NEDD4L and PBX3 were targeted by SOX5, while GNAQ, ANLN, and KIF11 were targeted by miR-429. The expression levels of these genes and miR-429 were confirmed by quantitative real-time polymerase chain reaction. Additionally, 109 DMRs were confirmed using additional public datasets. The regulatory pathways SOX5-NEDD4L/PBX3, miR429-GNAQ/ANLN—RHOA, and miR429-ANLN—KIF11 may participate in the progression of the androgen-independent phenotype in prostate cancer.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, ShangCai Village, Ouhai District of Wenzhou, Wenzhou 325000, China.
| | - Tingting Qin
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, ShangCai Village, Ouhai District of Wenzhou, Wenzhou 325000, China.
| | - Wangqiang Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, ShangCai Village, Ouhai District of Wenzhou, Wenzhou 325000, China.
| | - Binghua Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, ShangCai Village, Ouhai District of Wenzhou, Wenzhou 325000, China.
| | - Meijie Dai
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, ShangCai Village, Ouhai District of Wenzhou, Wenzhou 325000, China.
| | - Gang Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, ShangCai Village, Ouhai District of Wenzhou, Wenzhou 325000, China.
| |
Collapse
|
24
|
Liu X, Zheng J, Xue Y, Qu C, Chen J, Wang Z, Li Z, Zhang L, Liu Y. Inhibition of TDP43-Mediated SNHG12-miR-195-SOX5 Feedback Loop Impeded Malignant Biological Behaviors of Glioma Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 10:142-158. [PMID: 29499929 PMCID: PMC5751968 DOI: 10.1016/j.omtn.2017.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/02/2017] [Accepted: 12/02/2017] [Indexed: 01/05/2023]
Abstract
Long non-coding RNA (lncRNA) dysregulation is involved in tumorigenesis and regulation of diverse cellular processes in gliomas. lncRNA SNHG12 is upregulated and promotes cell growth in human osteosarcoma cells. TAR-DNA binding protein 43 (TDP43) functions as an oncogene in various tumors by modulating RNA expression. Downregulation of TDP43 or SNHG12 significantly inhibited malignant biological behaviors of glioma cells. miR-195, downregulated in glioma tissues and cells, significantly impaired the malignant progression of glioma cells. TDP43 upregulated miR-195 in an SNHG12-dependent manner. We further revealed that SNHG12 and miR-195 were in an RNA-induced silencing complex (RISC). Inhibition of SNHG12 combined with restoration of miR-195 robustly reduced tumor growth in vivo. SOX5 was overexpressed in glioma tissues and cells. miR-195 targeted SOX5 3′ UTR in a sequence-specific manner. Gelsolin was activated by SOX5. More importantly, SOX5 activated SNHG12 promoter and upregulated its expression, forming a feedback loop. Dysregulation of SNHG12, miR-195, and SOX5 predicted poor prognosis of glioma patients. The present study demonstrated that SNHG12-miR-195-SOX5 feedback loop exerted a crucial role in the regulation of glioma cells’ malignant progression.
Collapse
Affiliation(s)
- Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Chengbin Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Jiajia Chen
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Zhenhua Wang
- Department of Physiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning 110122, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Lei Zhang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.
| |
Collapse
|
25
|
Hu J, Tian J, Zhu S, Sun L, Yu J, Tian H, Dong Q, Luo Q, Jiang N, Niu Y, Shang Z. Sox5 contributes to prostate cancer metastasis and is a master regulator of TGF-β-induced epithelial mesenchymal transition through controlling Twist1 expression. Br J Cancer 2017; 118:88-97. [PMID: 29123266 PMCID: PMC5765224 DOI: 10.1038/bjc.2017.372] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/12/2017] [Accepted: 09/26/2017] [Indexed: 12/16/2022] Open
Abstract
Background: Metastatic castration-resistant prostate cancer (mCRPC) is one of the main contributors to the death of prostate cancer patients. To date, the detailed molecular mechanisms underlying mCRPC are unclear. Given the crucial role of epithelial–mesenchymal transition (EMT) in cancer metastasis, we aimed to analyse the expression and function of Transforming growth factor-beta (TGF-β) signal-associated protein named Sox5 in mCRPC. Methods: The protein expression levels were analysed by western blot, immunohistochemistry and immunofluorescence. Luciferase reporter assays and chromatin immunoprecipitation were employed to validate the target of Sox5. The effect of Smad3/Sox5/Twist1 on PCa progression was investigated in vitro and in vivo. Results: Here, we found that TGF-β-induced EMT was accompanied by increased Sox5 expression. Interestingly, knockdown of Sox5 expression attenuated EMT induced by TGF-β signalling. Furthermore, we demonstrated that Smad3 could bind to the promoter of Sox5 and regulate its expression. Mechanistically, Sox5 could bind to Twist1 promoter and active Twist1, which initiated EMT. Importantly, knockdown of Sox5 in prostate cancer cells resulted in less of the mesenchymal phenotype and cell migration ability. Furthermore, targeting Sox5 could inhibit prostate cancer progression in a xenograft mouse model. In clinic, patients with high Sox5 expression were more likely to suffer from metastases, and high Sox5 expression also has a lower progression-free survival and cancer specific-survival in clinic database. Conclusions: Therefore, we propose a new mechanism in which Smad3/Sox5/Twist1 promotes EMT and contributes to PCa progression.
Collapse
Affiliation(s)
- Jieping Hu
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Pingjiang Rd 23#, Hexi District, Tianjin 300211, China.,Department of Urology, the First Affiliated Hospital of Nanchang University, Jiangxi 330000, China
| | - Jing Tian
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Pingjiang Rd 23#, Hexi District, Tianjin 300211, China
| | - Shimiao Zhu
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Pingjiang Rd 23#, Hexi District, Tianjin 300211, China
| | - Libin Sun
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Pingjiang Rd 23#, Hexi District, Tianjin 300211, China.,Department of Urology, First Affiliated Hospital, Shanxi Medical University, Shanxi 030001, China
| | - Jianpeng Yu
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Pingjiang Rd 23#, Hexi District, Tianjin 300211, China
| | - Hao Tian
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Pingjiang Rd 23#, Hexi District, Tianjin 300211, China
| | - Qian Dong
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Pingjiang Rd 23#, Hexi District, Tianjin 300211, China
| | - Qiang Luo
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Pingjiang Rd 23#, Hexi District, Tianjin 300211, China
| | - Ning Jiang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Pingjiang Rd 23#, Hexi District, Tianjin 300211, China
| | - Yuanjie Niu
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Pingjiang Rd 23#, Hexi District, Tianjin 300211, China
| | - Zhiqun Shang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Pingjiang Rd 23#, Hexi District, Tianjin 300211, China
| |
Collapse
|
26
|
SOX5 predicts poor prognosis in lung adenocarcinoma and promotes tumor metastasis through epithelial-mesenchymal transition. Oncotarget 2017. [PMID: 29541384 PMCID: PMC5834284 DOI: 10.18632/oncotarget.22443] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Epithelial-mesenchymal transition (EMT) promotes lung cancer progression and metastasis, especially in lung adenocarcinoma. Sex determining region Y-box protein 5 (SOX5) is known to stimulate the progression of various cancers. Here, we used immunohistochemical analysis to reveal that SOX5 levels were increased in 90 lung adenocarcinoma patients. The high SOX5 expression in lung adenocarcinoma and non-tumor counterparts correlated with the patients’ poor prognosis. Inhibiting SOX5 expression attenuated metastasis and progression in lung cancer cells, while over-expressing SOX5 accelerated lung adenocarcinoma progression and metastasis via EMT. An in vivo zebrafish xenograft cancer model also showed SOX5 knockdown was followed by reduced lung cancer cell proliferation and metastasis. Our results indicate SOX5 promotes lung adenocarcinoma tumorigenicity and can be a novel diagnosis and prognosis marker of the disease.
Collapse
|
27
|
Qiu M, Chen D, Shen C, Shen J, Zhao H, He Y. Sex-determining region Y-box protein 3 induces epithelial-mesenchymal transition in osteosarcoma cells via transcriptional activation of Snail1. J Exp Clin Cancer Res 2017; 36:46. [PMID: 28335789 PMCID: PMC5364714 DOI: 10.1186/s13046-017-0515-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/11/2017] [Indexed: 02/05/2023] Open
Abstract
Background The transcription factor sex-determining region Y-box protein 3 (SOX3) plays important roles in various types of cancer. However, its expression and function have not yet been elucidated in osteosarcoma (OS). Methods The expression levels of SOX3 in OS tissues and OS cell lines were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis. The effects of SOX3 expression on OS cell biological traits were investigated by overexpressing and downregulating SOX3 protein. The expression of epithelial-mesenchymal transition (EMT) markers and transcription factors associated with EMT (EMT-TFs), were detected simultaneously. The mechanism underlying SOX3-mediated Snail1 expression was further investigated. Results SOX3 was upregulated in human OS tissues. SOX3 overexpression promoted the EMT, migration and invasion in OS cells. The downregulation of SOX3 resulted in opposing effects. Furthermore, SOX3 upregulation enhanced the expression of the transcriptional repressor Snail1 by binding to its promoter region. Additionally, a positive correlation among the expression of SOX3, Snail1, and E-cadherin was demonstrated in human OS tissues. Conclusions SOX3 promotes migration, invasiveness, and EMT in OS cells via transcriptional activation of Snail1 expression, suggesting that SOX3 is a novel regulator of EMT in OS and may serve as a therapeutic target for the treatment of OS metastasis.
Collapse
Affiliation(s)
- Manle Qiu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Daoyun Chen
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Chaoyong Shen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ji Shen
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Huakun Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yaohua He
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
28
|
Silencing of SOX12 by shRNA suppresses migration, invasion and proliferation of breast cancer cells. Biosci Rep 2016; 36:BSR20160053. [PMID: 27582508 PMCID: PMC5052717 DOI: 10.1042/bsr20160053] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 08/26/2016] [Indexed: 01/20/2023] Open
Abstract
Sex determining region Y-box protein 12 (SOX12) is essential for embryonic development and cell fate determination. The role of SOX12 in tumorigenesis of breast cancer is not well-understood. Here, we found that SOX12 mRNA expression was up-regulated in human breast cancer tissues. To clarify the roles of SOX12 in breast cancer, we used lentiviral small hairpin RNAs (shRNAs) to suppress its expression in two breast cancer cells with relatively higher expression of SOX12 (BT474 and MCF-7). Our findings strongly suggested that SOX12 was critical for cell migration and invasion of breast cancer cells. We found that silencing of SOX12 significantly decreased the mRNA and protein levels of MMP9 and Twist, while notably increased E-cadherin. Moreover, SOX12 knockdown significantly inhibited the proliferation of breast cancer cells in vitro and the growth of xenograft tumors in vivo Flow cytometry analysis revealed that breast cancer cells with SOX12 knockdown showed cell cycle arrest and decreased mRNA and protein levels of PCNA, CDK2 and Cyclin D1. Taken together, SOX12 plays an important role in growth inhibition through cell-cycle arrest, as well as migration and invasion of breast cancer cells.
Collapse
|
29
|
Modulation of IL-6 induced RANKL expression in arthritic synovium by a transcription factor SOX5. Sci Rep 2016; 6:32001. [PMID: 27550416 PMCID: PMC4994074 DOI: 10.1038/srep32001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 08/01/2016] [Indexed: 11/08/2022] Open
Abstract
Receptor activator of nuclear factor κB ligand (RANKL) is critically involved in bone erosion of rheumatoid arthritis (RA). We previously reported association between younger age at onset of RA and a RANKL promoter SNP that conferred an elevated promoter activity via binding to a transcription factor SOX5. Here we study the regulation of SOX5 levels in relation to RANKL expression in RA synovial fibroblasts (SF) and the development of bone erosion in the collagen-induced arthritis (CIA) mouse. Our data indicated SOX5 levels were higher in synovium and synovial fluid from RA compared to osteoarthritis patients. Pro-inflammatory cytokines upregulated SOX5 and RANKL expression in both primary RA SF and the rheumatoid synovial fibroblast cell line, MH7A. Overexpression of SOX5 resulted in significantly increased RANKL levels, while knockdown of SOX5 resulted in diminished IL-6 mediated RANKL upregulation in MH7A cells. Chromatin immunoprecipitation (ChIP) showed approximately 3-fold enrichment of RANKL-specific DNA in anti-SOX5 immunoprecipitate in IL-6 treated MH7A cells as compared to untreated cells. Locally silencing SOX5 gene significantly diminished RANKL positive cells and bone erosion in CIA mice. These findings suggest SOX5 is an important regulator of IL-6-induced RANKL expression in RA SF.
Collapse
|