1
|
Chaiyawat P, Sangkhathat S, Chiangjong W, Wongtrakoongate P, Hongeng S, Pruksakorn D, Chutipongtanate S. Targeting pediatric solid tumors in the new era of RNA therapeutics. Crit Rev Oncol Hematol 2024; 200:104406. [PMID: 38834094 DOI: 10.1016/j.critrevonc.2024.104406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/26/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
Despite substantial progress in pediatric cancer treatment, poor prognosis remained for patients with recurrent or metastatic disease, given the limitations of approved targeted treatments and immunotherapies. RNA therapeutics offer significant potential for addressing a broad spectrum of diseases, including cancer. Advances in manufacturing and delivery systems are paving the way for the rapid development of therapeutic RNAs for clinical applications. This review summarizes therapeutic RNA classifications and the mechanisms of action, highlighting their potential in manipulating major cancer-related pathways and biological effects. We also focus on the pre-clinical investigation of RNA molecules with efficient delivery systems for their therapeutic potential targeting pediatric solid tumors.
Collapse
Affiliation(s)
- Parunya Chaiyawat
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Surasak Sangkhathat
- Department of Biomedical Science, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand; Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ra-mathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ra-mathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
2
|
de Brot S, Cobb J, Alibhai AA, Jackson-Oxley J, Haque M, Patke R, Harris AE, Woodcock CL, Lothion-Roy J, Varun D, Thompson R, Gomes C, Kubale V, Dunning MD, Jeyapalan JN, Mongan NP, Rutland CS. Immunohistochemical Investigation into Protein Expression Patterns of FOXO4, IRF8 and LEF1 in Canine Osteosarcoma. Cancers (Basel) 2024; 16:1945. [PMID: 38792023 PMCID: PMC11120020 DOI: 10.3390/cancers16101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
Osteosarcoma (OSA) is the most common type of primary bone malignancy in people and dogs. Our previous molecular comparisons of canine OSA against healthy bone resulted in the identification of differentially expressed protein-expressing genes (forkhead box protein O4 (FOXO4), interferon regulatory factor 8 (IRF8), and lymphoid enhancer binding factor 1 (LEF1)). Immunohistochemistry (IHC) and H-scoring provided semi-quantitative assessment of nuclear and cytoplasmic staining alongside qualitative data to contextualise staining (n = 26 patients). FOXO4 was expressed predominantly in the cytoplasm with significantly lower nuclear H-scores. IRF8 H-scores ranged from 0 to 3 throughout the cohort in the nucleus and cytoplasm. LEF1 was expressed in all patients with significantly lower cytoplasmic staining compared to nuclear. No sex or anatomical location differences were observed. While reduced levels of FOXO4 might indicate malignancy, the weak or absent protein expression limits its primary use as diagnostic tumour marker. IRF8 and LEF1 have more potential for prognostic and diagnostic uses and facilitate further understanding of their roles within their respective molecular pathways, including Wnt/beta-catenin/LEF1 signalling and differential regulation of tumour suppressor genes. Deeper understanding of the mechanisms involved in OSA are essential contributions towards the development of novel diagnostic, prognostic, and treatment options in human and veterinary medicine contexts.
Collapse
Affiliation(s)
- Simone de Brot
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
- Comparative Pathology Platform of the University of Bern (COMPATH), Institute of Animal Pathology, University of Bern, 3012 Bern, Switzerland
| | - Jack Cobb
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Aziza A. Alibhai
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Jorja Jackson-Oxley
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Maria Haque
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Rodhan Patke
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Anna E. Harris
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Corinne L. Woodcock
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Jennifer Lothion-Roy
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Dhruvika Varun
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Rachel Thompson
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Claudia Gomes
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Valentina Kubale
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Mark D. Dunning
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
- Willows Veterinary Centre and Referral Service, Solihull B90 4NH, UK
| | - Jennie N. Jeyapalan
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
- Faculty of Medicine and Health Science, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Nigel P. Mongan
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
- Willows Veterinary Centre and Referral Service, Solihull B90 4NH, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10075, USA
| | - Catrin S. Rutland
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
- Faculty of Medicine and Health Science, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
3
|
Chen H, Gong Z, Zhou H, Han Y. Deciphering chemoresistance in osteosarcoma: Unveiling regulatory mechanisms and function through the lens of noncoding RNA. Drug Dev Res 2024; 85:e22167. [PMID: 38444106 DOI: 10.1002/ddr.22167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 03/07/2024]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor and is prevalent in children, adolescents, and elderly individuals. It has the characteristics of high invasion and metastasis. Neoadjuvant chemotherapy combined with surgical resection is the most commonly used treatment for OS. However, the efficacy of OS is considerably diminished by chemotherapy resistance. In recent years, noncoding RNAs (ncRNAs), including microRNAs, long noncoding RNAs, and circular RNAs, are hot topics in the field of chemotherapy resistance research. Several studies have demonstrated that ncRNAs are substantially associated with chemoresistance in OS. Thus, the present study overviews the abnormally expressed ncRNAs in OS and the molecular mechanisms involved in chemoresistance, with an emphasis on their function in promoting or inhibiting chemoresistance. ncRNAs are expected to become potential therapeutic targets for overcoming drug resistance and predictive biomarkers in OS, which are of great significance for enhancing the therapeutic effect and improving the prognosis.
Collapse
Affiliation(s)
- Hefen Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhujun Gong
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Hong Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Han
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Moghbeli M. MicroRNAs as the pivotal regulators of cisplatin resistance in osteosarcoma. Pathol Res Pract 2023; 249:154743. [PMID: 37549518 DOI: 10.1016/j.prp.2023.154743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Osteosarcoma (OS) is an aggressive bone tumor that originates from mesenchymal cells. It is considered as the eighth most frequent childhood cancer that mainly affects the tibia and femur among the teenagers and young adults. OS can be usually diagnosed by a combination of MRI and surgical biopsy. The intra-arterial cisplatin (CDDP) and Adriamycin is one of the methods of choices for the OS treatment. CDDP induces tumor cell death by disturbing the DNA replication. Although, CDDP has a critical role in improving the clinical complication in OS patients, a high ratio of CDDP resistance is observed among these patients. Prolonged CDDP administrations have also serious side effects in normal tissues and organs. Therefore, the molecular mechanisms of CDDP resistance should be clarified to define the novel therapeutic modalities in OS. Multidrug resistance (MDR) can be caused by various cellular and molecular processes such as drug efflux, detoxification, and signaling pathways. MicroRNAs (miRNAs) are the key regulators of CDDP response by the post transcriptional regulation of target genes involved in MDR. In the present review we have discussed all of the miRNAs associated with CDDP response in OS cells. It was observed that the majority of reported miRNAs increased CDDP sensitivity in OS cells through the regulation of signaling pathways, apoptosis, transporters, and autophagy. This review highlights the miRNAs as reliable non-invasive markers for the prediction of CDDP response in OS patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Guo J, Tong CY, Shi JG, Li XJ, Chen XQ. Deletion of osteopontin in non-small cell lung cancer cells affects bone metabolism by regulating miR-34c/Notch1 axis: a clue to bone metastasis. Eur J Histochem 2023; 67:3631. [PMID: 37491944 PMCID: PMC10476534 DOI: 10.4081/ejh.2023.3631] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/13/2023] [Indexed: 07/27/2023] Open
Abstract
Lung cancer is prone to bone metastasis, and osteopontin (OPN) has an important significance in maintaining bone homeostasis. The goal of this study was to explore the impact of OPN level on bone metabolism and the molecular mechanism of inhibiting bone metastasis in non-small cell lung cancer (NSCLC). The expression of OPN in NSCLC was ascertained by Western blot and immunohistochemistry, and the correlation between the expression level of OPN and survival of patients was analyzed. Then the shRNA technology was applied to reduce the expression of OPN in NSCLC cells, and CCK-8 assay was carried out to investigate the effect of low expression of OPN on the proliferation of NSCLC cells. In addition, the effects of low expression of OPN on osteoclast differentiation, osteoblast generation and mineralization were studied using osteoclast precursor RAW264.7 and human osteoblast SaOS-2 cells, and whether OPN could regulate miR-34c/ Notch pathway to affect bone metabolism was further explored. The findings showed that the high level of OPN in NSCLC was closely related to the poor prognosis of patients and the abnormal proliferation of NSCLC cell lines. The suppression of OPN was beneficial to inhibit the differentiation of osteoclasts and promote the mineralization of osteoblasts. Besides, this study confirmed that the deletion of OPN can regulate bone metabolism through the regulation of miR-34c/Notch1 pathway, which will contribute to inhibiting the occurrence of osteolytic bone metastasis in NSCLC.
Collapse
Affiliation(s)
- Jing Guo
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, Zhejiang.
| | - Chang-Yong Tong
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, Zhejiang.
| | - Jian-Guang Shi
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, Zhejiang.
| | - Xin-Jian Li
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, Zhejiang.
| | - Xue-Qin Chen
- Department of Chinese Traditional Medicine, Ningbo First Hospital, Ningbo, Zhejiang.
| |
Collapse
|
6
|
Wang G, Zhang Q, Wang Q, Wang J, Chen L, Sun Q, Miao D. Long non-coding RNA DUXAP10 exerts oncogenic properties in osteosarcoma by recruiting HuR to enhance SOX18 mRNA stability. Hum Cell 2022; 35:1939-1951. [PMID: 36053455 PMCID: PMC9515053 DOI: 10.1007/s13577-022-00772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
Recent studies have demonstrated that several long non-coding RNAs (lncRNAs) play an important role in the occurrence and development of osteosarcoma (OS). However, more lncRNAs and their mechanisms in regulating growth and migration of OS cells remain to be investigated. In this study, we identified an lncRNA called DUXAP10 by analysis of GEO data, which was significantly up-regulated in OS tissues and cell lines. Experiments in vitro revealed that lncRNA DUXAP10 promoted proliferation, migration, and invasion of OS cells and inhibited their apoptosis. We also demonstrated that DUXAP10 promoted the formation and growth of OS by tumor formation assay. Furthermore, SOX18 was identified as a critical downstream target of DUXAP10 by transcriptome RNA-seq. Mechanistically, DUXAP10 mainly localized in cytoplasm and could specifically bind to HuR to increase the stability of SOX18 mRNA. Meanwhile, SOX18 knockdown largely reversed increased proliferation of OS cells induced by DUXAP10 overexpression. Findings from this study indicate that lncRNA DUXAP10 can act as an oncogene in osteosarcoma by binding HuR to up-regulate the expression of SOX18 at a post-transcriptional level, which may provide a new target for OS clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Guantong Wang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qian Zhang
- State Key Laboratory of Reproductive Medicine, Research Center for Bone and Stem Cells, Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Qinjue Wang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Wang
- State Key Laboratory of Reproductive Medicine, Research Center for Bone and Stem Cells, Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Lulu Chen
- State Key Laboratory of Reproductive Medicine, Research Center for Bone and Stem Cells, Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Qiang Sun
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, Research Center for Bone and Stem Cells, Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Cinque A, Capasso A, Vago R, Floris M, Lee MW, Minnei R, Trevisani F. MicroRNA Signatures in the Upper Urinary Tract Urothelial Carcinoma Scenario: Ready for the Game Changer? Int J Mol Sci 2022; 23:2602. [PMID: 35269744 PMCID: PMC8910117 DOI: 10.3390/ijms23052602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Upper urinary tract urothelial carcinoma (UTUC) represents a minor subgroup of malignancies arising in the urothelium of the renal pelvis or ureter. The estimated annual incidence is around 2 cases per 100,000 people, with a mean age at diagnosis of 73 years. UTUC is more frequently diagnosed in an invasive or metastatic stage. However, even though the incidence of UTUC is not high, UTUC tends to be aggressive and rapidly progressing with a poor prognosis in some patients. A significant challenge in UTUC is ensuring accurate and timely diagnosis, which is complicated by the non-specific nature of symptoms seen at the onset of disease. Moreover, there is a lack of biomarkers capable of identifying the early presence of the malignancy and guide-tailored medical treatment. However, the growing understanding of the molecular biology underlying UTUC has led to the discovery of promising new biomarkers. Among these biomarkers, there is a class of small non-coding RNA biomarkers known as microRNAs (miRNAs) that are particularly promising. In this review, we will analyze the main characteristics of UTUC and focus on microRNAs as possible novel tools that could enter clinical practice in order to optimize the current diagnostic and prognostic algorithm.
Collapse
Affiliation(s)
- Alessandra Cinque
- Biorek S.r.l., San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Anna Capasso
- Department of Medical Oncology Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX 78723, USA;
| | - Riccardo Vago
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
- Faculty of Medicine and Surgery,, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Matteo Floris
- Nephrology, Dialysis, and Transplantation, Università degli Studi di Cagliari, G. Brotzu Hospital, 09134 Cagliari, Italy; (M.F.); (R.M.)
| | - Michael W. Lee
- Department of Medical Oncology and Medical Education, Dell Medical School, Livestrong Cancer Institutes, University of Texas at Austin, Austin, TX 78723, USA;
| | - Roberto Minnei
- Nephrology, Dialysis, and Transplantation, Università degli Studi di Cagliari, G. Brotzu Hospital, 09134 Cagliari, Italy; (M.F.); (R.M.)
| | - Francesco Trevisani
- Biorek S.r.l., San Raffaele Scientific Institute, 20132 Milan, Italy;
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
- Unit of Urology, San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
8
|
Hosseini F, Alemi F, Malakoti F, Mahmoodpoor A, Younesi S, Yousefi B, Asemi Z. Targeting Wnt/β-catenin signaling by microRNAs as a therapeutic approach in chemoresistant osteosarcoma. Biochem Pharmacol 2021; 193:114758. [PMID: 34481813 DOI: 10.1016/j.bcp.2021.114758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Osteosarcoma (OS) is an adolescent and young adult malignancy that mostly occurs in long bones. The treatment of OS is still a big challenge for clinicians due to increasing chemoresistance, and many efforts are being made today to find more beneficial treatments. In this regard, the use of microRNAs has shown a high capacity to develop promising therapies. By targeting cancer-involved signaling pathways, microRNAs reduce the cellular level of these protein pathways; thereby reducing the growth and invasion of tumors, and even leading cancer cells to apoptosis. One of these oncogenic pathways that play an important role in OS development and can be targeted by microRNAs is the Wnt/β-catenin signaling pathway. Hence, the first goal of this review article is to explain the cross-talk of microRNAs and the Wnt/β-catenin signaling in OS and then discussing recent findings of the use of microRNAs as a therapeutic approach in OS.
Collapse
Affiliation(s)
- Foroogh Hosseini
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Intensive Care, School of Medicine, Tabriz University of Medical Science and Health Services, Tabriz, Iran; Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Younesi
- Schoole of Health and Biomedical Sciences, RMIT University, Melborne, VIC, Australia
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
9
|
Tang Z, Lu Y, Chen Y, Zhang J, Chen Z, Wang Q. Research Progress of MicroRNA in Chemotherapy Resistance of Osteosarcoma. Technol Cancer Res Treat 2021; 20:15330338211034262. [PMID: 34323141 PMCID: PMC8326994 DOI: 10.1177/15330338211034262] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Osteosarcoma (OS) is a malignant tumor prevalent in adolescents; however, a
clinically effective treatment for this malignancy is lacking. The lack of
effective treatment methods and factors, such as recurrence and drug resistance,
further dampen the prospect of clinically treating OS. In recent years, small
molecule microRNAs (miRNAs) with a length of approximately 20-24 nucleotides
have gradually attracted the attention of the medical community. Studies have
found that miRNAs can regulate the cell cycle, apoptosis, cell proliferation,
and cell proliferation. The metabolic response of cancer cells, invasion and
metastasis of cancer cells, and angiogenesis play an important role in the
process of tumorigenesis. miRNAs regulate gene expression by regulating mRNA
expression after transcription. A large amount of data from many studies
indicate that they have diagnostic and prognostic biomarker effects in OS and
are involved in regulating the metabolism of cancer cells and resistance or
sensitivity to chemotherapy drugs. Chemotherapy resistance is one of the most
critical problems in clinically treating OS. A large number of basic studies and
systematic summaries are required to provide a theoretical basis for elucidating
the mechanism and drug development of chemotherapeutic agents. Therefore, this
article discusses the role of miRNAs in OS resistance. Herein, the related
research progress of the studies is reviewed to provide more useful information
for the development of effective therapy.
Collapse
Affiliation(s)
- Zhaopeng Tang
- Department of Orthopaedics, 586778Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Yubao Lu
- The Second Clinical Medical College, 12426Lanzhou University, Lanzhou, Gansu, China.,Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yutong Chen
- The Second Clinical Medical College, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Jiarui Zhang
- The First Clinical Medical College, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Zhijun Chen
- The First Clinical Medical College, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Qianfeng Wang
- Department of Gastroenterology, Gansu Provincial People's Hospital, Lanzhou, Gansu, China
| |
Collapse
|
10
|
Ragheb MA, Soliman MH, Elzayat EM, Mohamed MS, El-Ekiaby N, Abdelaziz AI, Abdel-Wahab AHA. MicroRNA-520c-3p Modulates Doxorubicin-Chemosensitivity in HepG2 Cells. Anticancer Agents Med Chem 2021; 21:237-245. [PMID: 32357822 DOI: 10.2174/1871520620666200502004817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Doxorubicin (DOX) is one of the most common drugs used in cancer therapy, including Hepatocellular Carcinoma (HCC). Drug resistance is one of chemotherapy's significant problems. Emerging studies have shown that microRNAs (miRNAs) could participate in regulating this mechanism. Nevertheless, the impact of miRNAs on HCC chemoresistance is still enigmatic. OBJECTIVE Investigating the role of microRNA-520c-3p (miR-520c-3p) in the enhancement of the anti-tumor effect of DOX against HepG2 cells. METHODS Expression profile for liver-related miRNAs (384 miRNAs) has been analyzed on HepG2 cells treated with DOX using qRT-PCR. miR-520c-3p, the most deregulated miRNA, was selected for combination treatment with DOX. The expression level for LEF1, CDK2, CDH1, VIM, Mcl-1 and p53 was evaluated in miR-520c-3p transfected cells. Cell viability, colony formation, wound healing as well as apoptosis assays have been demonstrated. Furthermore, Mcl-1 protein level was measured using the western blot technique. RESULTS The present data indicated that miR-520c-3p overexpression could render HepG2 cells chemo-sensitive to DOX through enhancing its suppressive effects on proliferation, migration, and induction of apoptosis. The suppressive effect of miR-520c-3p involved altering the expression levels of some key regulators of cell cycle, proliferation, migration and apoptosis, including LEF1, CDK2, CDH1, VIM, Mcl-1 and p53. Interestingly, Mcl-1 was found to be one of the potential targets of miR-520c-3p, and its protein expression level was down-regulated upon miR-520c-3p overexpression. CONCLUSION Our data referred to the tumor suppressor function of miR-520c-3p that could modulate the chemosensitivity of HepG2 cells towards DOX treatment, providing a promising therapeutic strategy in HCC.
Collapse
Affiliation(s)
- Mohamed A Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa H Soliman
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Emad M Elzayat
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Mervat S Mohamed
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Nada El-Ekiaby
- School of Medicine, NewGiza University (NGU), NewGiza, Cairo, Egypt
| | | | | |
Collapse
|
11
|
Circular RNA circPVT1 Contributes to Doxorubicin (DXR) Resistance of Osteosarcoma Cells by Regulating TRIAP1 via miR-137. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7463867. [PMID: 33981772 PMCID: PMC8088374 DOI: 10.1155/2021/7463867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/25/2020] [Accepted: 04/13/2021] [Indexed: 12/21/2022]
Abstract
Background Chemoresistance is a major obstacle to the treatment of osteosarcoma patients. Circular RNA (circRNA) circPVT1 has been reported to be related to the doxorubicin (DXR) resistance in osteosarcoma. This study is designed to explore the role and mechanism of circPVT1 in the DXR resistance of osteosarcoma. Methods circPVT1, microRNA-137 (miR-137), and TP53-regulated inhibitor of apoptosis 1 (TRIAP1) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). The protein levels of ATP-binding cassette, subfamily C, member 1 (ABCC1), multidrug resistance-associated protein 1 (MRP-1), cleaved- (c-) caspase-3, B-cell lymphoma-2 (Bcl-2), and TRIAP1 were examined by a western blot assay. Cell viability, proliferation, and apoptosis were detected by cell counting kit-8 (CCK-8), colony formation, and flow cytometry assays, severally. The binding relationship between miR-137 and circPVT1 or TRIAP1 was predicted by starbase 3.0 and then verified by dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. The biological role of circPVT1 in osteosarcoma tumor growth and drug resistance was examined by the xenograft tumor model in vivo. Results. circPVT1 and TRIAP1 were highly expressed, and miR-137 was decreased in DXR-resistant osteosarcoma tissues and cells. Moreover, circPVT1 knockdown could boost DXR sensitivity by inhibiting DXR-caused proliferation and DXR-induced apoptosis in DXR-resistant osteosarcoma cells in vitro. The mechanical analysis discovered that circPVT1 acted as a sponge of miR-137 to regulate TRIAP1 expression. circPVT1 silencing increased the drug sensitivity of osteosarcoma in vivo. Conclusion. circPVT1 boosted DXR resistance of osteosarcoma cells partly by regulating the miR-137/TRIAP1 axis, hinting a promising therapeutic target for the osteosarcoma treatment.
Collapse
|
12
|
Wu X, Yan L, Liu Y, Shang L. Circ_0000527 promotes osteosarcoma cell progression through modulating miR-646/ARL2 axis. Aging (Albany NY) 2021; 13:6091-6102. [PMID: 33617480 PMCID: PMC7950279 DOI: 10.18632/aging.202602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/25/2020] [Indexed: 01/04/2023]
Abstract
Accumulating evidence shows that circRNAs play critical roles in the development of human tumors. We observed that circ_0000527 was overexpressed in osteosarcoma cells (SAOS-2, HOS, MG-63 and U2OS) compared in hFOB1.19 cells. We demonstrated that the circ_0000527 level was higher in osteosarcoma specimens than in non-tumor specimens. The ectopic expression of circ_0000527 was shown to induce cell growth, cell cycle progression and the secretion of inflammatory mediators, including IL-1β, IL-6, IL-8 and TNF-α. We demonstrated that circ_0000527 sponges miR-646 in osteosarcoma cells and that ARL2 is a target gene of miR-646. MiR-646 expression was decreased and ARL2 was overexpressed in osteosarcoma cells (SAOS-2, HOS, MG-63 and U2OS) compared to hFOB1.19 cells. Overexpression of circ_0000527 was demonstrated to induce ARL2 expression in MG-63 cells. We showed that miR-646 was downregulated in osteosarcoma specimens compared to that of non-tumor specimens and that the level of circ_0000527 was negatively correlated with miR-646 expression in osteosarcoma specimens. The elevated expression of circ_0000527 was shown to promote cell growth and cell cycle progression by modulating miR-646 expression. The ectopic expression of circ_0000527 was shown to promote cell growth, cell cycle progression and the secretion of inflammatory mediators by modulating ARL2. The present study suggested that the circ_0000527/miR-646/ARL2 axis may be a potential treatment target for osteosarcoma.
Collapse
Affiliation(s)
- Xiangkun Wu
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang 473000, Henan, China
| | - Lihua Yan
- Department of Medical Oncology, Nanyang Second People's Hospital, Nanyang 473000, Henan, China
| | - Yongxi Liu
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang 473000, Henan, China
| | - Lilin Shang
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang 473000, Henan, China
| |
Collapse
|
13
|
Lin Z, Xie X, Lu S, Liu T. Noncoding RNAs in osteosarcoma: Implications for drug resistance. Cancer Lett 2021; 504:91-103. [PMID: 33587978 DOI: 10.1016/j.canlet.2021.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/13/2021] [Accepted: 02/08/2021] [Indexed: 02/09/2023]
Abstract
Osteosarcoma is the most frequent bone malignancy in children and adolescents. Despite advances of surgery and chemotherapy in osteosarcoma over the past decades, overall survival rates of osteosarcoma have reached a plateau. The development of multi-drug resistance (MDR) has become the main obstacle in improving chemotherapeutic effects in osteosarcoma treatment. Therefore, understanding detailed mechanisms of chemoresistance and developing novel therapeutic targets to overcome chemoresistance are crucial to improve the prognosis of osteosarcoma patients. Accumulating evidence has proved that multiple noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) play pivotal roles in osteosarcoma progression. Notably, a great number of ncRNAs are abnormally expressed and can regulate chemosensitivity through various mechanisms in osteosarcoma. In this review, we systematically summarize the roles of ncRNAs as well as the molecular mechanisms in modulating drug resistance of osteosarcoma and discuss the potential roles of ncRNAs as biomarkers and novel therapeutic targets for osteosarcoma.
Collapse
Affiliation(s)
- Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, People's Republic of China; Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Xubin Xie
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Shiyao Lu
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
14
|
Marengo B, Pulliero A, Corrias MV, Leardi R, Farinini E, Fronza G, Menichini P, Monti P, Monteleone L, Valenti GE, Speciale A, Perri P, Madia F, Izzotti A, Domenicotti C. Potential Role of miRNAs in the Acquisition of Chemoresistance in Neuroblastoma. J Pers Med 2021; 11:jpm11020107. [PMID: 33562297 PMCID: PMC7916079 DOI: 10.3390/jpm11020107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Neuroblastoma (NB) accounts for about 8–10% of pediatric cancers, and the main causes of death are the presence of metastases and the acquisition of chemoresistance. Metastatic NB is characterized by MYCN amplification that correlates with changes in the expression of miRNAs, which are small non-coding RNA sequences, playing a crucial role in NB development and chemoresistance. In the present study, miRNA expression was analyzed in two human MYCN-amplified NB cell lines, one sensitive (HTLA-230) and one resistant to Etoposide (ER-HTLA), by microarray and RT-qPCR techniques. These analyses showed that miRNA-15a, -16-1, -19b, -218, and -338 were down-regulated in ER-HTLA cells. In order to validate the presence of this down-regulation in vivo, the expression of these miRNAs was analyzed in primary tumors, metastases, and bone marrow of therapy responder and non-responder pediatric patients. Principal component analysis data showed that the expression of miRNA-19b, -218, and -338 influenced metastases, and that the expression levels of all miRNAs analyzed were higher in therapy responders in respect to non-responders. Collectively, these findings suggest that these miRNAs might be involved in the regulation of the drug response, and could be employed for therapeutic purposes.
Collapse
Affiliation(s)
- Barbara Marengo
- Department of Experimental Medicine, University of Genova, 16100 Genova, Italy; (L.M.); (G.E.V.); (A.I.); (C.D.)
- Correspondence: ; Tel.: +39-010-3538831
| | | | - Maria Valeria Corrias
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16100 Genova, Italy; (M.V.C.); (P.P.)
| | - Riccardo Leardi
- Department of Pharmacy, University of Genova, 16100 Genova, Italy; (R.L.); (E.F.)
| | - Emanuele Farinini
- Department of Pharmacy, University of Genova, 16100 Genova, Italy; (R.L.); (E.F.)
| | - Gilberto Fronza
- UOC Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16100 Genova, Italy; (G.F.); (P.M.); (P.M.); (A.S.)
| | - Paola Menichini
- UOC Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16100 Genova, Italy; (G.F.); (P.M.); (P.M.); (A.S.)
| | - Paola Monti
- UOC Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16100 Genova, Italy; (G.F.); (P.M.); (P.M.); (A.S.)
| | - Lorenzo Monteleone
- Department of Experimental Medicine, University of Genova, 16100 Genova, Italy; (L.M.); (G.E.V.); (A.I.); (C.D.)
| | - Giulia Elda Valenti
- Department of Experimental Medicine, University of Genova, 16100 Genova, Italy; (L.M.); (G.E.V.); (A.I.); (C.D.)
| | - Andrea Speciale
- UOC Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16100 Genova, Italy; (G.F.); (P.M.); (P.M.); (A.S.)
| | - Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16100 Genova, Italy; (M.V.C.); (P.P.)
| | - Francesca Madia
- Medical Genetics Unit, IRCCS Giannina Gaslini Institute, 16100 Genova, Italy;
| | - Alberto Izzotti
- Department of Experimental Medicine, University of Genova, 16100 Genova, Italy; (L.M.); (G.E.V.); (A.I.); (C.D.)
- UOC Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16100 Genova, Italy; (G.F.); (P.M.); (P.M.); (A.S.)
| | - Cinzia Domenicotti
- Department of Experimental Medicine, University of Genova, 16100 Genova, Italy; (L.M.); (G.E.V.); (A.I.); (C.D.)
| |
Collapse
|
15
|
Lin J, Qin H, Han Y, Li X, Zhao Y, Zhai G. CircNRIP1 Modulates the miR-515-5p/IL-25 Axis to Control 5-Fu and Cisplatin Resistance in Nasopharyngeal Carcinoma. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:323-330. [PMID: 33536745 PMCID: PMC7850406 DOI: 10.2147/dddt.s292180] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022]
Abstract
Background The development of drug resistance leads many NPC patients to experience disease relapse following the completion of chemotherapy. It is thus essential that the mechanistic basis for such chemoresistance be clarified in an effort to identify approaches to sensitizing NPC tumors to treatment with cisplatin and related agents. Methods A qRT-PCR approach was used to measure the expression of circNRIP1 in NPC, while luciferase assays were used to identify interactions with downstream targets of circNRIP1 activity including miR-515-5p and IL-25. CCK8 assays were also utilized to detect IC50 values for cisplatin and 5-Fu. Results The expression of circNRIP1 was significantly increased in the serum of chemoresistant NPC patients. At a functional level, we determined that circNRIP1 is able to sequester miR-515-5p, thereby inhibiting its ability to post-transcriptionally suppress IL-25 expression. We observed a significant negative correlation between the expression of miR-515-5p and circNRIP1 in serum samples from chemoresistant NPC patients, consistent with a functional interaction between these two factors. We further found that 5-Fu and CDDP IC50 values in NPC cells in which circNRIP1 had been knocked down were restored following miR-515-5p inhibitor transfection. Similarly, changes in these IC50 values were reversed in NPC cells transfected with miR-515-5p mimics following the overexpression of IL-25 in these same cells. Conclusion These data highlight the circNRIP1/miR-515-5p/IL-25 as a novel regulator of 5-Fu and cisplatin resistance in NPC, suggesting that this pathway may be amenable to therapeutic targeting as an approach to treating this cancer type.
Collapse
Affiliation(s)
- Junwu Lin
- Department of Otolaryngology, Central Hospital, Qingdao, Shandong, People's Republic of China
| | - Hong Qin
- Department of Otolaryngology, Women and Children's Hospital, Qingdao, Shandong, People's Republic of China
| | - Yue Han
- Department of Urology, Zhangqiu District People's Hospital, Jinan, Shandong, People's Republic of China
| | - Xinghua Li
- Department of Critical Care Medicine, Zhangqiu District People's Hospital, Jinan, Shandong, People's Republic of China
| | - YuJuan Zhao
- Department of Otolaryngology, Rizhao Second People's Hospital, Rizhao, Shandong, People's Republic of China
| | - Guangsheng Zhai
- Department of Radiotherapy, Zibo Central Hospital, Zibo, Shandong, People's Republic of China
| |
Collapse
|
16
|
Yang LZ, Lei CC, Zhao YP, Sun HW, Yu QH, Yang EJ, Zhan X. MicroRNA-34c-3p target inhibiting NOTCH1 suppresses chemosensitivity and metastasis of non-small cell lung cancer. J Int Med Res 2021; 48:300060520904847. [PMID: 32228202 PMCID: PMC7133404 DOI: 10.1177/0300060520904847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Chemotherapy is the standard treatment for non-small cell lung cancer (NSCLC). However, chemoresistance frequently occurs, making the treatment of NSCLC more difficult. Method We combined clinical and experimental studies to establish the role of microRNA (miR)-34c in NSCLC metastasis and chemoresistance. Results MiR-34c expression was significantly decreased in patients with NSCLC who showed a poor chemoresponse and metastasis. Overexpression of miR-34c sensitized NSCLC cells to paclitaxel and cisplatin both in vitro and in vivo. Furthermore, we found that NOTCH1 was target of miR-34c in NSCLC cells and played a key role in the effects of miR-34c on NSCLC. Conclusion NSCLC metastasis and chemoresistance are suppressed though the miR-34c/NOTCH1 axis. MiR-34c has important implications in the development of therapeutic strategies for metastasis and chemoresistance in NSCLC.
Collapse
Affiliation(s)
- Lin-Zhu Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Chang-Cheng Lei
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Yun-Ping Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Hong-Wen Sun
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Qing-He Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - En-Ji Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Xi Zhan
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| |
Collapse
|
17
|
Liu L, Wang S. Long Non-Coding RNA OIP5-AS1 Knockdown Enhances CDDP Sensitivity in Osteosarcoma via miR-377-3p/FOSL2 Axis. Onco Targets Ther 2020; 13:3853-3866. [PMID: 32440152 PMCID: PMC7213903 DOI: 10.2147/ott.s232918] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/10/2020] [Indexed: 12/14/2022] Open
Abstract
Background Drug resistance is one of big obstacles for the treatment of tumor. Long non-coding RNA Opa-interacting protein 5-antisense RNA 1 (OIP5-AS1) was identified to involve in drug resistance. In this research, the effects of OIP5-AS1 on cisplatin (CDDP) resistance in osteosarcoma (OS) were mainly investigated. Methods The levels of OIP5-AS1, microRNA-377-3p (miR-377-3p), and FOS like 2 (FOSL2) were measured by quantitative real-time polymerase chain reaction. The inhibitory concentration 50 (IC50) value of CDDP, cell viability and apoptotic rate was evaluated through Cell Counting Kit-8 and flow cytometry assays, respectively. The levels of multidrug resistance-associated protein 1 (MRP1), P-glycoprotein, B-cell lymphoma 2, Bcl2-associated X, cleaved-caspase-3, and FOSL2 were detected by Western blot assay. The interaction between miR-377-3p and OIP5-AS1 or FOSL2 was verified by Dual-Luciferase Reporter and RNA Immunoprecipitation assays. The function of OIP5-AS1 was detected by a xenograft tumor model in vivo. Results OIP5-AS1 and FOSL2 were up-regulated, while miR-377-3p was down-regulated in CDDP-resistant OS tissues and cells. OIP5-AS1 silencing inhibited cell viability and the IC50 value of CDDP, and promoted apoptotic rate in CDDP-resistant OS cells. Mechanically, OIP5-AS1 was verified as a sponge to miR-377-3p and FOSL2 was a target of miR-377-3p. Moreover, OIP5-AS1 knockdown repressed OS tumor growth and enhanced CDDP sensitivity of OS in vivo. Conclusion OIP5-AS1 positively modulated FOSL2 expression to decrease CDDP sensitivity in OS by sponging miR-377-3p.
Collapse
Affiliation(s)
- Ling Liu
- Department of Surgery, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, People's Republic of China
| | - Shuya Wang
- Department of Surgery, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, People's Republic of China
| |
Collapse
|
18
|
Wu X, Xiang H, Cong W, Yang H, Zhang G, Wang Y, Guo Z, Shen Y, Chen B. PLOD1, a target of miR-34c, contributes to cell growth and metastasis via repressing LATS1 phosphorylation and inactivating Hippo pathway in osteosarcoma. Biochem Biophys Res Commun 2020; 527:29-36. [PMID: 32446383 DOI: 10.1016/j.bbrc.2020.04.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 04/12/2020] [Indexed: 02/08/2023]
Abstract
Although dysregulated PLOD1 was reported in many cancers, its function in osteocarcoma (OS) progression and potential mechanism are totally unknown. In the present study, we found that the mRNA expression of PLOD1 was significantly upregulated in OS cells and tissues. The high expression of PLOD1 was correlated with the aggressive phenotypes of OS and poor prognosis. Gain- or loss-of-function assays demonstrated that PLOD1 promoted proliferation, migration, and invasion of OS cells in vitro, as well as tumorigenicity and metastasis in vivo. We found that PLOD1 inactivated Hippo-YAP pathway through inhibiting phosphorylation-LATS1 (p-LATS1) and -YAP (p-YAP). Immunofluorescence results validated that nuclear distribution of YAP was increased by PLOD1 overexpression and was decreased by PLOD1 depletion. Furthermore, PLOD1 was demonstrated as a target of miR-34c, which inhibited the luciferase activity of PLOD1 mRNA 3'-UTR and PLOD1 expression at both mRNA and protein levels. The expression of miR-34c was downregulated in OS tissues and negatively correlated with PLOD1 mRNA expression. We found that restoration of PLOD1 abolished the miR-34c induced inhibition of cell growth and invasion. More importantly, miR-34c led to upregulation of p-LATS1 and p-YAP, and reducing of nuclear YAP and TAZ in OS cells. The mice tumors, which formed from miR-34c lentivirus vectors, have relatively low expression of PLOD1 and nuclear YAP staining. Taken together, our findings revealed that PLOD1 promoted tumorigenesis and metastasis in OS, and the dysregulated miR-34c/PLOD1/Hippo pathway affected OS progression, providing a potential therapeutic strategy for treatment.
Collapse
Affiliation(s)
- Xiaolin Wu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongfei Xiang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenbin Cong
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huiying Yang
- Department of Pathology, Dezhou Municipal Hospital, Dezhou, China
| | - Guoqing Zhang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhu Guo
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanqing Shen
- Operation Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bohua Chen
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
19
|
Jacques C, Tesfaye R, Lavaud M, Georges S, Baud’huin M, Lamoureux F, Ory B. Implication of the p53-Related miR-34c, -125b, and -203 in the Osteoblastic Differentiation and the Malignant Transformation of Bone Sarcomas. Cells 2020; 9:cells9040810. [PMID: 32230926 PMCID: PMC7226610 DOI: 10.3390/cells9040810] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
The formation of the skeleton occurs throughout the lives of vertebrates and is achieved through the balanced activities of two kinds of specialized bone cells: the bone-forming osteoblasts and the bone-resorbing osteoclasts. Impairment in the remodeling processes dramatically hampers the proper healing of fractures and can also result in malignant bone diseases such as osteosarcoma. MicroRNAs (miRNAs) are a class of small non-coding single-strand RNAs implicated in the control of various cellular activities such as proliferation, differentiation, and apoptosis. Their post-transcriptional regulatory role confers on them inhibitory functions toward specific target mRNAs. As miRNAs are involved in the differentiation program of precursor cells, it is now well established that this class of molecules also influences bone formation by affecting osteoblastic differentiation and the fate of osteoblasts. In response to various cell signals, the tumor-suppressor protein p53 activates a huge range of genes, whose miRNAs promote genomic-integrity maintenance, cell-cycle arrest, cell senescence, and apoptosis. Here, we review the role of three p53-related miRNAs, miR-34c, -125b, and -203, in the bone-remodeling context and, in particular, in osteoblastic differentiation. The second aim of this study is to deal with the potential implication of these miRNAs in osteosarcoma development and progression.
Collapse
|
20
|
Nanomedicine in osteosarcoma therapy: Micelleplexes for delivery of nucleic acids and drugs toward osteosarcoma-targeted therapies. Eur J Pharm Biopharm 2020; 148:88-106. [PMID: 31958514 DOI: 10.1016/j.ejpb.2019.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/09/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
Abstract
Osteosarcoma(OS) represents the main cancer affecting bone tissue, and one of the most frequent in children. In this review we discuss the major pathological hallmarks of this pathology, its current therapeutics, new active biomolecules, as well as the nanotechnology outbreak applied to the development of innovative strategies for selective OS targeting. Small RNA molecules play a role as key-regulator molecules capable of orchestrate different responses in what concerns cancer initiation, proliferation, migration and invasiveness. Frequently associated with lung metastasis, new strategies are urgent to upgrade the therapeutic outcomes and the life-expectancy prospects. Hence, the prominent rise of micelleplexes as multifaceted and efficient structures for nucleic acid delivery and selective drug targeting is revisited here with special emphasis on ligand-mediated active targeting. Future landmarks toward the development of novel nanostrategies for both OS diagnosis and OS therapy improvements are also discussed.
Collapse
|
21
|
Viera GM, Salomao KB, de Sousa GR, Baroni M, Delsin LEA, Pezuk JA, Brassesco MS. miRNA signatures in childhood sarcomas and their clinical implications. Clin Transl Oncol 2019; 21:1583-1623. [PMID: 30949930 DOI: 10.1007/s12094-019-02104-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Progresses in multimodal treatments have significantly improved the outcomes for childhood cancer. Nonetheless, for about one-third of patients with Ewing sarcoma, rhabdomyosarcoma, or osteosarcoma steady remission has remained intangible. Thus, new biomarkers to improve early diagnosis and the development of precision-targeted medicine remain imperative. Over the last decade, remarkable progress has been made in the basic understanding of miRNAs function and in interpreting the contribution of their dysregulation to cancer development and progression. On this basis, this review focuses on what has been learned about the pivotal roles of miRNAs in the regulation of key genes implicated in childhood sarcomas.
Collapse
Affiliation(s)
- G M Viera
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - K B Salomao
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - G R de Sousa
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - M Baroni
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - L E A Delsin
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - J A Pezuk
- Anhanguera University of Sao Paulo, UNIAN/SP, Sao Paulo, Brasil
| | - M S Brassesco
- Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brasil.
- Departamento de Biologia, FFCLRP-USP, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirao Preto, SP, CEP 14040-901, Brazil.
| |
Collapse
|
22
|
Li Y, Wang Z, Li J, Sang X. Diallyl disulfide suppresses FOXM1-mediated proliferation and invasion in osteosarcoma by upregulating miR-134. J Cell Biochem 2019; 120:7286-7296. [PMID: 30387181 DOI: 10.1002/jcb.28003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/08/2018] [Indexed: 01/24/2023]
Abstract
Diallyl disulfide (DADS), a volatile component of garlic oil, exerts anticancer activity in various types of cancers, while its anticancer effects against osteosarcoma (OS) have not been previously explored. This study aimed to investigate the anticancer potential of DADS in OS and to explore the underlying mechanisms. DADS reduced the cell viability and increased the expression of miR-134 in OS cell lines, and this effect was in a time- and concentration-dependent manner. Furthermore, in vitro functional assays revealed that DADS significantly inhibited the proliferation and invasion of human OS U2OS and MG-63 cells, which was partially reversed by miR-134 inhibitor transfection. DADS exhibited in vivo antitumor activity and upregulated miR-134 expression in xenograft tumors. Downregulation of miR-134 attenuated DADS-induced antitumor capacity. Further bioinformatics prediction analysis revealed that the 3'-untranslated region (3'-UTR) of Forkhead Box M1 (FOXM1) harbored miR-134-binding sites, and overexpression of miR-134 repressed the luciferase activity of the reporting vector containing FOXM1 3'-UTR. Both miR-134 overexpression and DADS inhibited FOXM1 expression in U2OS cells, while enforced expression of FOXM1 suppressed DADS-induced antiproliferation and anti-invasion capacity in U2OS cells. Furthermore, DADS treatment led to significant downregulation of cyclin D1, c-myc, and lymphoid enhancer-binding factor 1 expression, but the remarkably upregulated p21 level in U2OS cells. Collectively, DADS could be a promising anticancer agent for OS, and the underlying mechanisms might be associated with the antiproliferation and anti-invasion properties through upregulating miR-134 expression.
Collapse
Affiliation(s)
- Yonggang Li
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhiyong Wang
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jianmin Li
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiguang Sang
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
23
|
Chu Y, Hu X, Wang G, Wang Z, Wang Y. Downregulation of miR-136 promotes the progression of osteosarcoma and is associated with the prognosis of patients with osteosarcoma. Oncol Lett 2019; 17:5210-5218. [PMID: 31186737 DOI: 10.3892/ol.2019.10203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/02/2019] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma (OS) is the most common bone tumor in children and young adults, and is an aggressive tumor with poor prognosis. MicroRNAs (miRNAs) are aberrantly expressed in various types of cancer, and contribute to cancer tumorigenesis and progression. In the present study, the potential prognostic value and biological function of miRNA-136 (miR-136) in OS was investigated. Reverse transcription-quantitative polymerase chain reaction analysis was used to evaluate the expression of miR-136 in OS tissues and cell lines. Kaplan-Meier survival analysis and Cox regression analysis were conducted to investigate the prognostic significance of miR-136. Various in vitro cell based assays were used to evaluate the effects of miR-136 on the biological behavior of OS cells. A luciferase assay was performed to determine the key miR-136 targets associated with OS. The expression of miR-136 was significantly downregulated in osteosarcoma tissues and cells compared with the normal controls (all P<0.05). Decreased miR-136 expression was significantly associated with Enneking staging (P=0.030) and distant metastasis (P=0.016). Decreased miR-136 expression in patients was associated with shorter overall survival compared with patients with increased expression levels (log-rank test; P<0.05). The expression of miR-136 was indicated as an independent prognostic factor for the patients (hazard ratio=0.496; 95% confidence interval=0.250-0.987; P=0.046). MTT, transwell and Matrigel assays demonstrated that upregulation of miR-136 decreased proliferation, migration and invasion of OS cells. Bioinformatics and luciferase assays demonstrated that migration and invasion enhancer 1 (MIEN1) is a direct target of miR-136. Together, the results suggested that miR-136 functions as a tumor suppressor gene to regulate proliferation, migration and invasion of OS cells. MIEN1 was a potential target of miR-136. Additionally, miR-136 may serve as a prognostic biomarker for OS.
Collapse
Affiliation(s)
- Yanchen Chu
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiaoli Hu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Linyi City, Linyi, Shandong 276000, P.R. China
| | - Guangfeng Wang
- Department of Medical Administration, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhijie Wang
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Yanjin Wang
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
24
|
Chen R, Wang G, Zheng Y, Hua Y, Cai Z. Drug resistance-related microRNAs in osteosarcoma: Translating basic evidence into therapeutic strategies. J Cell Mol Med 2019; 23:2280-2292. [PMID: 30724027 PMCID: PMC6433687 DOI: 10.1111/jcmm.14064] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/14/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022] Open
Abstract
Although the application of multiple chemotherapy brought revolutionary changes to improve overall survival of osteosarcoma patients, the existence of multidrug resistance (MDR) has become a great challenge for successful osteosarcoma treatment in recent decades. Substantial studies have revealed various underlying mechanisms of MDR in cancers. As for osteosarcoma, evidence has highlighted that microRNAs (miRNAs) can mediate in the processes of DNA damage response, apoptosis avoidance, autophagy induction, activation of cancer stem cells, and signal transduction. Besides, these drug resistance‐related miRNAs showed much promise for serving as candidates for predictive biomarkers of poor outcomes and shorter survival time, and therapeutic targets to reverse drug resistance and overcome treatment refractoriness. This review aims to demonstrate the potential molecular mechanisms of miRNAs‐regulated drug resistance in osteosarcoma, and provide insight in translating basic evidence into therapeutic strategies.
Collapse
Affiliation(s)
- Ruiling Chen
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gangyang Wang
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zheng
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Shekhar R, Priyanka P, Kumar P, Ghosh T, Khan MM, Nagarajan P, Saxena S. The microRNAs miR-449a and miR-424 suppress osteosarcoma by targeting cyclin A2 expression. J Biol Chem 2019; 294:4381-4400. [PMID: 30679313 DOI: 10.1074/jbc.ra118.005778] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/18/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs of the miR-16 and miR-34 families have been reported to inhibit cell cycle progression, and their loss has been linked to oncogenic transformation. Utilizing a high-throughput, genome-wide screen for miRNAs and mRNAs that are differentially regulated in osteosarcoma (OS) cell lines, we report that miR-449a and miR-424, belonging to the miR-34 and miR-16 families, respectively, target the major S/G2 phase cyclin, cyclin A2 (CCNA2), in a bipartite manner. We found that the 3'-UTR of CCNA2 is recognized by miR-449a, whereas the CCNA2 coding region is targeted by miR-424. Of note, we observed loss of both miR-449a and miR-424 in OS, resulting in derepression of CCNA2 and appearance of aggressive cancer phenotypes. Ectopic expression of miR-449a and miR-424 significantly decreased cyclin A2 levels and inhibited proliferation rate, migratory potential, and colony-forming ability of OS cells. To further probe the roles of miR-449a and miR-424 in OS, we developed an OS mouse model by intraosseous injection of U2OS cells into the tibia bone of NOD-scid mice, which indicated that miR-449a and miR-424 co-expression suppresses tumor growth. On the basis of this discovery, we analyzed the gene expression of human OS biopsy samples, revealing that miR-449a and miR-424 are both down-regulated, whereas cyclin A2 is significantly up-regulated in these OS samples. In summary, the findings in our study highlight that cyclin A2 repression by miRNAs of the miR-16 and miR-34 families is lost in aggressive OS.
Collapse
Affiliation(s)
- Ritu Shekhar
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Priyanka Priyanka
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Praveen Kumar
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Tanushree Ghosh
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Md Muntaz Khan
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Perumal Nagarajan
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Sandeep Saxena
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
26
|
Analyzing the Interactions of mRNAs and ncRNAs to Predict Competing Endogenous RNA Networks in Osteosarcoma Chemo-Resistance. Mol Ther 2019; 27:518-530. [PMID: 30692017 DOI: 10.1016/j.ymthe.2019.01.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/07/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023] Open
Abstract
Chemo-resistance is a huge obstacle encountered in the osteosarcoma (OS) treatment. Protein-coding mRNAs, as well as non-coding RNAs (ncRNAs), including long ncRNA (lncRNA), circular RNA (circRNA), and microRNA (miRNA), have been demonstrated to play an essential role in the regulation of cancer biology. However, the comprehensive expression profile and competing endogenous RNA (ceRNA) regulatory network between mRNAs and ncRNAs in the OS chemo-resistance still remain unclear. In the current study, we developed whole-transcriptome sequencing (RNA sequencing [RNA-seq]) in the three paired multi-drug chemo-resistant and chemo-sensitive OS cell lines to comprehensively identify differentially expressed lncRNAs, circRNAs, miRNAs, and mRNAs. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed for mRNAs with significantly different expression. Then the ceRNA networks combining lncRNAs, circRNAs, miRNAs, and mRNAs were predicted and constructed on the basis of the authoritative miRanda and TargetScan databases combined with the widely accepted vital drug resistance-related genes and signal transduction pathways. In addition, two constructed ceRNA regulatory pathways, lncRNAMEG3/hsa-miR-200b-3p/AKT2 and hsa_circ_0001258/hsa-miR-744-3p/GSTM2, were randomly selected and validated by real-time qPCR, RNA immunoprecipitation (RIP), RNA pull-down assay, and dual luciferase reporter gene system. Taken together, our findings may provide new evidence for the underlying mechanism of OS chemo-resistance and uncover some novel targets for reversing it.
Collapse
|
27
|
Yang J, Gan X, Tan B, Wang J, Chen Y. Corticotropin-releasing factor suppresses glioma progression by upregulation of long non-coding RNA-p21. Life Sci 2019; 216:92-100. [PMID: 29981322 DOI: 10.1016/j.lfs.2018.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/25/2018] [Accepted: 07/03/2018] [Indexed: 11/19/2022]
Abstract
Corticotropin-releasing factor (CRF) plays a key role in neuroendocrine regulation of hypothalamo-pituitary-adrenal axis under normal condition and stress by binding to CRF receptor1 (CRFR1). CRF and its receptors have been reported in many types of tumors. Little is known about the role of CRF in the development of glioma. And lincRNA-p21 was reported to act as a role in progression of some cancers. The aim of the present study was to investigate the levels of CRF in glioma, and explore the link between CRF and lincRNA-p21 in this disease. In this study, we found CRF mRNA expression was significantly down-regulated in glioma mice. Moreover, CRF could suppress the proliferation of glioma cells and promote the expression of lincRNA-p21. Afterwards, lincRNA-p21 repressed the proliferation and invasion of glioma cells, which was reversed by miR-34c targeted with 3'-UTR. Furthermore, miR-34c decreased the expression of CRFR1 by binding with the 3'-UTR, which interact with CRF to inhibit the proliferation of glioma cells. Together, these results CRF plays as an important role in glioma progression and metastasis through activation of lincRNA-p21, providing a novel insight for the pathogenesis and underlying therapeutic target for glioma.
Collapse
Affiliation(s)
- Jianbo Yang
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Jiangyang District, Luzhou City, 646000, Sichuan Province, China
| | - Xilun Gan
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Jiangyang District, Luzhou City, 646000, Sichuan Province, China
| | - Beibei Tan
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Jiangyang District, Luzhou City, 646000, Sichuan Province, China
| | - Jie Wang
- Department of Transfusion, Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Jiangyang District, Luzhou City, 646000, Sichuan Province, China
| | - Yue Chen
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Jiangyang District, Luzhou City, 646000, Sichuan Province, China.
| |
Collapse
|
28
|
Kun-Peng Z, Xiao-Long M, Lei Z, Chun-Lin Z, Jian-Ping H, Tai-Cheng Z. Screening circular RNA related to chemotherapeutic resistance in osteosarcoma by RNA sequencing. Epigenomics 2018; 10:1327-1346. [PMID: 30191736 DOI: 10.2217/epi-2018-0023] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To identify circular RNAs (circRNAs) related to osteosarcoma (OS) chemoresistance. Materials & methods: CircRNA expression profile was performed in three paired human chemoresistant and chemosensitive OS cell lines by next-generation sequencing. Quantitative real-time-PCR (qRT-PCR) was used to confirm next-generation sequencing data. Bioinformatics analysis was conducted to predict their functions. Results: Eighty circRNAs were dysregulated in the chemoresistant OS cells compared with the control, after validated by qRT-PCR. Bioinformatics analysis showed that some pathways related to drug metabolism were significantly enriched. Additionally, hsa_circ_0004674 was distinctly increased in OS chemoresistant cells and tissues, related to poor prognosis. CircRNA-miRNA-mRNA pathways related to hsa_circ_0004674 were constructed by TargetScan and miRanda. Conclusion: CircRNAs may play a role in OS chemoresistance and hsa_circ_0004674 might be a candidate target.
Collapse
Affiliation(s)
- Zhu Kun-Peng
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University, School of Medicine, Shanghai 200072, PR China
| | - Ma Xiao-Long
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University, School of Medicine, Shanghai 200072, PR China
| | - Zhang Lei
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University, School of Medicine, Shanghai 200072, PR China
| | - Zhang Chun-Lin
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University, School of Medicine, Shanghai 200072, PR China
| | - Hu Jian-Ping
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University, School of Medicine, Shanghai 200072, PR China
| | - Zhan Tai-Cheng
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University, School of Medicine, Shanghai 200072, PR China
| |
Collapse
|
29
|
Kun-Peng Z, Chun-Lin Z, Jian-Ping H, Lei Z. A novel circulating hsa_circ_0081001 act as a potential biomarker for diagnosis and prognosis of osteosarcoma. Int J Biol Sci 2018; 14:1513-1520. [PMID: 30263004 PMCID: PMC6158732 DOI: 10.7150/ijbs.27523] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/14/2018] [Indexed: 01/01/2023] Open
Abstract
Chemo-resistance and lung metastasis have been the two obstacles in the osteosarcoma (OS) treatment, which is still lack of effective biomarkers for prediction, diagnosis and treatment. Circular RNA (circRNA) is a new type of endogenous noncoding RNA that could serve as ideal biomarkers in cancer because of its stable loop structure. However, little is known about the diagnostic value of circRNAs in OS as well as their associations with clinicopathologic characteristics of OS patients. In the current study, we identified a novel circRNA, hsa_circ_0081001, screened by the RNA sequencing in the three paired chemo-resistant and chemo-sensitive OS cell lines (MG63/DXR vs MG63, KHOS/DXR vs KHOS, U2OS/DXR vs U2OS), and found that hsa_circ_0081001 was significantly up-regulated in the OS cell lines, tissues and serums, associated with poor overall survival and cox multivariate analysis showed that hsa_circ_0081001 was a novel independent prognostic factor for OS patients. Then, receiver operating characteristic (ROC) curve analysis revealed that hsa_circ_0081001 could act as a biomarker for the OS diagnosis and prognosis prediction, better than alkaline phosphatase (ALP) and lactate dehydrogenase (LDH). In addition, we preliminarily found that hsa_circ_0081001 expression level may dynamically monitor and reflect the condition changes of OS patients in a small-scale prospective clinical pretest. In conclusion, our study suggested that circulating hsa_circ_0081001 could serve as a potential biomarker and therapeutic target for OS patients.
Collapse
Affiliation(s)
- Zhu Kun-Peng
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Zhang Chun-Lin
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Hu Jian-Ping
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Zhang Lei
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| |
Collapse
|
30
|
Pongsuchart M, Kuchimaru T, Yonezawa S, Tran DTP, Kha NT, Hoang NTH, Kadonosono T, Kizaka‐Kondoh S. Novel lymphoid enhancer-binding factor 1-cytoglobin axis promotes extravasation of osteosarcoma cells into the lungs. Cancer Sci 2018; 109:2746-2756. [PMID: 29927026 PMCID: PMC6125443 DOI: 10.1111/cas.13702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/16/2018] [Indexed: 12/14/2022] Open
Abstract
Lung metastasis is a major cause of mortality in patients with osteosarcoma (OS). A better understanding of the molecular mechanism of OS lung metastasis may facilitate development of new therapeutic strategies to prevent the metastasis. We have established high- and low-metastatic sublines (LM8-H and LM8-L, respectively) from Dunn OS cell line LM8 by using in vivo image-guided screening. Among the genes whose expression was significantly increased in LM8-H compared to LM8-L, the transcription factor lymphoid enhancer-binding factor 1 (LEF1) was identified as a factor that promotes LM8-H cell extravasation into the lungs. To identify downstream effectors of LEF1 that are involved in OS lung metastasis, 13 genes were selected based on LM8 microarray data and genomewide meta-analysis of a public database for OS patients. Among them, the cytoglobin (Cygb) gene was identified as a key effector in promoting OS extravasation into the lungs. CYGB overexpression increased the extravasation ability of LM8-L cells, whereas knocking out the Cygb gene in LM8-H cells reduced this ability. Our results showed a novel LEF1-CYGB axis in OS lung metastasis and may provide a new way of developing therapeutic strategies to prevent OS lung metastasis.
Collapse
Affiliation(s)
- Mongkol Pongsuchart
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Takahiro Kuchimaru
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
- Present address:
Center for Molecular MedicineJichi Medical University 3311‐1YakushijiShimotsukeTochigiJapan
| | - Sakiko Yonezawa
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | | | - Nguyen The Kha
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Ngoc Thi Hong Hoang
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Tetsuya Kadonosono
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | | |
Collapse
|
31
|
Tian T, Fu X, Lu J, Ruan Z, Nan K, Yao Y, Yang Y. MicroRNA-760 Inhibits Doxorubicin Resistance in Hepatocellular Carcinoma through Regulating Notch1/Hes1-PTEN/Akt Signaling Pathway. J Biochem Mol Toxicol 2018; 32:e22167. [PMID: 29968951 DOI: 10.1002/jbt.22167] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022]
Abstract
Accumulating studies have suggested that microRNA-760 (miR-760) plays an important role in chemoresistance of various cancer cells. However, whether miR-760 regulates the chemoresistance of hepatocellular carcinoma (HCC) remains unclear. In this study, we found that miR-760 was decreased in HCC cell lines, and doxorubicin (Dox) treatment significantly decreased miR-760 expression in HCC cells. Overexpression of miR-760 sensitized HCC cells to Dox-induced cytotoxicity and apoptosis, whereas miR-760 inhibition showed the opposite effects. Notch1 was predicted as a target gene of miR-760. miR-760 negatively regulated Notch1 expression and Notch1/Hes1 signaling. Overexpression of miR-760 increased PTEN expression and decreased the phosphorylation of Akt. Activation of Notch signaling significantly reversed the inhibitory effect of miR-760 on Dox-resistance and abrogated the effect of miR-760 on the PTEN/Akt signaling pathway in HCC cells. Overall, our results demonstrate that miR-760 inhibits Dox-resistance in HCC cells through inhibiting Notch1 and promoting PTEN expression.
Collapse
Affiliation(s)
- Tao Tian
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Xiao Fu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Jun Lu
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Zhiping Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Kejun Nan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Yujuan Yang
- The Third Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, P.R. China
| |
Collapse
|
32
|
Knockdown of the oncogene lncRNA NEAT1 restores the availability of miR-34c and improves the sensitivity to cisplatin in osteosarcoma. Biosci Rep 2018; 38:BSR20180375. [PMID: 29654165 PMCID: PMC6435545 DOI: 10.1042/bsr20180375] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022] Open
Abstract
Aberrant expressions of long non-coding RNAs (lncRNAs) are the culprits of carcinogenesis via regulating the tumor suppressor or oncogene. LncRNA nuclear enriched abundant transcript 1 (NEAT1) has been identified to be an oncogene to promote tumor growth and metastasis of many cancers. However, the clinical significance and function of NEAT1 in osteosarcoma (OS) remain to be discovered. We here collected OS tissues (n=40) and adjacent non-tumor tissues (n=20) to determine the expression of NEAT1 and its clinical significance. NEAT1 was overexpressed in OS tissues, which positively correlated with tumor size, Enneking stage, and distant metastasis of OS patients. The elevated level of NEAT1 was confirmed in OS cell lines including MG63 and HOS in vitro. Knockdown of NEAT1 by two siRNAs induced impaired cell vitalities, promoted the apoptosis, and G0/G1 arrest in two cell lines, which was associated with inhibited anti-apoptosis signals BCL-2 pathway and cell cycle-related cyclin D1 (CCND1) signals. Moreover, the tumor suppressor miR-34c was negatively regulated and inhibited by NEAT1 in OS. Suppression of miR-34c could up-regulate the expressions of its target genes BCL-2 and CCND1 to antagonize the effects of NEAT1 knockdown. Furthermore, overexpressed NEAT1 reduced the sensitivity of cisplatin (DDP) and inhibited DDP-induced apoptosis and cell cycle arrest via miR-34c. The results in vivo also confirmed that knockdown of NEAT1 sensitized the OS cells to DPP-induced tumor regression, delayed the tumor growth with reduced levels of Ki-67, BCL-2, and cyclin D1 signals, suggesting that NEAT1 is an oncogene and chemotherapy resistant factor in OS.
Collapse
|
33
|
Kun-Peng Z, Xiao-Long M, Chun-Lin Z. Overexpressed circPVT1, a potential new circular RNA biomarker, contributes to doxorubicin and cisplatin resistance of osteosarcoma cells by regulating ABCB1. Int J Biol Sci 2018; 14:321-330. [PMID: 29559849 PMCID: PMC5859477 DOI: 10.7150/ijbs.24360] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/24/2018] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (circRNAs) represent a widespread class of non-coding RNAs generated from back-splicing, with a circular loop structure. Many circRNAs have been reported to play essential roles in cancer development and have the potential to serve as a novel class of biomarkers for clinical diagnosis. However, the role of circRNA in osteosarcoma (OS) remains largely unknown. In the current study, we examined the expression level of circular RNA PVT1 (circPVT1), previously screened and identified the oncogenic role in gastric cancer, in OS and found that circPVT1 was significantly up-regulated in the OS tissues, serums and chemoresistant cell lines, correlated with poor prognosis of OS patients. Besides, ROC curve demonstrated that circPVT1 may be a better diagnostic biomarker than alkaline phosphatase (ALP) in OS with more sensitivity and specificity. In addition, functional assays revealed that circPVT1 knockdown by siRNA could weaken the resistance to doxorubicin and cisplatin of OS cells through decreasing the expression of classical drug resistance-related gene ABCB1. These findings may provide a new insight into the role of circPVT1 as a biomarker for the diagnosis and treatment target of OS.
Collapse
Affiliation(s)
- Zhu Kun-Peng
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, PR China.,Institute of Bone Tumor Affiliated to Tongji University, School of Medicine, Shanghai 200072, PR China
| | - Ma Xiao-Long
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, PR China.,Institute of Bone Tumor Affiliated to Tongji University, School of Medicine, Shanghai 200072, PR China
| | - Zhang Chun-Lin
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, PR China.,Institute of Bone Tumor Affiliated to Tongji University, School of Medicine, Shanghai 200072, PR China
| |
Collapse
|
34
|
Ba Z, Gu L, Hao S, Wang X, Cheng Z, Nie G. Downregulation of lncRNA CASC2 facilitates osteosarcoma growth and invasion through miR-181a. Cell Prolif 2017; 51. [PMID: 29194827 DOI: 10.1111/cpr.12409] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/16/2017] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Long non-coding RNA cancer susceptibility candidate 2 (CASC2) is a novel lncRNA and has been indicated as playing tumour suppressor gene in several tumours. However, the role of CASC2 in osteosarcoma is still uncovered. MATERIALS AND METHODS The CASC2 and miR-181a expressions were measured via qRT-PCR. CCK-8 assay and colony formation assay were performed to determine the cell growth, and transwell assay was performed to assess the cell invasion. RESULTS We showed that CASC2 expression was downregulated in osteosarcoma samples and cell lines. Moreover, we showed that downregulated expression of CASC2 was correlated with advanced TNM stage. Furthermore, overexpression of CASC2 inhibited osteosarcoma cell proliferation, colony formation, and invasion. In addition, we indicated that ectopic expression of CASC2 suppressed miR-181a expression and enhanced the expression of Ras association domain family member 6 (RASSF6), PTEN and ATM in osteosarcoma cell, which were the direct target gene of miR-181a. Moreover, we indicated that RASSF6 expression was downregulated in osteosarcoma samples and cell lines and downregulated expression of RASSF6 was correlated with advanced TNM stage. We found that the expression of RASSF6 was positively correlated with the expression of CASC2 in osteosarcoma tissues. Ectopic expression of CASC2 suppressed the osteosarcoma cell proliferation, colony formation and invasion through regulating RASSF6 expression. CONCLUSIONS Our data illuminated that CASC2 acted as a tumour suppressor in osteosarcoma progression.
Collapse
Affiliation(s)
- Zhiwen Ba
- Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang, 150040, China
| | - Lili Gu
- Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang, 150040, China
| | - Songnan Hao
- Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang, 150040, China
| | - Xiaofang Wang
- Department of Infectious Disease, The Forth Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Zhenping Cheng
- Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang, 150040, China
| | - Guangchen Nie
- Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang, 150040, China
| |
Collapse
|
35
|
Abstract
Bone metastasis is one of the most common forms of metastasis from a number of different primary carcinomas. MicroRNAs (miRNAs) are short, endogenous RNAs that negatively regulate gene expression to control essential pathways, including those involved in bone organogenesis and homeostasis. As these pathways are often hijacked during bone metastasis, it is not surprising that miRNAs can also influence bone metastasis formation. Areas covered: In this review, we first summarize the major signalling pathways involved in normal bone development and bone metastasis. We will then discuss the overall roles of miRNAs in cancer metastasis and highlight the recent findings on the effects of miRNAs in bone metastasis. To this aim, we have performed a literature search in PubMed by using the search words 'miRNAs' and 'bone metastasis', selecting relevant scientific articles published between 2010 and 2016. Seminal publications before 2010 on the metastatic role of miRNAs have also been considered. Expert commentary: With the lack of current diagnostic biomarkers and effective targeted therapies for bone metastasis, the significant role of miRNAs in the regulation of bone homeostasis and bone metastasis may support the future use of miRNAs as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Douglas G Cheung
- a Department of Cancer Biology and Genetics , The Ohio State University , Columbus , Ohio , USA
| | - Marta Buzzetti
- b Biomedical Research Centre, School of Environment and Life Sciences , University of Salford , Salford , UK
| | - Gianpiero Di Leva
- b Biomedical Research Centre, School of Environment and Life Sciences , University of Salford , Salford , UK
| |
Collapse
|
36
|
Chen D, Liu D, Chen Z. Potential therapeutic implications of miRNAs in osteosarcoma chemotherapy. Tumour Biol 2017; 39:1010428317705762. [PMID: 28933259 DOI: 10.1177/1010428317705762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma is the most common primary bone cancer in young adults and adolescents. Drug resistance is the main cause leading to therapeutical failure. The mechanisms of drug resistance of osteosarcoma have not been fully understood. Notably, recent researches associate microRNA with drug resistance in osteosarcoma cells, raising the awareness that targeting microRNAs may help in chemotherapy success. In this review, we summarize the mechanisms linking microRNAs to drug resistance and ongoing researches on microRNAs in drug response to osteosarcoma. In addition, the therapeutic potential of microRNAs in chemotherapy will also be discussed.
Collapse
Affiliation(s)
- Dan Chen
- Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, P.R. China
| | - Ding Liu
- Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, P.R. China
| | - Zhiwei Chen
- Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, P.R. China
| |
Collapse
|
37
|
Fei Y, Guo P, Wang F, Li H, Lei Y, Li W, Xun X, Lu F. Identification of miRNA-mRNA crosstalk in laryngeal squamous cell carcinoma. Mol Med Rep 2017; 16:4179-4186. [DOI: 10.3892/mmr.2017.7123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 06/06/2017] [Indexed: 11/06/2022] Open
|
38
|
Li X, Shen JK, Hornicek FJ, Xiao T, Duan Z. Noncoding RNA in drug resistant sarcoma. Oncotarget 2017; 8:69086-69104. [PMID: 28978183 PMCID: PMC5620323 DOI: 10.18632/oncotarget.19029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022] Open
Abstract
Sarcomas are a group of malignant tumors that arise from mesenchymal origin. Despite significant development of multidisciplinary treatments for sarcoma, survival rates have reached a plateau. Chemotherapy has been extensively used for sarcoma treatment; however, the development of drug resistance is a major obstacle limiting the success of many anticancer agents. Sarcoma biology has traditionally focused on genomic and epigenomic deregulation of protein-coding genes to identify the therapeutic potential for reversing drug resistance. New and more creative approaches have found the involvement of noncoding RNAs, including microRNAs and long noncoding RNAs in drug resistant sarcoma. In this review, we discuss the current knowledge of noncoding RNAs characteristics and the regulated genes involved in drug resistant sarcoma, and focus on their therapeutic potential in the future.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Jacson K Shen
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Tao Xiao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114, USA
| |
Collapse
|
39
|
Jin C, Feng Y, Ni Y, Shan Z. MicroRNA-610 suppresses osteosarcoma oncogenicity via targeting TWIST1 expression. Oncotarget 2017; 8:56174-56184. [PMID: 28915582 PMCID: PMC5593553 DOI: 10.18632/oncotarget.17045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/24/2017] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma is the most frequent primary bone tumor affects adolescents and young adults. Recently, microRNAs (miRNAs) are short, non-coding and endogenous RNAs that played as important roles in the initiation and progression of tumors. In this study, we try to explore the biological function and expression of miR-610 in the osteosarcoma. We showed that miR-610 expression was downregulated in the osteosarcoma tissues and cell lines. Elevated expression of miR-610 suppressed the osteosarcoma cell proliferation, cell cycle, invasion and EMT program. Moreover, overexpression of miR-610 increased sensitivity of MG-63 and U2OS cells to cisplatin. Twist1 was identified as a direct target gene of miR-610 in the osteosarcoma cell. Furthermore, we demonstrated that Twist1 was upregulated in the osteosarcoma tissues and cell lines. The expression of Twist1 was negatively associated with the expression of miR-610 expression in the osteosarcoma tissues. Ectopic expression of Twist1 inhibited the sensitivity of miR-610-overexpressing MG-63 cells to cisplatin. We also showed that overexpression of Twist1 increased the proliferation and invasion of miR-610-overexpressing MG-63 cells. These data indicated that ectopic expression of miR-610 suppressed the osteosarcoma cell proliferation, cell cylce, invasion and increased the sensitivity of osteosarcoma cells to cisplatin through targeting the Twist1 expression.
Collapse
Affiliation(s)
- Chi Jin
- The Third Department of Orthopaedics, Central Hospital of Cangzhou City, Cangzhou, Hebei, China
| | - Yongjian Feng
- The Fourth Department of Orthopaedics, Central Hospital of Cangzhou City, Cangzhou, Hebei, China
| | - Yongjian Ni
- The Third Department of Orthopaedics, Central Hospital of Cangzhou City, Cangzhou, Hebei, China
| | - Zhonglin Shan
- The Third Department of Orthopaedics, Central Hospital of Cangzhou City, Cangzhou, Hebei, China
| |
Collapse
|
40
|
Ayers D, Vandesompele J. Influence of microRNAs and Long Non-Coding RNAs in Cancer Chemoresistance. Genes (Basel) 2017; 8:genes8030095. [PMID: 28273813 PMCID: PMC5368699 DOI: 10.3390/genes8030095] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022] Open
Abstract
Innate and acquired chemoresistance exhibited by most tumours exposed to conventional chemotherapeutic agents account for the majority of relapse cases in cancer patients. Such chemoresistance phenotypes are of a multi-factorial nature from multiple key molecular players. The discovery of the RNA interference pathway in 1998 and the widespread gene regulatory influences exerted by microRNAs (miRNAs) and other non-coding RNAs have certainly expanded the level of intricacy present for the development of any single physiological phenotype, including cancer chemoresistance. This review article focuses on the latest research efforts in identifying and validating specific key molecular players from the two main families of non-coding RNAs, namely miRNAs and long non-coding RNAs (lncRNAs), having direct or indirect influences in the development of cancer drug resistance properties and how such knowledge can be utilised for novel theranostics in oncology.
Collapse
Affiliation(s)
- Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD2080, Malta.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M1 7DN, UK.
| | - Jo Vandesompele
- Center for Medical Genetics Ghent, Ghent University, Ghent 9000, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
41
|
Jiao DM, Yan L, Wang LS, Hu HZ, Tang XL, Chen J, Wang J, Li Y, Chen QY. Exploration of inhibitory mechanisms of curcumin in lung cancer metastasis using a miRNA- transcription factor-target gene network. PLoS One 2017; 12:e0172470. [PMID: 28231299 PMCID: PMC5322911 DOI: 10.1371/journal.pone.0172470] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/06/2017] [Indexed: 12/27/2022] Open
Abstract
The present study was aimed to unravel the inhibitory mechanisms of curcumin for lung cancer metastasis via constructing a miRNA-transcription factor (TF)-target gene network. Differentially expressed miRNAs between human high-metastatic non-small cell lung cancer 95D cells treated with and without curcumin were identified using a TaqMan human miRNA array followed by real-time PCR, out of which, the top 6 miRNAs (miR-302b-3p, miR-335-5p, miR-338-3p, miR-34c-5p, miR-29c-3p and miR-34a-35p) with more verified target genes and TFs than other miRNAs as confirmed by a literature review were selected for further analysis. The miRecords database was utilized to predict the target genes of these 6 miRNAs, TFs of which were identified based on the TRANSFAC database. The findings of the above procedure were used to construct a miRNA-TF-target gene network, among which miR-34a-5p, miR-34c-5p and miR-302b-3p seemed to regulate CCND1, WNT1 and MYC to be involved in Wnt signaling pathway through the LEF1 transcription factor. Therefore, we suggest miR-34a-5p/miR-34c-5p/miR-302b-3p —LEF1—CCND1/WNT1/MYC axis may be a crucial mechanism in inhibition of lung cancer metastasis by curcumin.
Collapse
Affiliation(s)
- De-min Jiao
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, P.R. China
| | - Li Yan
- Department of Oncology, The 117th Hospital of PLA, Hangzhou, Zhejiang, P.R. China
| | - Li-shan Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Hui-zhen Hu
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, P.R. China
| | - Xia-li Tang
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, P.R. China
| | - Jun Chen
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, P.R. China
| | - Jian Wang
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, P.R. China
| | - You Li
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, P.R. China
| | - Qing-yong Chen
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, P.R. China
- * E-mail:
| |
Collapse
|
42
|
Geng S, Gu L, Ju F, Zhang H, Wang Y, Tang H, Bi Z, Yang C. MicroRNA-224 promotes the sensitivity of osteosarcoma cells to cisplatin by targeting Rac1. J Cell Mol Med 2016; 20:1611-9. [PMID: 27222381 PMCID: PMC4884199 DOI: 10.1111/jcmm.12852] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/22/2016] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumour in children and adolescents. Accumulating evidence has shown that microRNAs (miRNAs) participate in the development of almost all types of cancer. Here, we investigated the role of miR‐224 in the development and progression of osteosarcoma. We demonstrated that miR‐224 was down‐regulated in osteosarcoma cell lines and tissues. Lower miR‐224 levels were correlated with shorter survivalin osteosarcoma patients. Furthermore, overexpression of miR‐224 suppressed osteosarcoma cell proliferation, migration and invasion and contributed to the increased sensitivity of MG‐63 cells to cisplatin. We identified Rac1 as a direct target gene of miR‐224 in osteosarcoma. Rac1 expression was up‐regulated in the osteosarcoma cell lines and tissues, and there was an inverse correlation between Rac1 and miR‐224 expression in osteosarcoma tissues. Furthermore, rescuing Rac1 expression decreased the sensitivity of miR‐224‐overexpressing MG‐63 cells to cisplatin. We also demonstrated that ectopic expression of Rac1 promoted the proliferation, migration and invasion of miR‐224‐overexpressing MG‐63 cells. These data suggest that miR‐224 plays a tumour suppressor role in the development of osteosarcoma and is related to the sensitivity of osteosarcoma to cisplatin.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Prov., China
| | - Lina Gu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Prov., China
| | - Fang Ju
- Northern Institute for Cancer Research, Newcastle University, Sir James Spence Institute, RVI Hospital, UK
| | - Hepeng Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Prov., China
| | - Yiwen Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Prov., China
| | - Han Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Prov., China
| | - ZhengGang Bi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Prov., China
| | - Chenglin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Prov., China
| |
Collapse
|
43
|
Abstract
Osteosarcoma (OS) is a deadly bone malignancy affecting mostly children and adolescents. OS has outstandingly complex genetic alterations likely due to p53-independent genomic instability. Based on analysis of recent published research we claim existence of various genetic mechanisms of osteosarcomagenesis conferring great variability to different OS properties including metastatic potential. We also propose a model explaining how diverse genetic mechanisms occur and providing a framework for future research. P53-independent preexisting genomic instability, which precedes and frequently causes TP53 genetic alterations, is central in our model. In addition, our analyses reveal a possible cooperation between aberrantly activated HIF-1α and AP-1 genetic pathways in OS metastasis. We also review the involvement of noncoding RNA genes in OS metastasis.
Collapse
Affiliation(s)
- Vadim V Maximov
- Lautenberg Center for Immunology & Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Rami I Aqeilan
- Lautenberg Center for Immunology & Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.,Department of Molecular Virology, Immunology & Medical Genetics, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
44
|
MiR-138 Acts as a Tumor Suppressor by Targeting EZH2 and Enhances Cisplatin-Induced Apoptosis in Osteosarcoma Cells. PLoS One 2016; 11:e0150026. [PMID: 27019355 PMCID: PMC4809565 DOI: 10.1371/journal.pone.0150026] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 02/08/2016] [Indexed: 12/25/2022] Open
Abstract
Chemotherapeutic insensitivity remains a major obstacle to treating osteosarcoma effectively. Recently, increasing evidence has suggested that microRNAs (miRNAs) are involved in drug resistance. However, the effect of miR-138 on cisplatin chemoresistance in osteosarcoma has not been reported. We used real-time PCR to detect the expression of mature miR-138 in osteosarcoma tissues and cell lines. Cell proliferation, invasion, and migration assays were used to observe changes to the osteosarcoma malignant phenotype. MiR-138 was downregulated in osteosarcoma tissues and cell lines, and miR-138 overexpression negatively regulated osteosarcoma cell proliferation, migration, and invasion. We also verified that EZH2 is a direct target of miR-138. Furthermore, enhancing EZH2 expression reduced the inhibitory effects of miR-138 on osteosarcoma. Proliferation, apoptosis assays and caspase-3 activity assay confirmed that elevated miR-138 expression enhanced osteosarcoma cell chemosensitivity to cisplatin by targeting EZH2. In conclusion, the present study demonstrates that miR-138 acts as a tumor suppressor by enhancing osteosarcoma cell chemosensitivity and supports its potential application for treating osteosarcoma in the future.
Collapse
|
45
|
Varshney J, Scott MC, Largaespada DA, Subramanian S. Understanding the Osteosarcoma Pathobiology: A Comparative Oncology Approach. Vet Sci 2016; 3:vetsci3010003. [PMID: 29056713 PMCID: PMC5644613 DOI: 10.3390/vetsci3010003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/23/2015] [Accepted: 01/11/2016] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma is an aggressive primary bone tumor in humans and is among the most common cancer afflicting dogs. Despite surgical advancements and intensification of chemo- and targeted therapies, the survival outcome for osteosarcoma patients is, as of yet, suboptimal. The presence of metastatic disease at diagnosis or its recurrence after initial therapy is a major factor for the poor outcomes. It is thought that most human and canine patients have at least microscopic metastatic lesions at diagnosis. Osteosarcoma in dogs occurs naturally with greater frequency and shares many biological and clinical similarities with osteosarcoma in humans. From a genetic perspective, osteosarcoma in both humans and dogs is characterized by complex karyotypes with highly variable structural and numerical chromosomal aberrations. Similar molecular abnormalities have been observed in human and canine osteosarcoma. For instance, loss of TP53 and RB regulated pathways are common. While there are several oncogenes that are commonly amplified in both humans and dogs, such as MYC and RAS, no commonly activated proto-oncogene has been identified that could form the basis for targeted therapies. It remains possible that recurrent aberrant gene expression changes due to gene amplification or epigenetic alterations could be uncovered and these could be used for developing new, targeted therapies. However, the remarkably high genomic complexity of osteosarcoma has precluded their definitive identification. Several advantageous murine models of osteosarcoma have been generated. These include spontaneous and genetically engineered mouse models, including a model based on forward genetics and transposon mutagenesis allowing new genes and genetic pathways to be implicated in osteosarcoma development. The proposition of this review is that careful comparative genomic studies between human, canine and mouse models of osteosarcoma may help identify commonly affected and targetable pathways for alternative therapies for osteosarcoma patients. Translational research may be found through a path that begins in mouse models, and then moves through canine patients, and then human patients.
Collapse
Affiliation(s)
- Jyotika Varshney
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Surgery, University of Minnesota Medical School, Moos Tower, 11-212420 Delaware Street, S.E.; MMC 195, Minneapolis, MN 55455, USA.
| | - Milcah C Scott
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55455, USA.
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - David A Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Subbaya Subramanian
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Surgery, University of Minnesota Medical School, Moos Tower, 11-212420 Delaware Street, S.E.; MMC 195, Minneapolis, MN 55455, USA.
| |
Collapse
|
46
|
Abstract
Hepatocellular carcinoma, one of the most common solid tumors worldwide, is poorly responsive to available chemotherapeutic approaches. While systemic chemotherapy is of limited benefit, intra-arterial delivery of doxorubicin to the tumor frequently produces tumor shrinkage. Its utility is limited, in part, by the frequent emergence of doxorubicin resistance. The mechanisms of this resistance include increased expression of multidrug resistance efflux pumps, alterations of the drug target, topoisomerase, and modulation of programmed cell death pathways. Many of these effects result from changes in miRNA expression and are particularly prominent in tumor cells with a stem cell phenotype. This review will summarize the current knowledge on the mechanisms of doxorubicin resistance of hepatocellular carcinoma and the potential for approaches toward therapeutic chemosensitization.
Collapse
Affiliation(s)
- Josiah Cox
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Steven Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
47
|
Zhang CL, Zhu KP, Shen GQ, Zhu ZS. A long non-coding RNA contributes to doxorubicin resistance of osteosarcoma. Tumour Biol 2015; 37:2737-48. [DOI: 10.1007/s13277-015-4130-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/20/2015] [Indexed: 02/07/2023] Open
|
48
|
MicroRNAs as potential biomarkers in cancer: opportunities and challenges. BIOMED RESEARCH INTERNATIONAL 2015; 2015:125094. [PMID: 25874201 PMCID: PMC4385606 DOI: 10.1155/2015/125094] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/05/2014] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are a group of small noncoding RNAs (ncRNAs) that posttranscriptionally regulate gene expression by targeting their corresponding messenger RNAs (mRNAs). Dysregulated miRNAs have been considered as a new type of ‘‘oncomiRs” or ‘‘tumor suppressors,” playing essential roles in cancer initiation and progression. Using genome-wide detection methods, ubiquitously aberrant expression profiles of miRNAs have been identified in a broad array of human cancers, showing great potential as novel diagnostic and prognostic biomarkers of cancer with high specificity and sensitivity. The detectable miRNAs in tissue, blood, and other body fluids with high stability provide an abundant source for miRNA-based biomarkers in human cancers. Despite the fact that an increasing number of potential miRNA biomarkers have been reported, the transition of miRNAs-based biomarkers from bench to bedside still necessitates addressing several challenges. In this review, we will summarize our current understanding of miRNAs as potential biomarkers in human cancers.
Collapse
|
49
|
Zhang J, Yan YG, Wang C, Zhang SJ, Yu XH, Wang WJ. MicroRNAs in osteosarcoma. Clin Chim Acta 2015; 444:9-17. [PMID: 25661090 DOI: 10.1016/j.cca.2015.01.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 12/25/2022]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor with high morbidity that principally emerges in children and adolescents. Presently, the prognosis of OS patients remains poor due to resistance to chemotherapy, highlighting the need for new therapeutic approaches. MicroRNAs (miRNAs), a class of small noncoding RNA molecules, can negatively modulate protein expression at the post-transcriptional level. miRNAs regulate a variety of normal physiologic processes and are involved in tumorigenesis and development of multiple malignancies, including OS. Some miRNAs are differentially expressed in OS tissues, cell lines and serum, and have been shown to correlate with the malignant phenotype and prognosis. These altered miRNAs function as oncogenes or tumor suppressor genes in this process. Moreover, restoration of miRNA expression has shown promise for the treatment of OS. Here, we describe miRNA biochemistry with a focus on expression profile, role and therapeutic potential in OS. A better understanding will facilitate the identification and characterization of novel biomarkers and development of miRNA-targeted therapies.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Yi-Guo Yan
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Cheng Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Shu-Jun Zhang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Life Science Research Center, University of South China, Hengyang, Hunan 421001, China.
| | - Wen-Jun Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|