1
|
Wojtera B, Ostrowska K, Szewczyk M, Masternak MM, Golusiński W. Chloride intracellular channels in oncology as potential novel biomarkers and personalized therapy targets: a systematic review. Rep Pract Oncol Radiother 2024; 29:258-270. [PMID: 39143969 PMCID: PMC11321771 DOI: 10.5603/rpor.99674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/29/2024] [Indexed: 08/16/2024] Open
Abstract
Background The chloride intracellular channels (CLICs) family includes six ion channels (CLIC1-CLIC6) expressed on the cellular level and secreted into interstitial fluid and blood. They are involved in the physiological functioning of multiple systems as well as the pathogenetic processes of cancer. CLICs play essential roles in the tumor microenvironment. The current systematic review aimed at identifying and summarizing the research of CLICs in oncology on clinical material to assess CLICs' potential as novel biomarkers and personalized therapy targets. Materials and methods The authors systematically searched the PubMed database for original articles concerning CLIC research on clinical material of all types of cancer - fluids and tissues. Results Fifty-three articles investigating in summary 3944 clinical samples were qualified for the current review. Studied material included 3438 tumor samples (87%), 437 blood samples (11%), and 69 interstitial fluid samples (2%). Studies investigated 21 cancer types, mostly hepatocellular carcinoma, colorectal, ovarian, and gastric cancer. Importantly, CLIC1, CLIC2, CLIC3, CLIC4, and CLIC5 were differently expressed in cancerous tissues and patients' blood compared to healthy controls. Moreover, CLICs were found to be involved in several cancer-associated signaling pathways, such as PI3K/AKT, MAPK/ERK, and MAPK/p38. Conclusion CLIC family members may be candidates for potential novel cancer biomarkers due to the contrast in their expression between cancerous and healthy tissues and secretion to the interstitial fluid and blood. CLICs are investigated as potential therapeutic targets because of their involvement in cancer pathogenesis and tumor microenvironment.
Collapse
Affiliation(s)
- Bartosz Wojtera
- Department of Head and Neck Surgery, Greater Poland Cancer Centre, Poznan University of Medical Sciences, Poznan, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan University of Medical Sciences, Poznan, Poland
| | - Kamila Ostrowska
- Department of Head and Neck Surgery, Greater Poland Cancer Centre, Poznan University of Medical Sciences, Poznan, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan University of Medical Sciences, Poznan, Poland
| | - Mateusz Szewczyk
- Department of Head and Neck Surgery, Greater Poland Cancer Centre, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał M. Masternak
- Department of Head and Neck Surgery, Greater Poland Cancer Centre, Poznan University of Medical Sciences, Poznan, Poland
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| | - Wojciech Golusiński
- Department of Head and Neck Surgery, Greater Poland Cancer Centre, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
2
|
Nong ZL, Zhao K, Wang Y, Yu Z, Wang CJ, Chen JQ. CLIC1-mediated autophagy confers resistance to DDP in gastric cancer. Anticancer Drugs 2024; 35:1-11. [PMID: 37104099 PMCID: PMC10720815 DOI: 10.1097/cad.0000000000001518] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/07/2023] [Indexed: 04/28/2023]
Abstract
Gastric cancer has been a constant concern to researchers as one of the most common malignant tumors worldwide. The treatment options for gastric cancer include surgery, chemotherapy and traditional Chinese medicine. Chemotherapy is an effective treatment for patients with advanced gastric cancer. Cisplatin (DDP) has been approved as a critical chemotherapy drug to treat various kinds of solid tumors. Although DDP is an effective chemotherapeutic agent, many patients develop drug resistance during treatment, which has become a severe problem in clinical chemotherapy. This study aims to investigate the mechanism of DDP resistance in gastric cancer. The results show that intracellular chloride channel 1 (CLIC1) expression was increased in AGS/DDP and MKN28/DDP, and as compared to the parental cells, autophagy was activated. In addition, the sensitivity of gastric cancer cells to DDP was decreased compared to the control group, and autophagy increased after overexpression of CLIC1. On the contrary, gastric cancer cells were more sensitive to cisplatin after transfection of CLIC1siRNA or treatment with autophagy inhibitors. These experiments suggest that CLIC1 could alter the sensitivity of gastric cancer cells to DDP by activating autophagy. Overall, the results of this study recommend a novel mechanism of DDP resistance in gastric cancer.
Collapse
Affiliation(s)
- Zhen-Liang Nong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region
- Guangxi Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer
- Guangxi Clinical Research Center for Enhanced Recovery after Surgery
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images
| | - Kun Zhao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Ye Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region
- Guangxi Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer
- Guangxi Clinical Research Center for Enhanced Recovery after Surgery
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images
| | - Zhu Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region
- Guangxi Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer
- Guangxi Clinical Research Center for Enhanced Recovery after Surgery
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images
| | - Cong-jun Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region
- Guangxi Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer
- Guangxi Clinical Research Center for Enhanced Recovery after Surgery
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images
| | - Jun-Qiang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region
- Guangxi Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer
- Guangxi Clinical Research Center for Enhanced Recovery after Surgery
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images
| |
Collapse
|
3
|
Chloride Intracellular Channel Protein 1 Expression and Angiogenic Profile of Liver Metastasis of Digestive Origin. Curr Issues Mol Biol 2023; 45:1396-1406. [PMID: 36826036 PMCID: PMC9956008 DOI: 10.3390/cimb45020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Chloride intracellular channel 1 (CLIC1) is involved in cell migration and metastasis. The histological growth patterns of liver metastasis are as follows: desmoplastic (d-HGP), replacement (r-HGP), pushing (p-HGP), and mixed. The aim of this study was to evaluate the relation between HGP, angiogenesis, and CLIC1 expression. Materials and Methods: A total of 40 cases of primary tumors and their LM: d-HGP (12 cases), r-HGP (13 cases), and p-HGP (15 cases), were evaluated through simple and double immunostaining. CLIC1 assessment was conducted as follows: scores of 0 (less than 10% of positive cells), 1 (10-30%), 2 (30-50%), or 3 (more than 50%) were assigned. Heterogeneous CLIC1 expression was found. CLIC1 in primary tumors correlated with grade G for all cases of LM with a p-HGP (p = 0.004). The CLIC1 score for LMs with an r-HGP correlated with grade G of the corresponding primary tumor (p = 0.027). CLIC1 and CD34+/Ki67+ vessels (p = 0.006) correlated in primary tumors. CLIC1 in primary tumors correlated with CD34+/Ki67+ vessels of LMs with a d HGP (p = 0.024). Conclusions: The CLIC1 score may have prognostic value, mainly for LMs with a p-HGP and r-HGP, and therapeutic value for LMs with a d-HGP.
Collapse
|
4
|
Wang W, Huang G, Lin H, Ren L, Fu L, Mao X. Label-free LC-MS/MS proteomics analyses reveal CLIC1 as a predictive biomarker for bladder cancer staging and prognosis. Front Oncol 2023; 12:1102392. [PMID: 36727059 PMCID: PMC9885092 DOI: 10.3389/fonc.2022.1102392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction Bladder cancer (BC) is a significant carcinoma of the urinary system that has a high incidence of morbidity and death owing to the challenges in accurately identifying people with early-stage BC and the lack of effective treatment options for those with advanced BC. Thus, there is a need to define new markers of prognosis and prediction. Methods In this study, we have performed a comprehensive proteomics experiment by label-free quantitative proteomics to compare the proteome changes in the serum of normal people and bladder cancer patients-the successful quantification of 2064 Quantifiable proteins in total. A quantitative analysis was conducted to determine the extent of changes in protein species' relative intensity and reproducibility. There were 43 upregulated proteins and 36 downregulated proteins discovered in non-muscle invasive bladder cancer and normal individuals. Sixty-four of these proteins were elevated, and 51 were downregulated in muscle-invasive and non-muscle-invasive bladder cancer, respectively. Functional roles of differentially expressed proteins were annotated using Gene Ontology (GO) and Clusters of Orthologous Groups of Proteins (COG). To analyze the functions and pathways enriched by differentially expressed proteins, GO enrichment analysis, protein domain analysis, and KEGG pathway analysis were performed. The proteome differences were examined and visualized using radar plots, heat maps, bubble plots, and Venn diagrams. Results As a result of combining the Venn diagram with protein-protein interactions (PPIs), Chloride intracellular channel 1 (CLIC1) was identified as the primary protein. Using the Gene Set Cancer Analysis (GSCA) website, the influence of CLIC1 on immune infiltration was analyzed. A negative correlation between CD8 naive and CLIC1 levels was found. For validation, immunohistochemical (IHC), qPCR, and western blotting (WB) were performed.Further, we found that CLIC1 was associated with a poor prognosis of bladder cancer in survival analysis. Discussion Our research screened CLIC1 as a tumor-promoting protein in bladder cancer for the first time using serum mass spectrometry. And CLIC1 associated with tumor stage, and immune infiltrate. The prognostic biomarker and therapeutic target CLIC1 may be new for bladder cancer patients.
Collapse
Affiliation(s)
- Weifeng Wang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guankai Huang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hansen Lin
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Ren
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liangmin Fu
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaopeng Mao
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Chloride Channels and Transporters: Roles beyond Classical Cellular Homeostatic pH or Ion Balance in Cancers. Cancers (Basel) 2022; 14:cancers14040856. [PMID: 35205604 PMCID: PMC8870652 DOI: 10.3390/cancers14040856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Roles of chloride-associated transporters have been raised in various cancers. Although complicated ion movements, crosstalk among channels/transporters through homeostatic electric regulation, difficulties with experimental implementation such as activity measurement of intracellular location were disturbed to verify the precise modulation of channels/transporters, recently defined cancerous function and communication with tumor microenvironment of chloride channels/transporters should be highlighted beyond classical homeostatic ion balance. Chloride-associated transporters as membrane-associated components of chloride movement, regulations of transmembrane member 16A, calcium-activated chloride channel regulators, transmembrane member 206, chloride intracellular channels, voltage-gated chloride channels, cystic fibrosis transmembrane conductance regulator, voltage-dependent anion channel, volume-regulated anion channel, and chloride-bicarbonate exchangers are discussed. Abstract The canonical roles of chloride channels and chloride-associated transporters have been physiologically determined; these roles include the maintenance of membrane potential, pH balance, and volume regulation and subsequent cellular functions such as autophagy and cellular proliferative processes. However, chloride channels/transporters also play other roles, beyond these classical function, in cancerous tissues and under specific conditions. Here, we focused on the chloride channel-associated cancers and present recent advances in understanding the environments of various types of cancer caused by the participation of many chloride channel or transporters families and discuss the challenges and potential targets for cancer treatment. The modulation of chloride channels/transporters might promote new aspect of cancer treatment strategies.
Collapse
|
6
|
Zu F, Chen H, Liu Q, Zang H, Li Z, Tan X. Syntenin Regulated by miR-216b Promotes Cancer Progression in Pancreatic Cancer. Front Oncol 2022; 12:790788. [PMID: 35155233 PMCID: PMC8831246 DOI: 10.3389/fonc.2022.790788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
Outcomes for patients with pancreatic cancer (PC) are poor; therefore, there is an urgent need to identify novel therapeutic targets involved in the progression of PC. We previously identified 161 differentially expressed proteins (DEPs) in PC. Syntenin (SDCBP) was identified as a survival-related protein through integrated, survival, and Cox analyses. High expression of SDCBP was associated with a poor prognosis in PC tissue and promoted the proliferation, migration, and invasion of PC cells, and induced epithelial–mesenchymal transition (EMT) via the PI3K/AKT pathway. Additionally, we elucidated the regulatory mechanism underlying these roles of SDCBP at the post-transcriptional level. microRNAs (miRNAs) of SDCBP were predicted using bioinformatics. Low levels of miR-216b expression were confirmed in PC tissues and were negatively correlated with SDCBP expression. miR-216b was found to directly regulate SDCBP expression through luciferase reporter assays. Furthermore, agomiR-216b restrained PC proliferation, migration, invasion, and EMT via the PI3K/AKT pathway, whereas antagomiR-216b facilitated this process. Notably, the knockout of SDCBP counteracted the effect of antagomiR-216b in PC, which suggested that miR-216b and SDCBP represent molecular targets underlying PC progression and EMT. Finally, the results were validated in in vivo studies. These findings indicated that low expression of miR-216b and the oncogene SDCBP contributes to PC migration, invasion, and EMT, and that they have potential as future therapeutic targets for patients with PC.
Collapse
Affiliation(s)
- Fuqiang Zu
- Department of Pancreatic and Thyroid Surgery, General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hui Chen
- Department of Pancreatic and Thyroid Surgery, General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qingfeng Liu
- Department of General Surgery, The People’s Hospital of China Medical University, Shenyang, China
| | - Hui Zang
- Department of General Surgery, The People’s Hospital of China Medical University, Shenyang, China
| | - Zeyu Li
- Department of Pancreatic and Thyroid Surgery, General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodong Tan
- Department of Pancreatic and Thyroid Surgery, General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Xiaodong Tan,
| |
Collapse
|
7
|
Dishman AF, Peterson FC, Volkman BF. Specific binding-induced modulation of the XCL1 metamorphic equilibrium. Biopolymers 2021; 112:e23402. [PMID: 32986858 PMCID: PMC8004533 DOI: 10.1002/bip.23402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/27/2020] [Accepted: 09/10/2020] [Indexed: 01/25/2023]
Abstract
The metamorphic protein XCL1 switches between two distinct native structures with different functions in the human immune system. This structural interconversion requires complete rearrangement of all hydrogen bonding networks, yet fold-switching occurs spontaneously and reversibly in solution. One structure occupies the canonical α-β chemokine fold and binds XCL1's cognate G-protein coupled receptor, while the other structure occupies a dimeric, all-β fold that binds glycosaminoglycans and has antimicrobial activity. Both of these functions are important for the biologic role of XCL1 in the immune system, and each structure is approximately equally populated under near-physiologic conditions. Recent work has begun to illuminate XCL1's role in combatting infection and cancer. However, without a way to control XCL1's dynamic structural interconversion, it is difficult to study the role of XCL1 fold-switching in human health and disease. Thus, a molecular tool that can regulate the fractional population of the two XCL1 structures is needed. Here, we find by heparin affinity chromatography and NMR that an engineered XCL1 variant called CC5 can trigger a dose-dependent shift in XCL1's metamorphic equilibrium such that the receptor binding structure is depleted, and the antimicrobial structure is more heavily populated. This shift likely occurs due to formation of XCL1-CC5 heterodimers in which both protomers occupy the β-sheet structure. These findings lay the groundwork for future studies seeking to understand the functional role of XCL1 metamorphosis, as well as studies screening for a drug-like molecule that can therapeutically target XCL1 by tuning its metamorphic equilibrium. Moreover, the proof of concept presented here suggests that protein metamorphosis is druggable, opening numerous avenues for controlling biological function of metamorphic proteins by altering the population of their multiple native states.
Collapse
Affiliation(s)
- Acacia F. Dishman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Francis C. Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian F. Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
8
|
Chen J, Zhang M, Ma Z, Yuan D, Zhu J, Tuo B, Li T, Liu X. Alteration and dysfunction of ion channels/transporters in a hypoxic microenvironment results in the development and progression of gastric cancer. Cell Oncol (Dordr) 2021; 44:739-749. [PMID: 33856653 PMCID: PMC8338819 DOI: 10.1007/s13402-021-00604-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common malignant cancers in the world and has only few treatment options and, concomitantly, a poor prognosis. It is generally accepted now that the tumor microenvironment, particularly that under hypoxia, plays an important role in cancer development. Hypoxia can regulate the energy metabolism and malignancy of tumor cells by inducing or altering various important factors, such as oxidative stress, reactive oxygen species (ROS), hypoxia-inducible factors (HIFs), autophagy and acidosis. In addition, altered expression and/or dysfunction of ion channels/transporters (ICTs) have been encountered in a variety of human tumors, including GC, and to play an important role in the processes of tumor cell proliferation, migration, invasion and apoptosis. Increasing evidence indicates that ICTs are at least partly involved in interactions between cancer cells and their hypoxic microenvironment. Here, we provide an overview of the different ICTs that regulate or are regulated by hypoxia in GC. CONCLUSIONS AND PERSPECTIVES Hypoxia is one of the major obstacles to cancer therapy. Regulating cellular responses and factors under hypoxia can inhibit GC. Similarly, altering the expression or activity of ICTs, such as the application of ion channel inhibitors, can slow down the growth and/or migration of GC cells. Since targeting the hypoxic microenvironment and/or ICTs may be a promising strategy for the treatment of GC, more attention should be paid to the interplay between ICTs and the development and progression of GC in such a microenvironment.
Collapse
Affiliation(s)
- Junling Chen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| | - Minglin Zhang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Dumin Yuan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China.
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China.
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China.
| |
Collapse
|
9
|
Wang H, An J, He S, Liao C, Wang J, Tuo B. Chloride intracellular channels as novel biomarkers for digestive system tumors (Review). Mol Med Rep 2021; 24:630. [PMID: 34278487 DOI: 10.3892/mmr.2021.12269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/19/2021] [Indexed: 11/06/2022] Open
Abstract
Digestive system malignant tumors are common tumors, and the traditional treatment methods for these tumors include surgical resection, radiotherapy, chemotherapy, and molecularly targeted drugs. However, diagnosis remains challenging, and the early detection of postoperative recurrence is complicated. Therefore, it is necessary to explore novel biomarkers to facilitate clinical diagnosis and treatment. Accumulating evidence supports the crucial role of chloride channels in the development of multiple types of cancers. Given that chloride channels are widely expressed and involved in cell proliferation, apoptosis and cell cycle, among other processes, they may serve as a promising diagnostic and therapeutic target. Chloride intracellular channels (CLICs) are a class of chloride channels that are upregulated or downregulated in certain types of cancer. Furthermore, in certain cases, during cell cycle progression, the localization and function of the cytosolic form of the transmembrane proteins of CLICs are also altered, which may provide a key target for cancer therapy. The aim of the present review was to focus on CLICs as biomarkers for digestive system tumors.
Collapse
Affiliation(s)
- Hui Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Suyu He
- The Fourth Department of the Digestive Disease Center, Suining Central Hospital, Suining, Sichuan 629000, P.R. China
| | - Chengcheng Liao
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
| | - Juan Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
10
|
Cianci F, Verduci I. Transmembrane Chloride Intracellular Channel 1 (tmCLIC1) as a Potential Biomarker for Personalized Medicine. J Pers Med 2021; 11:jpm11070635. [PMID: 34357102 PMCID: PMC8307889 DOI: 10.3390/jpm11070635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
Identification of potential pathological biomarkers has proved to be essential for understanding complex and fatal diseases, such as cancer and neurodegenerative diseases. Ion channels are involved in the maintenance of cellular homeostasis. Moreover, loss of function and aberrant expression of ion channels and transporters have been linked to various cancers, and to neurodegeneration. The Chloride Intracellular Channel 1 (CLIC1), CLIC1 is a metamorphic protein belonging to a partially unexplored protein superfamily, the CLICs. In homeostatic conditions, CLIC1 protein is expressed in cells as a cytosolic monomer. In pathological states, CLIC1 is specifically expressed as transmembrane chloride channel. In the following review, we trace the involvement of CLIC1 protein functions in physiological and in pathological conditions and assess its functionally active isoform as a potential target for future therapeutic strategies.
Collapse
|
11
|
Zhang Y, Liu Q, Liu J, Liao Q. Upregulated CD58 is associated with clinicopathological characteristics and poor prognosis of patients with pancreatic ductal adenocarcinoma. Cancer Cell Int 2021; 21:327. [PMID: 34193136 PMCID: PMC8243423 DOI: 10.1186/s12935-021-02037-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/21/2021] [Indexed: 01/11/2023] Open
Abstract
Background CD58 has been demonstrated to be abnormally expressed in multiple hematopoietic malignancies and solid tumors and plays an essential role in tumorigenesis and progression; however, its clinical significance and prognostic value in pancreatic ductal adenocarcinoma (PDAC) remain unknown. Methods Based on diverse online public databases and 81 PDAC samples of tissue microarray-based immunohistochemistry (IHC), we evaluated CD58 expression in PDAC patients and analyzed its association with clinicopathological characteristics, clinical outcomes, and infiltration of immune cells in PDAC. Furthermore, the correlation between CD58 and the cancer stem cell (CSC)-related, epithelial–mesenchymal transition (EMT)-related, and immune-related markers were detected. Besides, the functional enrichment analysis and related pathways were analyzed and visualized. Results CD58 expression was elevated in pancreatitis and PDAC tissues than normal pancreas or adjacent nontumor tissues. The positive cases of CD58 (e.g. more than 50% positive cells) in PDAC account for 95.06% (77/81). Upregulated CD58 in cancer tissues was associated with worse histological grade, larger tumor size, and poorer overall survival and disease-free survival in PDAC patients. Furthermore, Cox multivariate regression analysis revealed that CD58 was an independent prognostic factor in PDAC. CD58 expression was correlated with infiltrations of neutrophils, CD8+ T cells, and dendritic cells (DCs). In addition, correlation gene analysis indicated that CD58 expression was strongly correlated with immune-related, EMT-related, and CSC-related markers. Functional enrichment analysis and KEGG pathway manifested that CD58 might be involved in PDAC initiation and progression. Conclusions CD58 expression is upregulated in PDAC tissues and its high expression is notably related to poor survival of PDAC. Therefore, CD58 may serve as a novel and effective marker for predicting the prognosis of PDAC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02037-0.
Collapse
Affiliation(s)
- Yalu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Jingkai Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
12
|
Wang W, Li X, Xu Y, Guo W, Yu H, Zhang L, Wang Y, Chen X. Acetylation-stabilized chloride intracellular channel 1 exerts a tumor-promoting effect on cervical cancer cells by activating NF-κB. Cell Oncol (Dordr) 2021; 44:557-568. [PMID: 33469837 DOI: 10.1007/s13402-020-00582-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Cervical cancer remains a major cause of cancer-related death in women, especially in developing countries. Previously, we found that the acetylation levels of chloride intracellular channel 1 (CLIC1) at lysine 131 were increased in cervical cancer tissues using a label-free proteomics approach. The aim of this study was to further determine the role of CLIC1 expression and its acetylation in cervical cancer. METHODS CLIC1 expression and its implications for the prognosis of cervical cancer were analyzed using primary patient samples and cells, and the Gene Expression Profiling Interactive Analysis (GEPIA) database (gepia.cancer-pku.cn). The effect of CLIC1 on cervical cancer cells was evaluated using Cell Counting Kit (CCK)-8, flow cytometry, scratch wound healing, transwell, Western blotting and co-immunoprecipitation (Co-IP) assays. In vivo tumor growth was assessed using mouse xenograft models. RESULTS We found that CLIC1 expression was increased in cervical cancer tissues and cells and that patients with a high CLIC1 expression tended to have a shorter overall survival time. Knockdown of CLIC1 significantly reduced in vitro cervical cancer cell proliferation, migration and invasion, and in vivo tumorigenesis. At the molecular level, we found that nuclear factor kappa B (NF-κB) activity was positively regulated by CLIC1. Pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF-κB, attenuated the tumor-promoting effect of CLIC1. Moreover, we found that CLIC1 acetylation at K131 was upregulated in cervical cancer cells, which stabilized CLIC1 by inhibiting its ubiquitynation. Substitution of K131 inhibited CLIC1 ubiquitynation and promoted in vitro cervical cancer cell proliferation, migration and invasion, and in vivo tumor growth. In addition, we found that acetyltransferase HAT1 was responsible for CLIC1 acetylation at K131. CONCLUSION Our data indicate that CLIC1 acts as a tumor promoter in cervical cancer, suggesting a potential treatment strategy for cervical cancer by regulating CLIC1 expression and/or acetylation.
Collapse
Affiliation(s)
- Wanyue Wang
- School of Basic Medical Sciences, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China
| | - Xin Li
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Ye Xu
- Department of Gynecology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang Province, China
| | - Weikang Guo
- Department of Gynecology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang Province, China
| | - Hui Yu
- Department of Cardiopulmonary Function, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Lu Zhang
- Department of Gynecology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang Province, China
| | - Yaoxian Wang
- Department of Gynecology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang Province, China.
| | - Xiuwei Chen
- Department of Gynecology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang Province, China.
| |
Collapse
|
13
|
Francisco MA, Wanggou S, Fan JJ, Dong W, Chen X, Momin A, Abeysundara N, Min HK, Chan J, McAdam R, Sia M, Pusong RJ, Liu S, Patel N, Ramaswamy V, Kijima N, Wang LY, Song Y, Kafri R, Taylor MD, Li X, Huang X. Chloride intracellular channel 1 cooperates with potassium channel EAG2 to promote medulloblastoma growth. J Exp Med 2020; 217:133839. [PMID: 32097463 PMCID: PMC7201926 DOI: 10.1084/jem.20190971] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/27/2019] [Accepted: 01/16/2020] [Indexed: 01/13/2023] Open
Abstract
Ion channels represent a large class of drug targets, but their role in brain cancer is underexplored. Here, we identify that chloride intracellular channel 1 (CLIC1) is overexpressed in human central nervous system malignancies, including medulloblastoma, a common pediatric brain cancer. While global knockout does not overtly affect mouse development, genetic deletion of CLIC1 suppresses medulloblastoma growth in xenograft and genetically engineered mouse models. Mechanistically, CLIC1 enriches to the plasma membrane during mitosis and cooperates with potassium channel EAG2 at lipid rafts to regulate cell volume homeostasis. CLIC1 deficiency is associated with elevation of cell/nuclear volume ratio, uncoupling between RNA biosynthesis and cell size increase, and activation of the p38 MAPK pathway that suppresses proliferation. Concurrent knockdown of CLIC1/EAG2 and their evolutionarily conserved channels synergistically suppressed the growth of human medulloblastoma cells and Drosophila melanogaster brain tumors, respectively. These findings establish CLIC1 as a molecular dependency in rapidly dividing medulloblastoma cells, provide insights into the mechanism by which CLIC1 regulates tumorigenesis, and reveal that targeting CLIC1 and its functionally cooperative potassium channel is a disease-intervention strategy.
Collapse
Affiliation(s)
- Michelle A Francisco
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Siyi Wanggou
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jerry J Fan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Weifan Dong
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Xin Chen
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ali Momin
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Namal Abeysundara
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hyun-Kee Min
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jade Chan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Rochelle McAdam
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Marian Sia
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ronwell J Pusong
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shixuan Liu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nish Patel
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Vijay Ramaswamy
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Noriyuki Kijima
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lu-Yang Wang
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Yuanquan Song
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ran Kafri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael D Taylor
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xi Huang
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Schnipper J, Dhennin-Duthille I, Ahidouch A, Ouadid-Ahidouch H. Ion Channel Signature in Healthy Pancreas and Pancreatic Ductal Adenocarcinoma. Front Pharmacol 2020; 11:568993. [PMID: 33178018 PMCID: PMC7596276 DOI: 10.3389/fphar.2020.568993] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth most common cause of cancer-related deaths in United States and Europe. It is predicted that PDAC will become the second leading cause of cancer-related deaths during the next decades. The development of PDAC is not well understood, however, studies have shown that dysregulated exocrine pancreatic fluid secretion can contribute to pathologies of exocrine pancreas, including PDAC. The major roles of healthy exocrine pancreatic tissue are secretion of enzymes and bicarbonate rich fluid, where ion channels participate to fine-tune these biological processes. It is well known that ion channels located in the plasma membrane regulate multiple cellular functions and are involved in the communication between extracellular events and intracellular signaling pathways and can function as signal transducers themselves. Hereby, they contribute to maintain resting membrane potential, electrical signaling in excitable cells, and ion homeostasis. Despite their contribution to basic cellular processes, ion channels are also involved in the malignant transformation from a normal to a malignant phenotype. Aberrant expression and activity of ion channels have an impact on essentially all hallmarks of cancer defined as; uncontrolled proliferation, evasion of apoptosis, sustained angiogenesis and promotion of invasion and migration. Research indicates that certain ion channels are involved in the aberrant tumor growth and metastatic processes of PDAC. The purpose of this review is to summarize the important expression, localization, and function of ion channels in normal exocrine pancreatic tissue and how they are involved in PDAC progression and development. As ion channels are suggested to be potential targets of treatment they are furthermore suggested to be biomarkers of different cancers. Therefore, we describe the importance of ion channels in PDAC as markers of diagnosis and clinical factors.
Collapse
Affiliation(s)
- Julie Schnipper
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France
| | - Isabelle Dhennin-Duthille
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France
| | - Ahmed Ahidouch
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France.,Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Halima Ouadid-Ahidouch
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
15
|
Ion Channels in Cancer: Orchestrators of Electrical Signaling and Cellular Crosstalk. Rev Physiol Biochem Pharmacol 2020; 183:103-133. [PMID: 32894333 DOI: 10.1007/112_2020_48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ion channels are pore-forming transmembrane proteins that govern ion flux to regulate a myriad of biological processes in development, physiology, and disease. Across various types of cancer, ion channel expression and activity are often dysregulated. We review the contribution of ion channels to multiple stages of tumorigenesis based on data from in vivo model systems. As intertumoral and intratumoral heterogeneities are major obstacles in developing effective therapies, we provide perspectives on how ion channels in tumor cells and their microenvironment represent targetable vulnerabilities in the areas of tumor-stromal cell interactions, cancer neuroscience, and cancer mechanobiology.
Collapse
|
16
|
WD repeat-containing protein 1 maintains β-Catenin activity to promote pancreatic cancer aggressiveness. Br J Cancer 2020; 123:1012-1023. [PMID: 32601462 PMCID: PMC7492282 DOI: 10.1038/s41416-020-0929-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 04/27/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background The molecular signature underlying pancreatic ductal adenocarcinoma (PDAC) progression may include key proteins affecting the malignant phenotypes. Here, we aimed to identify the proteins implicated in PDAC with different tumour-node-metastasis (TNM) stages. Methods Eight-plex isobaric tags coupled with two-dimensional liquid chromatography–tandem mass spectrometry were used to analyse the proteome of PDAC tissues with different TNM stages. A loss-of-function study was performed to evaluate the oncogenic roles of WD repeat-containing protein 1 (WDR1) in PDAC. The molecular mechanism by which WDR1 promotes PDAC progression was studied by real-time qPCR, Western blotting, proximity ligation assay and co-immunoprecipitation. Results A total of 5036 proteins were identified, and 4708 proteins were quantified with high confidence. Compared with normal pancreatic tissues, 37 proteins were changed significantly in PDAC tissues of different stages. Moreover, 64 proteins were upregulated or downregulated in a stepwise manner as the TNM stages of PDAC increased, and 10 proteins were related to tumorigenesis. The functionally uncharacterised protein, WDR1, was highly expressed in PDAC and predicted a poor prognosis. WDR1 knockdown suppressed PDAC tumour growth and metastasis in vitro and in vivo. Moreover, WDR1 knockdown repressed the activity of the Wnt/β-Catenin pathway; ectopic expression of a stabilised form of β-Catenin restored the suppressive effects of WDR1 knockdown. Mechanistically, WDR1 interacted with USP7 to prevent ubiquitination-mediated degradation of β-Catenin. Conclusion Our study identifies several previous functional unknown proteins implicated in the progression of PDAC, and provides new insight into the oncogenic roles of WDR1 in PDAC development.
Collapse
|
17
|
The Interplay of Dysregulated pH and Electrolyte Imbalance in Cancer. Cancers (Basel) 2020; 12:cancers12040898. [PMID: 32272658 PMCID: PMC7226178 DOI: 10.3390/cancers12040898] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer cells and tissues have an aberrant regulation of hydrogen ion dynamics driven by a combination of poor vascular perfusion, regional hypoxia, and increased the flux of carbons through fermentative glycolysis. This leads to extracellular acidosis and intracellular alkalinization. Dysregulated pH dynamics influence cancer cell biology, from cell transformation and tumorigenesis to proliferation, local growth, invasion, and metastasis. Moreover, this dysregulated intracellular pH (pHi) drives a metabolic shift to increased aerobic glycolysis and reduced mitochondrial oxidative phosphorylation, referred to as the Warburg effect, or Warburg metabolism, which is a selective feature of cancer. This metabolic reprogramming confers a thermodynamic advantage on cancer cells and tissues by protecting them against oxidative stress, enhancing their resistance to hypoxia, and allowing a rapid conversion of nutrients into biomass to enable cell proliferation. Indeed, most cancers have increased glucose uptake and lactic acid production. Furthermore, cancer cells have very dysregulated electrolyte balances, and in the interaction of the pH dynamics with electrolyte, dynamics is less well known. In this review, we highlight the interconnected roles of dysregulated pH dynamics and electrolytes imbalance in cancer initiation, progression, adaptation, and in determining the programming and reprogramming of tumor cell metabolism.
Collapse
|
18
|
Gururaja Rao S, Patel NJ, Singh H. Intracellular Chloride Channels: Novel Biomarkers in Diseases. Front Physiol 2020; 11:96. [PMID: 32116799 PMCID: PMC7034325 DOI: 10.3389/fphys.2020.00096] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/27/2020] [Indexed: 12/27/2022] Open
Abstract
Ion channels are integral membrane proteins present on the plasma membrane as well as intracellular membranes. In the human genome, there are more than 400 known genes encoding ion channel proteins. Ion channels are known to regulate several cellular, organellar, and physiological processes. Any mutation or disruption in their function can result in pathological disorders, both common or rare. Ion channels present on the plasma membrane are widely acknowledged for their role in various biological processes, but in recent years, several studies have pointed out the importance of ion channels located in intracellular organelles. However, ion channels located in intracellular organelles are not well-understood in the context of physiological conditions, such as the generation of cellular excitability and ionic homeostasis. Due to the lack of information regarding their molecular identity and technical limitations of studying them, intracellular organelle ion channels have thus far been overlooked as potential therapeutic targets. In this review, we focus on a novel class of intracellular organelle ion channels, Chloride Intracellular Ion Channels (CLICs), mainly documented for their role in cardiovascular, neurophysiology, and tumor biology. CLICs have a single transmembrane domain, and in cells, they exist in cytosolic as well as membranous forms. They are predominantly present in intracellular organelles and have recently been shown to be localized to cardiomyocyte mitochondria as well as exosomes. In fact, a member of this family, CLIC5, is the first mitochondrial chloride channel to be identified on the molecular level in the inner mitochondrial membrane, while another member, CLIC4, is located predominantly in the outer mitochondrial membrane. In this review, we discuss this unique class of intracellular chloride channels, their role in pathologies, such as cardiovascular, cancer, and neurodegenerative diseases, and the recent developments concerning their usage as theraputic targets.
Collapse
Affiliation(s)
- Shubha Gururaja Rao
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Neel J Patel
- Department of Cardiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
19
|
Nesiu A, Cimpean AM, Ceausu RA, Adile A, Ioiart I, Porta C, Mazzanti M, Camerota TC, Raica M. Intracellular Chloride Ion Channel Protein-1 Expression in Clear Cell Renal Cell Carcinoma. Cancer Genomics Proteomics 2019; 16:299-307. [PMID: 31243111 DOI: 10.21873/cgp.20135] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIM Chloride intracellular channel 1 (CLIC1) represents a promising target for personalized therapy. Our aim was to assess CLIC1 expression in clear cell renal cell carcinoma (cc RCC) and identify its possible prognostic role. MATERIALS AND METHODS Fifty cases of cc RCC were evaluated and selected for immunohistochemistry. CLIC1 expression was correlated with tumor grade, invasion and heterogeneity. RESULTS A total of 87.5% of the cases were CLIC1 positive, with either a homogeneous (31.42%) or a heterogeneous (68.57%) pattern. Low, mild and strong CLIC1 expressing tumors were defined based on nuclear (N), cytoplasmic (C), membrane (M) or combinations of them (NC, NM, CM, NCM) in terms of CLIC1 distribution. A significant correlation was found between tumor grade and percent of positive tumor cells (p=0.017). For G3 tumors, CLIC1 cytoplasmic expression was strongly correlated with high expression status (p=0.025) and tumor heterogeneity (p=0.004). CLIC1 expression was also correlated with metastasis (p=0.046). CONCLUSION We defined four cc RCC groups depending on G, CLIC1 expression and pattern: i) G3/NM/low CLIC1+, ii) G2/CM/mild CLIC1+ iii) G1 or G2/NM or CM /high CLIC1+, and iv) G2/M /high CLIC1.
Collapse
Affiliation(s)
- Alexandru Nesiu
- Department of Urology, Vasile Goldis University, Arad, Romania
| | - Anca Maria Cimpean
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania .,Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Raluca Amalia Ceausu
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania.,Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ahmed Adile
- Department of Urology, Vasile Goldis University, Arad, Romania
| | - Ioan Ioiart
- Department of Urology, Vasile Goldis University, Arad, Romania
| | - Camillo Porta
- Department of Internal Medicine, University of Pavia & Division of Translational Oncology, IRCCS ICS Maugeri of Pavia, Pavia, Italy
| | - Michele Mazzanti
- Department of Biosciences, Laboratory of Cellular and Molecular Physiology, University of Milano, Milan, Italy
| | | | - Marius Raica
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania.,Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
20
|
High Expression of TTYH3 is Related to Poor Clinical Outcomes in Human Gastric Cancer. J Clin Med 2019; 8:jcm8111762. [PMID: 31652813 PMCID: PMC6912211 DOI: 10.3390/jcm8111762] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Ion channels play important roles in regulating various cellular processes and malignant transformation. Expressions of some chloride channels have been suggested to be associated with patient survival in gastric cancer (GC). However, little is known about the expression and function of TTYH3, a gene encoding a chloride ion channel, in cancer progression. Here, we comprehensively analyzed the expression of TTYH3 and its clinical outcome in GC using publicly available cancer gene expression and patient survival data through various databases. We examined the differences of TTYH3 expression between cancers and their normal tissues using the Oncomine, UALCAN, and GEO (Gene Expression Omnibus) databases. TTYH3 expression was investigated from immunohistochemistry images using the Human Protein Atlas database. Copy number alterations and mutations of TTYH3 were analyzed using cBioPortal. The co-expression profile of TTYH3 in GC was revealed using Oncomine. The gene ontology and pathway analyses were done using those co-expressed genes via the Enrichr tool to explore the predicted signaling pathways in GC. TTYH3 mRNA and protein levels in GC were significantly greater than those in normal tissue. Kaplan–Meier analysis revealed the upregulation of TTYH3 expression, which was significantly correlated with worse patient survival. Collectively, our data suggest that TTYH3 might be a potential prognostic marker for GC patients.
Collapse
|
21
|
Anderson KJ, Cormier RT, Scott PM. Role of ion channels in gastrointestinal cancer. World J Gastroenterol 2019; 25:5732-5772. [PMID: 31636470 PMCID: PMC6801186 DOI: 10.3748/wjg.v25.i38.5732] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/26/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
In their seminal papers Hanahan and Weinberg described oncogenic processes a normal cell undergoes to be transformed into a cancer cell. The functions of ion channels in the gastrointestinal (GI) tract influence a variety of cellular processes, many of which overlap with these hallmarks of cancer. In this review we focus on the roles of the calcium (Ca2+), sodium (Na+), potassium (K+), chloride (Cl-) and zinc (Zn2+) transporters in GI cancer, with a special emphasis on the roles of the KCNQ1 K+ channel and CFTR Cl- channel in colorectal cancer (CRC). Ca2+ is a ubiquitous second messenger, serving as a signaling molecule for a variety of cellular processes such as control of the cell cycle, apoptosis, and migration. Various members of the TRP superfamily, including TRPM8, TRPM7, TRPM6 and TRPM2, have been implicated in GI cancers, especially through overexpression in pancreatic adenocarcinomas and down-regulation in colon cancer. Voltage-gated sodium channels (VGSCs) are classically associated with the initiation and conduction of action potentials in electrically excitable cells such as neurons and muscle cells. The VGSC NaV1.5 is abundantly expressed in human colorectal CRC cell lines as well as being highly expressed in primary CRC samples. Studies have demonstrated that conductance through NaV1.5 contributes significantly to CRC cell invasiveness and cancer progression. Zn2+ transporters of the ZIP/SLC39A and ZnT/SLC30A families are dysregulated in all major GI organ cancers, in particular, ZIP4 up-regulation in pancreatic cancer (PC). More than 70 K+ channel genes, clustered in four families, are found expressed in the GI tract, where they regulate a range of cellular processes, including gastrin secretion in the stomach and anion secretion and fluid balance in the intestinal tract. Several distinct types of K+ channels are found dysregulated in the GI tract. Notable are hERG1 upregulation in PC, gastric cancer (GC) and CRC, leading to enhanced cancer angiogenesis and invasion, and KCNQ1 down-regulation in CRC, where KCNQ1 expression is associated with enhanced disease-free survival in stage II, III, and IV disease. Cl- channels are critical for a range of cellular and tissue processes in the GI tract, especially fluid balance in the colon. Most notable is CFTR, whose deficiency leads to mucus blockage, microbial dysbiosis and inflammation in the intestinal tract. CFTR is a tumor suppressor in several GI cancers. Cystic fibrosis patients are at a significant risk for CRC and low levels of CFTR expression are associated with poor overall disease-free survival in sporadic CRC. Two other classes of chloride channels that are dysregulated in GI cancers are the chloride intracellular channels (CLIC1, 3 & 4) and the chloride channel accessory proteins (CLCA1,2,4). CLIC1 & 4 are upregulated in PC, GC, gallbladder cancer, and CRC, while the CLCA proteins have been reported to be down-regulated in CRC. In summary, it is clear, from the diverse influences of ion channels, that their aberrant expression and/or activity can contribute to malignant transformation and tumor progression. Further, because ion channels are often localized to the plasma membrane and subject to multiple layers of regulation, they represent promising clinical targets for therapeutic intervention including the repurposing of current drugs.
Collapse
Affiliation(s)
- Kyle J Anderson
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Robert T Cormier
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Patricia M Scott
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| |
Collapse
|
22
|
Zhao K, Wang Z, Li X, Liu JL, Tian L, Chen JQ. Exosome-mediated transfer of CLIC1 contributes to the vincristine-resistance in gastric cancer. Mol Cell Biochem 2019; 462:97-105. [PMID: 31473882 DOI: 10.1007/s11010-019-03613-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/17/2019] [Indexed: 12/26/2022]
Abstract
Our previous study shows that high Chloride intracellular channel 1 (CLIC1) expression can efficiently enhance invasion and migration of gastric cancer (GC) cells in vitro. Growing evidences have found that exosomes are involved in chemotherapy resistance in several cancers including GC. We aimed to evaluate the effect of the exosome-mediated transfer of CLIC1 in the vincristine-resistance of GC. The effect of exosome-mediated transfer of CLIC1 on the development of resistance to vincristine in GC cell line SGC-7901 and the potential underlying mechanisms were investigated by Cell Counting Kit-8 (CCK8), RT-PCR, and Western blotting. Exosomes were isolated from cell supernatants by differential ultracentrifugation. Comparing with SGC-7901, the expression level of CLIC1 is higher in vincristine‑resistant cell line SGC-7901/VCR (P < 0.05). After silencing the expression of CLIC1 by RNA interference, the half inhibition concentration (IC50) to vincristine decreased significantly in SGC-7901/VCR, and the expression of CLIC1 decreased significantly in exosomes from SGC-7901/VCR. After 48 h co-culturing with exosomes from SGC-7901/VCR, the IC50 to vincristine in SGC-7901 increased significantly, and the expression of CLIC1, P-gp, and Bcl-2 were significantly up-regulated. CLIC1 was closely associated with the resistance to vincristine in GC, and exosome-mediated transfer of CLIC1 could induce the development of resistance to vincristine in vitro. The possible mechanism was related to up-regulated P-gp and Bcl-2. However, in vivo study was needed to confirm the results in future.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhen Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Xin Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Jin-Lu Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Lei Tian
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| | - Jun-Qiang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
23
|
Yue X, Cui Y, You Q, Lu Y, Zhang J. MicroRNA‑124 negatively regulates chloride intracellular channel 1 to suppress the migration and invasion of liver cancer cells. Oncol Rep 2019; 42:1380-1390. [PMID: 31364737 PMCID: PMC6718097 DOI: 10.3892/or.2019.7250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/29/2019] [Indexed: 12/24/2022] Open
Abstract
The dysregulation of microRNAs (miRNAs) is associated with the development and progression of a variety of cancers, including liver cancer. Aberrant expression of miRNA (miR)-124 has been demonstrated in liver cancer, but its functional mechanism in liver cancer is still largely unknown. Metastasis of liver cancer is one of the most common causes of mortality. The present study showed that miR-124 inhibited the proliferation, migration and invasion of liver cancer cells. Furthermore, chloride intracellular channel 1 (CLIC1) was identified as a novel target of miR-124 in liver cancer cells. Overexpression of miR-124 reduced CLIC1 expression at both the protein and mRNA levels in liver cancer cells. Downregulation of CLIC1 decreased the migration and invasion of liver cancer cells without affecting cell proliferation. Taken together, these results showed that CLIC1 is a critical target for miR-124-mediated inhibitory effects on cell migration and invasion. Thus, miR-124 or suppression of CLIC1 may have diagnostic value and therapeutic potential for the treatment of human liver cancer.
Collapse
Affiliation(s)
- Xupeng Yue
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, P.R. China
| | - Yuanyuan Cui
- The Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99163, USA
| | - Qi You
- Medical and Nurse College, Sanmenxia Polytechnic, Sanmenxia, Henan 472000, P.R. China
| | - Yanxin Lu
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, P.R. China
| | - Jufeng Zhang
- School of Life Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
24
|
Barbieri F, Verduci I, Carlini V, Zona G, Pagano A, Mazzanti M, Florio T. Repurposed Biguanide Drugs in Glioblastoma Exert Antiproliferative Effects via the Inhibition of Intracellular Chloride Channel 1 Activity. Front Oncol 2019; 9:135. [PMID: 30918838 PMCID: PMC6424887 DOI: 10.3389/fonc.2019.00135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
The lack of in-depth knowledge about the molecular determinants of glioblastoma (GBM) occurrence and progression, combined with few effective and BBB crossing-targeted compounds represents a major challenge for the discovery of novel and efficacious drugs for GBM. Among relevant molecular factors controlling the aggressive behavior of GBM, chloride intracellular channel 1 (CLIC1) represents an emerging prognostic and predictive biomarker, as well as a promising therapeutic target. CLIC1 is a metamorphic protein, co-existing as both soluble cytoplasmic and membrane-associated conformers, with the latter acting as chloride selective ion channel. CLIC1 is involved in several physiological cell functions and its abnormal expression triggers tumor development, favoring tumor cell proliferation, invasion, and metastasis. CLIC1 overexpression is associated with aggressive features of various human solid tumors, including GBM, in which its expression level is correlated with poor prognosis. Moreover, increasing evidence shows that modification of microglia ion channel activity, and CLIC1 in particular, contributes to the development of different neuropathological states and brain tumors. Intriguingly, CLIC1 is constitutively active within cancer stem cells (CSCs), while it seems less relevant for the survival of non-CSC GBM subpopulations and for normal cells. CSCs represent GBM development and progression driving force, being endowed with stem cell-like properties (self-renewal and differentiation), ability to survive therapies, to expand and differentiate, causing tumor recurrence. Downregulation of CLIC1 results in drastic inhibition of GBM CSC proliferation in vitro and in vivo, making the control of the activity this of channel a possible innovative pharmacological target. Recently, drugs belonging to the biguanide class (including metformin) were reported to selectively inhibit CLIC1 activity in CSCs, impairing their viability and invasiveness, but sparing normal stem cells, thus representing potential novel antitumor drugs with a safe toxicological profile. On these premises, we review the most recent insights into the biological role of CLIC1 as a potential selective pharmacological target in GBM. Moreover, we examine old and new drugs able to functionally target CLIC1 activity, discussing the challenges and potential development of CLIC1-targeted therapies.
Collapse
Affiliation(s)
- Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica, Università di Genoa, Genoa, Italy
| | - Ivan Verduci
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Valentina Carlini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Gianluigi Zona
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili, Università di Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Aldo Pagano
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Dipartimento di Medicina Sperimentale, Università di Genoa, Genoa, Italy
| | - Michele Mazzanti
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica, Università di Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
25
|
Xu Y, Xu J, Feng J, Li J, Jiang C, Li X, Zou S, Wang Q, Li Y. Expression of CLIC1 as a potential biomarker for oral squamous cell carcinoma: a preliminary study. Onco Targets Ther 2018; 11:8073-8081. [PMID: 30519049 PMCID: PMC6239106 DOI: 10.2147/ott.s181936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose CLIC1, a member of the highly conserved class ion-channel protein family, is frequently upregulated in multiple human malignancies and has been demonstrated to play a critical role in cell proliferation, apoptosis, and invasion. However, limited is known about its expression, biological functions, and action mechanism in oral malignancies. We aimed to evaluate whether CLIC1 could be a biomarker for oral squamous cell carcinoma (OSCC). Methods Immunohistochemistry was used to analyze the expression of CLIC1 in tissue. CLIC1 protein and mRNA were measured through Western immunoblotting and quantitative real-time PCR. CLIC1 protein expression in plasma was detected via ELISA. A total of 72 OSCC specimens were recruited in this study for evaluation of correlations of CLIC1 with clinicopathological features and survival. Results CLIC1 was significantly overexpressed in tissue and plasma of OSCC patients. It was found that upregulated CLIC1 was distinctly correlated with histological grade, TNM stage, and tumor size. Meanwhile, Kaplan–Meier survival analysis showed that OSCC patients with high CLIC1 expression had remarkably poorer overall survival rate than those with low CLIC1 expression. Multivariate Cox regression analysis revealed that CLIC1 was the independent prognostic factor for overall survival rate of OSCC patients. In addition, Pearson correlation analysis showed that CLIC1 was associated with multiple tumor-associated genes. Conclusion These results indicated that CLIC1 acts as a molecular target in OSCC and may present a novel diagnostic marker and therapeutic target for OSCC.
Collapse
Affiliation(s)
- Ying Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Jie Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Jiali Feng
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Jie Li
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Chao Jiang
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Xian Li
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Sihai Zou
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Qian Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Yong Li
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| |
Collapse
|
26
|
CLIC1 and CLIC4 complement CA125 as a diagnostic biomarker panel for all subtypes of epithelial ovarian cancer. Sci Rep 2018; 8:14725. [PMID: 30282979 PMCID: PMC6170428 DOI: 10.1038/s41598-018-32885-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/18/2018] [Indexed: 01/20/2023] Open
Abstract
New plasma and tissue biomarkers of epithelial ovarian cancer (EOC) could improve early diagnosis and post-diagnosis clinical management. Here we investigated tissue staining and tissue secretion of CLIC1 and CLIC4 across EOC subtypes. CLIC1 and CLIC4 are two promising biomarkers we previously showed were elevated in EOC patient sera. Individually, CLIC1 or CLIC4 stained larger percentages of malignant tumors across all EOC subtypes compared with CA125, particularly early stage and mucinous tumors. CLIC4 also stained benign tumors but staining was limited to nuclei; whereas malignant tumors showed diffuse cellular staining of stromal and tumor cells. Both proteins were shed by all EOC subtypes tumors in short term organ culture at more consistent levels than CA125, supporting their potential as pan-subtype serum and tissue biomarkers. Elevated CLIC4 expression, but not CLIC1 expression, was a negative indicator of patient survival, and CLIC4 knockdown in cultured cells decreased cell proliferation and migration indicating a potential role in tumor progression. These results suggest CLIC1 and CLIC4 are promising serum and tissue biomarkers as well as potential therapeutic targets for all EOC subtypes. This justifies development of high throughput serum/plasma biomarker assays to evaluate utility of a biomarker panel consisting of CLIC1, CLIC4 and CA125.
Collapse
|
27
|
Kobayashi T, Shiozaki A, Nako Y, Ichikawa D, Kosuga T, Shoda K, Arita T, Konishi H, Komatsu S, Kubota T, Fujiwara H, Okamoto K, Kishimoto M, Konishi E, Marunaka Y, Otsuji E. Chloride intracellular channel 1 as a switch among tumor behaviors in human esophageal squamous cell carcinoma. Oncotarget 2018; 9:23237-23252. [PMID: 29796185 PMCID: PMC5955400 DOI: 10.18632/oncotarget.25296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/10/2018] [Indexed: 01/15/2023] Open
Abstract
Background: Recent studies have reported important roles for chloride intracellular channel 1 (CLIC1) in various cancers; however, its involvement in esophageal squamous cell carcinoma (ESCC) remains unclear. The aim of the present study was to investigate the role of CLIC1 in human ESCC. Methods: CLIC1 expression in human ESCC cell lines was analyzed by Western blotting. Knockdown experiments were conducted with CLIC1 siRNA, and their effects on cell proliferation, the cell cycle, apoptosis, migration, and invasion were analyzed. The gene expression profiles of cells were analyzed using a microarray analysis. An immunohistochemical analysis was performed on 61 primary tumor samples obtained from ESCC patients who underwent esophagectomy. Results: ESCC cells strongly expressed CLIC1. The depletion of CLIC1 using siRNA inhibited cell proliferation, induced apoptosis, and promoted cell migration and invasion. The results of the microarray analysis revealed that the depletion of CLIC1 regulated apoptosis via the TLR2/JNK pathway. Immunohistochemistry showed that CLIC1 was present in the cytoplasm of carcinoma cells, and that the very strong or very weak expression of CLIC1 was an independent poor prognostic factor. Conclusions: The present results suggest that the very strong expression of CLIC1 enhances tumor survival, while its very weak expression promotes cellular movement. The present study provides an insight into the role of CLIC1 as a switch among tumor behaviors in ESCC.
Collapse
Affiliation(s)
- Toshiyuki Kobayashi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yoshito Nako
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Daisuke Ichikawa
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
- Department of Gastrointestinal, Breast & Endocrine Surgery, Faculty of Medicine, University of Yamanashi, Chuo, 409-3898, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Katsutoshi Shoda
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Mitsuo Kishimoto
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Eiichi Konishi
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yoshinori Marunaka
- Departments of Molecular Cell Physiology and Bio-Ionomics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
- Japan Institute for Food Education and Health, St. Agnes’ University, Kyoto, 602-8013, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| |
Collapse
|
28
|
Yu W, Cui R, Qu H, Liu C, Deng H, Zhang Z. Expression and prognostic value of CLIC1 in epithelial ovarian cancer. Exp Ther Med 2018; 15:4943-4949. [PMID: 29805518 PMCID: PMC5952105 DOI: 10.3892/etm.2018.6000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/14/2018] [Indexed: 12/27/2022] Open
Abstract
The clinical significance of the chloride intracellular channel 1 (CLIC1) protein in ovarian cancer is yet to be determined. The present study aimed to investigate the association between CLIC1 expression, and clinicopathological features and prognosis of patients with epithelial ovarian cancer. In this retrospective study, CLIC1 level was determined by reverse transcription-quantitative polymerase chain reaction, western blotting and immunohistochemical staining. The association between CLIC1 expression and clinicopathological characteristics were evaluated. Progression-free survival and overall survival were assessed by univariate, and multivariate analyses. mRNA and protein levels of CLIC1 were significantly higher in cancerous tissues than in healthy ovarian tissues (P<0.001). CLIC1 signals in epithelial ovarian cancer tissues were significantly higher than that in healthy tissues (P<0.001). CLIC1 expression was significantly higher in higher-grade tumors than in low-grade tumors (P<0.001). Moreover, overexpression of CLIC1 was associated with cisplatin resistance (P<0.001). CLIC1 expression was an independent factor that predicted shorter progression-free survival (P=0.006) and overall survival (P=0.002) for patients with epithelial ovarian cancer. These findings indicate that CLIC1 is overexpressed and is associated with poor prognosis in patients with epithelial ovarian cancer.
Collapse
Affiliation(s)
- Wentao Yu
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China.,Department of Vascular Surgery, Brigham and Women's Hospital, Harvard Medical University, Boston, MA 02115, USA
| | - Ran Cui
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Hong Qu
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Chongdong Liu
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
29
|
He YM, Zhang ZL, Liu QY, Xiao YS, Wei L, Xi C, Nan X. Effect of CLIC1 gene silencing on proliferation, migration, invasion and apoptosis of human gallbladder cancer cells. J Cell Mol Med 2018. [PMID: 29516682 PMCID: PMC5908121 DOI: 10.1111/jcmm.13499] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study aimed to explore the effects of CLIC1 gene silencing on proliferation, migration, invasion and apoptosis of human gallbladder cancer (GBC). GBC and normal gallbladder tissues were extracted for the detection of mRNA and protein expressions of CLIC1. GBC‐SD and NOZ cells in the logarithmic growth phase were selected to conduct the experiment. Three different siRNA recombined expression vectors were established using CLIC1 as a target at different sites. Reverse transcription quantitative polymerase chain reaction (RT‐qPCR) and Western blotting were, respectively, used to detect the CLIC1 mRNA and protein expressions. MTT assay was performed to detect the cell proliferation. Flow cytometry was applied to measure the cell apoptosis and cell cycle distribution. The variations of cell migration and invasion were evaluated using Transwell assay. GBC tissues showed higher CLIC1 mRNA and protein expressions than normal gallbladder tissues. The CLIC1 mRNA and protein expressions in the CLIC1 siRNA group were significantly lower than those in the NC and blank groups. Compared with the NC and blank groups, the CLIC1 siRNA group showed a significant decrease in cell proliferation but an obvious increase in apoptosis rate in GBC cells. Besides, in the CLIC1 siRNA group, cell percentage in G0/G1 and G2/M phase was gradually increased but decreased in S phases. The migration and invasion abilities in GBC cells were significantly lower than those in the NC and blank groups. Our study demonstrates that CLIC1 gene silencing could promote apoptosis and inhibit proliferation migration and invasion of GBC cells.
Collapse
Affiliation(s)
- Yue-Ming He
- Department of Hepato-Pancreato-Biliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhong-Lin Zhang
- Department of Hepato-Pancreato-Biliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Quan-Yan Liu
- Department of Hepato-Pancreato-Biliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu-Sha Xiao
- Department of Hepato-Pancreato-Biliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Wei
- Department of Hepato-Pancreato-Biliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chen Xi
- College of Life Science, Wuhan University, Wuhan, China
| | - Xiang Nan
- College of Life Science, Wuhan University, Wuhan, China
| |
Collapse
|
30
|
Powell RM, Lissauer D, Tamblyn J, Beggs A, Cox P, Moss P, Kilby MD. Decidual T Cells Exhibit a Highly Differentiated Phenotype and Demonstrate Potential Fetal Specificity and a Strong Transcriptional Response to IFN. THE JOURNAL OF IMMUNOLOGY 2017; 199:3406-3417. [PMID: 28986438 DOI: 10.4049/jimmunol.1700114] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/30/2017] [Indexed: 01/16/2023]
Abstract
Immune tolerance during human pregnancy is maintained by a range of modifications to the local and systemic maternal immune system. Lymphoid infiltration is seen at the implantation site of the fetal-maternal interface, and decidual NK cells have been demonstrated to facilitate extravillous trophoblast invasion into maternal decidua during the first trimester, optimizing hemochorial placentation. However, although there is considerable T cell infiltration of the maternal decidua, the functional properties of this T cell response remain poorly defined. We investigated the specificity and regulation of CD4+ and CD8+ T cells obtained from human third trimester decidua and demonstrated that decidual CD4+ and CD8+ T cells exhibit a highly differentiated effector memory phenotype in comparison with peripheral blood and display increased production of IFN-γ and IL-4. Moreover, decidual T cells proliferated in response to fetal tissue, and depletion of T regulatory cells led to an increase in fetal-specific proliferation. HY-specific T cells were detectable in the decidua of women with male pregnancies and were shown to be highly differentiated. Transcriptional analysis of decidual T cells revealed a unique gene profile characterized by elevated expression of proteins associated with the response to IFN signaling. These data have considerable importance both for the study of healthy placentation and for the investigation of the potential importance of fetal-specific alloreactive immune responses within disorders of pregnancy.
Collapse
Affiliation(s)
- Richard M Powell
- Institute of Immunology and Immunotherapy, Birmingham Health Partners, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - David Lissauer
- Centre for Women's and Newborn Health, Birmingham Health Partners, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jennifer Tamblyn
- Centre for Women's and Newborn Health, Birmingham Health Partners, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.,Centre of Endocrinology, Diabetes and Metabolism, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Andrew Beggs
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Philip Cox
- Department of Perinatal Pathology, Centre of Women's and Children's Health, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Paul Moss
- Institute of Immunology and Immunotherapy, Birmingham Health Partners, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Mark D Kilby
- Centre for Women's and Newborn Health, Birmingham Health Partners, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.,Centre of Endocrinology, Diabetes and Metabolism, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
31
|
Liu Y, Wang Z, Li M, Ye Y, Xu Y, Zhang Y, Yuan R, Jin Y, Hao Y, Jiang L, Hu Y, Chen S, Liu F, Zhang Y, Wu W, Liu Y. Chloride intracellular channel 1 regulates the antineoplastic effects of metformin in gallbladder cancer cells. Cancer Sci 2017; 108:1240-1252. [PMID: 28378944 PMCID: PMC5480064 DOI: 10.1111/cas.13248] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 12/14/2022] Open
Abstract
Metformin is the most commonly used drug for type 2 diabetes and has potential benefit in treating and preventing cancer. Previous studies indicated that membrane proteins can affect the antineoplastic effects of metformin and may be crucial in the field of cancer research. However, the antineoplastic effects of metformin and its mechanism in gallbladder cancer (GBC) remain largely unknown. In this study, the effects of metformin on GBC cell proliferation and viability were evaluated using the Cell Counting Kit‐8 (CCK‐8) assay and an apoptosis assay. Western blotting was performed to investigate related signaling pathways. Of note, inhibition, knockdown and upregulation of the membrane protein Chloride intracellular channel 1 (CLIC1) can affect GBC resistance in the presence of metformin. Our data demonstrated that metformin apparently inhibits the proliferation and viability of GBC cells. Metformin promoted cell apoptosis and increased the number of early apoptotic cells. We found that metformin can exert growth‐suppressive effects on these cell lines via inhibition of p‐Akt activity and the Bcl‐2 family. Notably, either dysfunction or downregulation of CLIC1 can partially decrease the antineoplastic effects of metformin while upregulation of CLIC1 can increase drug sensitivity. Our findings provide experimental evidence for using metformin as an antitumor treatment for gallbladder carcinoma.
Collapse
Affiliation(s)
- Yongchen Liu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Wang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maolan Li
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Ye
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Xu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichi Zhang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruiyan Yuan
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunpeng Jin
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yajuan Hao
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Jiang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunping Hu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shili Chen
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fatao Liu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijian Zhang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenguang Wu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingbin Liu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Xia J, Wang H, Li S, Wu Q, Sun L, Huang H, Zeng M. Ion channels or aquaporins as novel molecular targets in gastric cancer. Mol Cancer 2017; 16:54. [PMID: 28264681 PMCID: PMC5338097 DOI: 10.1186/s12943-017-0622-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 02/22/2017] [Indexed: 12/21/2022] Open
Abstract
Gastric cancer (GC) is a common disease with few effective treatment choices and poor prognosis, and has the second-highest mortality rates among all cancers worldwide. Dysregulation and/or malfunction of ion channels or aquaporins (AQPs) are common in various human cancers. Furthermore, ion channels are involved in numerous important aspects of the tumor aggressive phonotype, such as proliferation, cell cycle, apoptosis, motility, migration, and invasion. Indeed, by localizing in the plasma membrane, ion channels or AQPs can sense and respond to extracellular environment changes; thus, they play a crucial role in cell signaling and cancer progression. These findings have expanded a new area of pharmaceutical exploration for various types of cancer, including GC. The involvement of multiple ion channels, such as voltage-gated potassium and sodium channels, intracellular chloride channels, ‘transient receptor potential’ channels, and AQPs, which have been shown to facilitate the pathogenesis of other tumors, also plays a role in GC. In this review, an overview of ion channel and aquaporin expression and function in carcinogenesis of GC is presented. Studies of ion channels or AQPs will advance our understanding of the molecular genesis of GC and may identify novel and effective targets for the clinical application of GC.
Collapse
Affiliation(s)
- Jianling Xia
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Hospital of the University of Electronic Science and Technology of China, The Western First Round Road, Section 2#32, Chengdu, 610072, China.,Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hongqiang Wang
- Department of Oncology, Zhoushan Hospital, Zhoushan, 316000, China.,Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shi Li
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Qinghui Wu
- Department of Urology, Hainan Provincial People's Hospital, Haikou, 570311, China
| | - Li Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hongxiang Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ming Zeng
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Hospital of the University of Electronic Science and Technology of China, The Western First Round Road, Section 2#32, Chengdu, 610072, China.
| |
Collapse
|
33
|
Abstract
Chemotherapy is typically used to treat choriocarcinoma. However, a small proportion of this malignancy develops resistance to common chemotherapeutic drugs such as methotrexate (MTX) and floxuridine (FUDR). This study aimed to investigate the role and potential mechanisms of chloride intracellular channel protein 1 (CLIC1) in the development of chemoresistance in choriocarcinoma JeG3 cells. Two chemoresistant sublines were induced from their parental cell line JeG3 through intermittent exposure to MTX (named JeG3/MTX) or FUDR (named JeG3/FUDR). It was found that expression of CLIC1 was significantly higher in the chemoresistant sublines JeG3/MTX and JeG3/FUDR than in their parental cell line JeG3. Knockdown of CLIC1 by specific siRNA significantly increased cell sensitivity to MTX and FUDR in vitro and in vivo. Moreover, the high expression of CLIC1 in chemoresistant sublines was associated with upregulation of multidrug resistance-associated protein 1 (MRP1). Knockdown of CLIC1 decreased the expression of MRP1 accordingly. While reexpression of CLIC1 in the parental cell JeG3 increased its resistance to MTX and FUDR, depletion of MRP1 significantly blunted CLIC1 reexpression-mediated acquirement of chemoresistance in JeG3 cells. In conclusion, our results suggest that CLIC1 may serve as a critical mediator of chemoresistance in human choriocarcinoma JeG3 cells. The CLIC1-mediated chemoresistance is achieved through positive regulation of MRP1. Depletion of either CLIC1 or its downstream MRP1 may be a promising therapeutic strategy concerning reversing the chemoresistance in human choriocarcinoma JeG3 cells.
Collapse
|
34
|
Biasiotta A, D'Arcangelo D, Passarelli F, Nicodemi EM, Facchiano A. Ion channels expression and function are strongly modified in solid tumors and vascular malformations. J Transl Med 2016; 14:285. [PMID: 27716384 PMCID: PMC5050926 DOI: 10.1186/s12967-016-1038-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022] Open
Abstract
Background Several cellular functions relate to ion-channels activity. Physiologically relevant chains of events leading to angiogenesis, cell cycle and different forms of cell death, require transmembrane voltage control. We hypothesized that the unordered angiogenesis occurring in solid cancers and vascular malformations might associate, at least in part, to ion-transport alteration. Methods The expression level of several ion-channels was analyzed in human solid tumor biopsies. Expression of 90 genes coding for ion-channels related proteins was investigated within the Oncomine database, in 25 independent patients-datasets referring to five histologically-different solid tumors (namely, bladder cancer, glioblastoma, melanoma, breast invasive-ductal cancer, lung carcinoma), in a total of 3673 patients (674 control-samples and 2999 cancer-samples). Furthermore, the ion-channel activity was directly assessed by measuring in vivo the electrical sympathetic skin responses (SSR) on the skin of 14 patients affected by the flat port-wine stains vascular malformation, i.e., a non-tumor vascular malformation clinical model. Results Several ion-channels showed significantly increased expression in tumors (p < 0.0005); nine genes (namely, CACNA1D, FXYD3, FXYD5, HTR3A, KCNE3, KCNE4, KCNN4, CLIC1, TRPM3) showed such significant modification in at least half of datasets investigated for each cancer type. Moreover, in vivo analyses in flat port-wine stains patients showed a significantly reduced SSR in the affected skin as compared to the contralateral healthy skin (p < 0.05), in both latency and amplitude measurements. Conclusions All together these data identify ion-channel genes showing significantly modified expression in different tumors and cancer-vessels, and indicate a relevant electrophysiological alteration in human vascular malformations. Such data suggest a possible role and a potential diagnostic application of the ion–electron transport in vascular disorders underlying tumor neo-angiogenesis and vascular malformations.
Collapse
Affiliation(s)
| | - Daniela D'Arcangelo
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, via Monti di Creta 104, 00167, Rome, Italy
| | - Francesca Passarelli
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, via Monti di Creta 104, 00167, Rome, Italy
| | - Ezio Maria Nicodemi
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, via Monti di Creta 104, 00167, Rome, Italy.
| | - Antonio Facchiano
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, via Monti di Creta 104, 00167, Rome, Italy.
| |
Collapse
|
35
|
Horn S, Kirkegaard JS, Hoelper S, Seymour PA, Rescan C, Nielsen JH, Madsen OD, Jensen JN, Krüger M, Grønborg M, Ahnfelt-Rønne J. Research Resource: A Dual Proteomic Approach Identifies Regulated Islet Proteins During β-Cell Mass Expansion In Vivo. Mol Endocrinol 2015; 30:133-43. [PMID: 26649805 DOI: 10.1210/me.2015-1208] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Diabetes is characterized by insulin insufficiency due to a relative paucity of functional β-cell mass. Thus, strategies for increasing β-cell mass in situ are sought-after for therapeutic purposes. Pregnancy is a physiological state capable of inducing robust β-cell mass expansion, however, the mechanisms driving this expansion are not fully understood. Thus, the aim of this study was to characterize pregnancy-induced changes in the islet proteome at the peak of β-cell proliferation in mice. Islets from pregnant and nonpregnant littermates were compared via 2 proteomic strategies. In vivo pulsed stable isotope labeling of amino acids in cell culture was used to monitor de novo protein synthesis during the first 14.5 days of pregnancy. In parallel, protein abundance was determined using ex vivo dimethyl labelling at gestational day 14.5. Comparison of the 2 datasets revealed 170 islet proteins to be up regulated as a response to pregnancy. These included several proteins, not previously associated with pregnancy-induced islet expansion, such as CLIC1, STMN1, MCM6, PPIB, NEDD4, and HLTF. Confirming the validity of our approach, we also identified proteins encoded by genes known to be associated with pregnancy-induced islet expansion, such as CHGB, IGFBP5, MATN2, EHHADH, IVD, and BMP1. Bioinformatic analyses demonstrated enrichment and activation of the biological functions: "protein synthesis" and "proliferation," and predicted the transcription factors HNF4α, MYC, MYCN, E2F1, NFE2L2, and HNF1α as upstream regulators of the observed expressional changes. As the first characterization of the islet-proteome during pregnancy, this study provides novel insight into the mechanisms involved in promoting pregnancy-induced β-cell mass expansion and function.
Collapse
Affiliation(s)
- Signe Horn
- Global Research (S.Hor., J.S.K., C.R., O.D.M., J.N.J., M.G., J.A.-R.), Novo Nordisk A/S, 2870 Maaloev, Denmark; Department of Biomedical Sciences (S.Hor., J.S.K., J.H.N.), University of Copenhagen, 2200 Copenhagen N, Denmark; Max Planck Institute for Heart and Lung Research (S.Hoe.), 61231 Bad Nauheim, Germany; The Danish Stem Cell Center (P.A.S., O.D.M.), University of Copenhagen, 2200 Copenhagen N, Denmark; and Institute of Genetics (M.K.), Cluster of Excellence in Cellular Stress Responses, University of Cologne, 50931 Cologne, Germany
| | - Jeannette S Kirkegaard
- Global Research (S.Hor., J.S.K., C.R., O.D.M., J.N.J., M.G., J.A.-R.), Novo Nordisk A/S, 2870 Maaloev, Denmark; Department of Biomedical Sciences (S.Hor., J.S.K., J.H.N.), University of Copenhagen, 2200 Copenhagen N, Denmark; Max Planck Institute for Heart and Lung Research (S.Hoe.), 61231 Bad Nauheim, Germany; The Danish Stem Cell Center (P.A.S., O.D.M.), University of Copenhagen, 2200 Copenhagen N, Denmark; and Institute of Genetics (M.K.), Cluster of Excellence in Cellular Stress Responses, University of Cologne, 50931 Cologne, Germany
| | - Soraya Hoelper
- Global Research (S.Hor., J.S.K., C.R., O.D.M., J.N.J., M.G., J.A.-R.), Novo Nordisk A/S, 2870 Maaloev, Denmark; Department of Biomedical Sciences (S.Hor., J.S.K., J.H.N.), University of Copenhagen, 2200 Copenhagen N, Denmark; Max Planck Institute for Heart and Lung Research (S.Hoe.), 61231 Bad Nauheim, Germany; The Danish Stem Cell Center (P.A.S., O.D.M.), University of Copenhagen, 2200 Copenhagen N, Denmark; and Institute of Genetics (M.K.), Cluster of Excellence in Cellular Stress Responses, University of Cologne, 50931 Cologne, Germany
| | - Philip A Seymour
- Global Research (S.Hor., J.S.K., C.R., O.D.M., J.N.J., M.G., J.A.-R.), Novo Nordisk A/S, 2870 Maaloev, Denmark; Department of Biomedical Sciences (S.Hor., J.S.K., J.H.N.), University of Copenhagen, 2200 Copenhagen N, Denmark; Max Planck Institute for Heart and Lung Research (S.Hoe.), 61231 Bad Nauheim, Germany; The Danish Stem Cell Center (P.A.S., O.D.M.), University of Copenhagen, 2200 Copenhagen N, Denmark; and Institute of Genetics (M.K.), Cluster of Excellence in Cellular Stress Responses, University of Cologne, 50931 Cologne, Germany
| | - Claude Rescan
- Global Research (S.Hor., J.S.K., C.R., O.D.M., J.N.J., M.G., J.A.-R.), Novo Nordisk A/S, 2870 Maaloev, Denmark; Department of Biomedical Sciences (S.Hor., J.S.K., J.H.N.), University of Copenhagen, 2200 Copenhagen N, Denmark; Max Planck Institute for Heart and Lung Research (S.Hoe.), 61231 Bad Nauheim, Germany; The Danish Stem Cell Center (P.A.S., O.D.M.), University of Copenhagen, 2200 Copenhagen N, Denmark; and Institute of Genetics (M.K.), Cluster of Excellence in Cellular Stress Responses, University of Cologne, 50931 Cologne, Germany
| | - Jens H Nielsen
- Global Research (S.Hor., J.S.K., C.R., O.D.M., J.N.J., M.G., J.A.-R.), Novo Nordisk A/S, 2870 Maaloev, Denmark; Department of Biomedical Sciences (S.Hor., J.S.K., J.H.N.), University of Copenhagen, 2200 Copenhagen N, Denmark; Max Planck Institute for Heart and Lung Research (S.Hoe.), 61231 Bad Nauheim, Germany; The Danish Stem Cell Center (P.A.S., O.D.M.), University of Copenhagen, 2200 Copenhagen N, Denmark; and Institute of Genetics (M.K.), Cluster of Excellence in Cellular Stress Responses, University of Cologne, 50931 Cologne, Germany
| | - Ole D Madsen
- Global Research (S.Hor., J.S.K., C.R., O.D.M., J.N.J., M.G., J.A.-R.), Novo Nordisk A/S, 2870 Maaloev, Denmark; Department of Biomedical Sciences (S.Hor., J.S.K., J.H.N.), University of Copenhagen, 2200 Copenhagen N, Denmark; Max Planck Institute for Heart and Lung Research (S.Hoe.), 61231 Bad Nauheim, Germany; The Danish Stem Cell Center (P.A.S., O.D.M.), University of Copenhagen, 2200 Copenhagen N, Denmark; and Institute of Genetics (M.K.), Cluster of Excellence in Cellular Stress Responses, University of Cologne, 50931 Cologne, Germany
| | - Jan N Jensen
- Global Research (S.Hor., J.S.K., C.R., O.D.M., J.N.J., M.G., J.A.-R.), Novo Nordisk A/S, 2870 Maaloev, Denmark; Department of Biomedical Sciences (S.Hor., J.S.K., J.H.N.), University of Copenhagen, 2200 Copenhagen N, Denmark; Max Planck Institute for Heart and Lung Research (S.Hoe.), 61231 Bad Nauheim, Germany; The Danish Stem Cell Center (P.A.S., O.D.M.), University of Copenhagen, 2200 Copenhagen N, Denmark; and Institute of Genetics (M.K.), Cluster of Excellence in Cellular Stress Responses, University of Cologne, 50931 Cologne, Germany
| | - Marcus Krüger
- Global Research (S.Hor., J.S.K., C.R., O.D.M., J.N.J., M.G., J.A.-R.), Novo Nordisk A/S, 2870 Maaloev, Denmark; Department of Biomedical Sciences (S.Hor., J.S.K., J.H.N.), University of Copenhagen, 2200 Copenhagen N, Denmark; Max Planck Institute for Heart and Lung Research (S.Hoe.), 61231 Bad Nauheim, Germany; The Danish Stem Cell Center (P.A.S., O.D.M.), University of Copenhagen, 2200 Copenhagen N, Denmark; and Institute of Genetics (M.K.), Cluster of Excellence in Cellular Stress Responses, University of Cologne, 50931 Cologne, Germany
| | - Mads Grønborg
- Global Research (S.Hor., J.S.K., C.R., O.D.M., J.N.J., M.G., J.A.-R.), Novo Nordisk A/S, 2870 Maaloev, Denmark; Department of Biomedical Sciences (S.Hor., J.S.K., J.H.N.), University of Copenhagen, 2200 Copenhagen N, Denmark; Max Planck Institute for Heart and Lung Research (S.Hoe.), 61231 Bad Nauheim, Germany; The Danish Stem Cell Center (P.A.S., O.D.M.), University of Copenhagen, 2200 Copenhagen N, Denmark; and Institute of Genetics (M.K.), Cluster of Excellence in Cellular Stress Responses, University of Cologne, 50931 Cologne, Germany
| | - Jonas Ahnfelt-Rønne
- Global Research (S.Hor., J.S.K., C.R., O.D.M., J.N.J., M.G., J.A.-R.), Novo Nordisk A/S, 2870 Maaloev, Denmark; Department of Biomedical Sciences (S.Hor., J.S.K., J.H.N.), University of Copenhagen, 2200 Copenhagen N, Denmark; Max Planck Institute for Heart and Lung Research (S.Hoe.), 61231 Bad Nauheim, Germany; The Danish Stem Cell Center (P.A.S., O.D.M.), University of Copenhagen, 2200 Copenhagen N, Denmark; and Institute of Genetics (M.K.), Cluster of Excellence in Cellular Stress Responses, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|