1
|
Lyu XD, Liu Y, Wang J, Wei YC, Han Y, Li X, Zhang Q, Liu ZR, Li ZZ, Jiang JW, Hu HL, Yuan ST, Sun L. A Novel ASCT2 Inhibitor, C118P, Blocks Glutamine Transport and Exhibits Antitumour Efficacy in Breast Cancer. Cancers (Basel) 2023; 15:5082. [PMID: 37894450 PMCID: PMC10605716 DOI: 10.3390/cancers15205082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The microtubule protein inhibitor C118P shows excellent anti-breast cancer effects. However, the potential targets and mechanisms of C118P in breast cancer remain unknown. METHODS Real-time cellular analysis (RTCA) was used to detect cell viability. Apoptosis and the cell cycle were detected by flow cytometry. Computer docking simulations, surface plasmon resonance (SPR) technology, and microscale thermophoresis (MST) were conducted to study the interaction between C118P and alanine-serine-cysteine transporter 2 (ASCT2). Seahorse XF technology was used to measure the basal oxygen consumption rate (OCR). The effect of C118P in the adipose microenvironment was explored using a co-culture model of adipocytes and breast cancer cells and mouse cytokine chip. RESULTS C118P inhibited proliferation, potentiated apoptosis, and induced G2/M cell cycle arrest in breast cancer cells. Notably, ASCT2 was validated as a C118P target through reverse docking, SPR, and MST. C118P suppressed glutamine metabolism and mediated autophagy via ASCT2. Similar results were obtained in the adipocyte-breast cancer microenvironment. Adipose-derived interleukin-6 (IL-6) promoted the proliferation of breast cancer cells by enhancing glutamine metabolism via ASCT2. C118P inhibited the upregulation of ASCT2 by inhibiting the effect of IL-6 in co-cultures. CONCLUSION C118P exerts an antitumour effect against breast cancer via the glutamine transporter ASCT2.
Collapse
Affiliation(s)
- Xiao-Dan Lyu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; (X.-D.L.); (Y.L.); (J.W.); (Y.-C.W.); (Y.H.); (X.L.); (Q.Z.); (Z.-R.L.); (Z.-Z.L.)
| | - Yang Liu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; (X.-D.L.); (Y.L.); (J.W.); (Y.-C.W.); (Y.H.); (X.L.); (Q.Z.); (Z.-R.L.); (Z.-Z.L.)
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jia Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; (X.-D.L.); (Y.L.); (J.W.); (Y.-C.W.); (Y.H.); (X.L.); (Q.Z.); (Z.-R.L.); (Z.-Z.L.)
| | - Yuan-Cheng Wei
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; (X.-D.L.); (Y.L.); (J.W.); (Y.-C.W.); (Y.H.); (X.L.); (Q.Z.); (Z.-R.L.); (Z.-Z.L.)
| | - Yi Han
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; (X.-D.L.); (Y.L.); (J.W.); (Y.-C.W.); (Y.H.); (X.L.); (Q.Z.); (Z.-R.L.); (Z.-Z.L.)
| | - Xue Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; (X.-D.L.); (Y.L.); (J.W.); (Y.-C.W.); (Y.H.); (X.L.); (Q.Z.); (Z.-R.L.); (Z.-Z.L.)
| | - Qian Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; (X.-D.L.); (Y.L.); (J.W.); (Y.-C.W.); (Y.H.); (X.L.); (Q.Z.); (Z.-R.L.); (Z.-Z.L.)
| | - Zheng-Rui Liu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; (X.-D.L.); (Y.L.); (J.W.); (Y.-C.W.); (Y.H.); (X.L.); (Q.Z.); (Z.-R.L.); (Z.-Z.L.)
| | - Zheng-Zheng Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; (X.-D.L.); (Y.L.); (J.W.); (Y.-C.W.); (Y.H.); (X.L.); (Q.Z.); (Z.-R.L.); (Z.-Z.L.)
| | - Jing-Wei Jiang
- Shuangyun BioMed Sci & Tech Co., Ltd., Suzhou 215000, China;
| | - Hao-Lin Hu
- General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Sheng-Tao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; (X.-D.L.); (Y.L.); (J.W.); (Y.-C.W.); (Y.H.); (X.L.); (Q.Z.); (Z.-R.L.); (Z.-Z.L.)
| |
Collapse
|
2
|
Passos ID, Papadimitriou D, Katsouda A, Papavasileiou GE, Galatas A, Tzitzis P, Mpakosi A, Mironidou-Tzouveleki M. In Vitro and In Vivo Effects of Docetaxel and Dasatinib in Triple-Negative Breast Cancer: A Research Study. Cureus 2023; 15:e43534. [PMID: 37719631 PMCID: PMC10500968 DOI: 10.7759/cureus.43534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) comprises a heterogeneous group of tumors with a single trait in common: an evident aggressive nature with higher rates of relapse and lower overall survival in the metastatic context when compared to other subtypes of breast cancer. To date, not a single targeted therapy has been approved for the treatment of TNBC, and cytotoxic chemotherapy remains the standard treatment. In the present experimental study, we examine the effects of the chemotherapeutic docetaxel and the bcr/abl kinase inhibitor dasatinib on TNBC cell lines (in vitro) and on TNBC tumor xenograft mouse models (in vivo). Materials and methods TNBC cell lines were cultivated and treated with various concentrations of docetaxel and dasatinib (5 nM to 100 nM). Cell death and apoptosis were studied by flow cytometry. TNBC cell lines were then injected in BALB/c athymic nude mice to express the tumor in vivo. Four groups of mice were created (group A: control; group B: DOC; group C: DAS; group D: DOC + DAS) and treated, respectively, with the drugs and their combination. Tumors were obtained, maintained in a 10% formaldehyde solution, embedded in paraffin, and sent for further histological evaluation (hematoxylin-eosin staining and immune-histochemical analysis) to assess the tumor growth inhibition. Results The cytotoxic effects of docetaxel seem statistically important, with little effect on apoptosis. The effect of dasatinib in vitro and vivo is statistically important, in terms of apoptosis and tumor reduction, with little adverse effects. Conclusions TNBC is a difficult-to-treat oncologic condition, even in an experimental setting. Promising results concerning the addition of targeted therapies (dasatinib) to the conventional cytotoxic ones (docetaxel) have been shown, awaiting further evaluation.
Collapse
Affiliation(s)
- Ioannis D Passos
- Surgical Department, 219 Mobile Army Surgical Hospital, Didymoteicho, GRC
| | - Dimochristos Papadimitriou
- Laboratory of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, General Hospital of Thessaloniki "G. Gennimatas" /Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Areti Katsouda
- Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | | | - Apostolos Galatas
- Surgical Department, 219 Mobile Army Surgical Hospital, Didymoteicho, GRC
| | - Panagiotis Tzitzis
- 1st Department of Obstetrics & Gynaecology, Medical Faculty, Papageorgiou General Hospital/Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Alexandra Mpakosi
- Department of Microbiology, General State Hospital of Nikaia "Saint Panteleimon", Nikaia, GRC
| | - Maria Mironidou-Tzouveleki
- 1st Department of Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, GRC
| |
Collapse
|
3
|
Al-Alem U, Rauscher GH, Alem QA, Kajdacsy-Balla A, Mahmoud AM. Prognostic Value of SGK1 and Bcl-2 in Invasive Breast Cancer. Cancers (Basel) 2023; 15:3151. [PMID: 37370761 DOI: 10.3390/cancers15123151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
It is crucial to understand molecular alterations in breast cancer and how they relate to clinicopathologic factors. We have previously shown that the glucocorticoid receptor (GCR) protein expression was reduced in invasive breast carcinoma compared to normal breast tissue. Glucocorticoids, signaling through the GCR, regulate several cellular processes via downstream targets such as serum/glucocorticoid-regulated kinase 1 (SGK1) and B-cell lymphoma 2 (Bcl-2). We measured the expression of SGK1 and Bcl-2, in respective breast cancer tissue arrays, from a multiracial cohort of breast cancer patients. Higher cytoplasmic SGK1 staining was stronger in breast cancer tissue compared to normal tissue, especially in hormone receptor-negative cases. Conversely, the expression of cytoplasmic Bcl-2 was reduced in breast cancer compared to normal tissue, especially in hormone receptor-negative cases. Bcl-2 staining was associated with the self-reported racial/ethnic category, an earlier clinical stage, a lower histological grade, and a higher survival rate. Bcl-2 expression was associated with longer survival in models adjusted for age and race (HR = 0.32, 95% CI: 0.15, 0.65), and Bcl-2 expression remained strongly positively associated with protection from breast cancer death, with additional adjustments for ER/PR status (HR = 0.41, 95% CI: 0.2, 0.85). SGK1 and Bcl-2 may play biological roles in breast cancer development and/or progression.
Collapse
Affiliation(s)
- Umaima Al-Alem
- Division of Epidemiology and Biostatistics, School of Public Health, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Garth H Rauscher
- Division of Epidemiology and Biostatistics, School of Public Health, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Qais Al Alem
- Division of Epidemiology and Biostatistics, School of Public Health, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Andre Kajdacsy-Balla
- Department of Pathology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Abeer M Mahmoud
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Liu K, Ma R. MicroRNA-615-5p regulates the proliferation and apoptosis of breast cancer cells by targeting HSF1. Exp Ther Med 2021; 21:192. [PMID: 33488801 DOI: 10.3892/etm.2021.9624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/31/2019] [Indexed: 12/22/2022] Open
Abstract
Breast cancer, which commonly occurs in the epithelium of the mammary gland, is a malignant tumor. MicroRNAs are involved in various cancer-associated processes, and microRNA-615-5p has been identified to be decreased in the pathological tissues from patients with breast cancer. In the present study, the possible mechanism of microRNA-615-5p in the progression of breast cancer was investigated in order to identify potential novel targets for clinical treatment. Heat shock factor 1 (HSF1) was identified as a predictive target gene of microRNA-615-5p using TargetScan analysis. The expression levels of microRNA-615-5p and its target gene, HSF1, were measured in breast cancer tissues and normal adjacent tissues. Additionally, the effects of microRNA-615-5p on MCF-7 breast cancer cell growth and apoptosis were examined. Furthermore, the interaction between HSF1 and microRNA-615-5p was investigated by a dual luciferase gene reporter assay. The expression levels of HSF1 were measured following transfection with microRNA-615-5p or pcDNA3.1-HSF1. Finally, the expression levels of proliferation- and apoptosis-associated factors such as B-cell lymphoma 2 (Bcl-2), cyclin D1, proliferating cell nuclear antigen (PCNA) and bcl-2-like protein 4 (Bax) were determined. The results demonstrated that lower microRNA-615-5p expression and higher HSF1 mRNA expression were present in tumor tissues compared with adjacent tissues (P<0.01). HSF1 was verified as a direct target of microRNA-615-5p using the dual luciferase gene reporter assay. In comparison with untransfected control and mimic-transfected negative control (NC) cells, MCF-7 cells transfected with microRNA-615-5p mimics exhibited reduced cell proliferation and increased apoptosis (P<0.01). However, the overexpression of HSF1 using a vector reversed the suppression of HSF1 induced by microRNA-615-5p mimics (P<0.01). The mRNA and protein expression levels of Bax were significantly increased, whereas those of Bcl-2, cyclin D1 and PCNA were decreased in the cells transfected with microRNA-615-5p mimics compared with the control and NC cells (P<0.01). Collectively, the present study indicated that microRNA-615-5p may mediate the progression of breast cancer by targeting HSF1.
Collapse
Affiliation(s)
- Kaisheng Liu
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Rong Ma
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
5
|
Martins LM, de Melo Escorcio Dourado CS, Campos-Verdes LM, Sampaio FA, Revoredo CMS, Costa-Silva DR, da Conceição Barros-Oliveira M, de Jesus Nery Junior E, do Rego-Medeiros LM, Gebrim LH, Alves-Ribeiro FA, Rodrigues GP, Chagas DC, do Nascimento Marreiro D, da Silva BB. Expression of matrix metalloproteinase 2 and 9 in breast cancer and breast fibroadenoma: a randomized, double-blind study. Oncotarget 2019; 10:6879-6884. [PMID: 31839881 PMCID: PMC6901341 DOI: 10.18632/oncotarget.27347] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/06/2019] [Indexed: 11/25/2022] Open
Abstract
Background Matrix metalloproteinases (MMPs) 2 and 9 may play an important role in cell proliferation and dissemination of cancer. However, few studies have compared the expression of these proteins between breast cancer and fibroadenoma. Material and methods A randomized, double-blind study was carried out in 66 premenopausal women, aged 20-49 years, who had been diagnosed with fibroadenoma or breast cancer. The patients were divided into two groups: Group A, control (fibroadenoma, n=36) and Group B, study (cancer, n=30). Immunohistochemical analysis was performed using tissue samples of fibroadenoma and breast cancer to assess MMP-2 and MMP-9 antigen expression. Cells were considered positive if exhibiting brown cytoplasmic staining. Fisher’s exact test was used to compare the percentage of cases with cells expressing MMP-2 and MMP-9 in control and study groups (p < 0.05). Results Light microscopy showed a higher concentration of cells with positive cytoplasmic staining for MMP-2 and MMP-9 expression in breast cancer than in fibroadenoma. The percentage of cases with cells expressing MMP-2 in the control and study groups was 41.67% and 86.11%, respectively (p < 0.0009), whereas the percentage of cases with cells expressing MMP-9 in groups A and B was 66.67% and 93.33%, respectively (p<0.0138). MMP-2 and MMP-9 positive expression was significantly higher in moderately differentiated tumors compared to well and poorly differentiated tumors, p <0.005 and p<0.001, respectively. Conclusions The current study shows that MMP-2 and MMP-9 protein expression was significantly higher in the breast cancer than in the fibroadenoma and also in moderately differentiated breast cancer.
Collapse
Affiliation(s)
- Luana Mota Martins
- Postgraduate Program, Northeast Biotechnology Network (RENORBIO), Biotechnology in Health, Federal University of Piaui, Teresina, Piaui 64000-020, Brazil
| | - Carla Solange de Melo Escorcio Dourado
- Postgraduate Program, Northeast Biotechnology Network (RENORBIO), Biotechnology in Health, Federal University of Piaui, Teresina, Piaui 64000-020, Brazil
| | - Larysse Maira Campos-Verdes
- Postgraduate Program, Northeast Biotechnology Network (RENORBIO), Biotechnology in Health, Federal University of Piaui, Teresina, Piaui 64000-020, Brazil
| | - Fabiane Araújo Sampaio
- Postgraduate Program, Northeast Biotechnology Network (RENORBIO), Biotechnology in Health, Federal University of Piaui, Teresina, Piaui 64000-020, Brazil
| | - Camila Maria Simplício Revoredo
- Postgraduate Program, Northeast Biotechnology Network (RENORBIO), Biotechnology in Health, Federal University of Piaui, Teresina, Piaui 64000-020, Brazil
| | - Danylo Rafhael Costa-Silva
- Postgraduate Program, Northeast Biotechnology Network (RENORBIO), Biotechnology in Health, Federal University of Piaui, Teresina, Piaui 64000-020, Brazil
| | - Maria da Conceição Barros-Oliveira
- Postgraduate Program, Northeast Biotechnology Network (RENORBIO), Biotechnology in Health, Federal University of Piaui, Teresina, Piaui 64000-020, Brazil
| | - Elmo de Jesus Nery Junior
- Postgraduate Program, Northeast Biotechnology Network (RENORBIO), Biotechnology in Health, Federal University of Piaui, Teresina, Piaui 64000-020, Brazil
| | - Lucia Maria do Rego-Medeiros
- Facid / Wyden Differential Integral Medicine Faculty, Department of Mastology, Teresina, Piaui 64052-810, Brazill
| | - Luiz Henrique Gebrim
- Postgraduate Program, Northeast Biotechnology Network (RENORBIO), Biotechnology in Health, Federal University of Piaui, Teresina, Piaui 64000-020, Brazil
| | - Francisco Adelton Alves-Ribeiro
- Postgraduate Program, Northeast Biotechnology Network (RENORBIO), Biotechnology in Health, Federal University of Piaui, Teresina, Piaui 64000-020, Brazil
| | - Gilmara Péres Rodrigues
- Postgraduate Program, Northeast Biotechnology Network (RENORBIO), Biotechnology in Health, Federal University of Piaui, Teresina, Piaui 64000-020, Brazil
| | - Diego Cipriano Chagas
- Postgraduate Program, Northeast Biotechnology Network (RENORBIO), Biotechnology in Health, Federal University of Piaui, Teresina, Piaui 64000-020, Brazil
| | - Dilina do Nascimento Marreiro
- Postgraduate Program, Northeast Biotechnology Network (RENORBIO), Biotechnology in Health, Federal University of Piaui, Teresina, Piaui 64000-020, Brazil
| | - Benedito Borges da Silva
- Postgraduate Program, Northeast Biotechnology Network (RENORBIO), Biotechnology in Health, Federal University of Piaui, Teresina, Piaui 64000-020, Brazil.,Facid / Wyden Differential Integral Medicine Faculty, Department of Mastology, Teresina, Piaui 64052-810, Brazill
| |
Collapse
|
6
|
A CTC-Cluster-Specific Signature Derived from OMICS Analysis of Patient-Derived Xenograft Tumors Predicts Outcomes in Basal-Like Breast Cancer. J Clin Med 2019; 8:jcm8111772. [PMID: 31652963 PMCID: PMC6912280 DOI: 10.3390/jcm8111772] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/12/2019] [Accepted: 10/21/2019] [Indexed: 12/24/2022] Open
Abstract
Circulating tumor cell clusters (CTCcl) have a higher metastatic potential compared to single CTCs and predict long-term outcomes in breast cancer (BC) patients. Because of the rarity of CTCcls, molecular characterization of primary tumors that give rise to CTCcl hold significant promise for better diagnosis and target discovery to combat metastatic BC. In our study, we utilized the reverse-phase protein array (RPPA) and transcriptomic (RNA-Seq) data of 10 triple-negative BC patient-derived xenograft (TNBC PDX) transplantable models with CTCs and evaluated expression of upregulated candidate protein Bcl2 (B-cell lymphoma 2) by immunohistochemistry (IHC). The sample-set consisted of six CTCcl-negative (CTCcl-) and four CTCcl-positive (CTCcl+) models. We analyzed the RPPA and transcriptomic profiles of CTCcl- and CTCcl+ TNBC PDX models. In addition, we derived a CTCcl-specific gene signature for testing if it predicted outcomes using a publicly available dataset from 360 patients with basal-like BC. The RPPA analysis of CTCcl+ vs. CTCcl- TNBC PDX tumors revealed elevated expression of Bcl2 (false discovery rate (FDR) < 0.0001, fold change (FC) = 3.5) and reduced acetyl coenzyme A carboxylase-1 (ACC1) (FDR = 0.0005, FC = 0.3) in CTCcl+ compared to CTCcl- tumors. Genome-wide transcriptomic analysis of CTCcl+ vs. CTCcl- tumors revealed 549 differentially expressed genes associated with the presence of CTCcls. Apoptosis was one of the significantly downregulated pathways (normalized enrichment score (NES) = -1.69; FDR < 0.05) in TNBC PDX tumors associated with CTCcl positivity. Two out of four CTCcl+ TNBC PDX primary tumors had high Bcl2 expression by IHC (H-score > 34); whereas, only one of six CTCcl- TNBC PDX primary tumors met this criterion. Evaluation of epithelial-mesenchymal transition (EMT)-specific signature did not show significant differences between CTCcl+ and CTCcl- tumors. However, a gene signature associated with the presence of CTCcls in TNBC PDX models was associated with worse relapse-free survival in the publicly available dataset from 360 patients with basal-like BC. In summary, we identified the multigene signature of primary PDX tumors associated with the presence of CTCcls. Evaluation of additional TNBC PDX models and patients can further illuminate cellular and molecular pathways facilitating CTCcl formation.
Collapse
|
7
|
Dagher E, Abadie J, Loussouarn D, Fanuel D, Campone M, Nguyen F. Bcl-2 expression and prognostic significance in feline invasive mammary carcinomas: a retrospective observational study. BMC Vet Res 2019; 15:25. [PMID: 30630524 PMCID: PMC6329127 DOI: 10.1186/s12917-018-1772-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/28/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Cats spontaneously develop invasive mammary carcinomas with high clinical aggressiveness, and are considered relevant animal models for human breast cancer. Bcl-2 is an anti-apoptotic pro-survival protein, whose expression is associated with a favorable outcome in human breast cancer. The aim of our study was to determine the frequency of Bcl-2 expression in feline invasive mammary carcinomas (FMCs), its relationship with other clinicopathologic variables, and its prognostic value. This retrospective study included 180 FMCs, diagnosed in female cats treated by surgery only, with a 2-year follow-up post-mastectomy. Bcl-2, ER, PR, Ki-67, HER2, and CK5/6 expression were determined by automated immunohistochemistry. A receiver-operating-characteristic curve was used to set the threshold for Bcl-2 positivity. RESULTS The cohort comprises 32% (57/180) luminal FMCs defined by ER and/or PR positivity, and 68% (123/180) triple-negative FMCs (negative for ER, PR, and HER2). Bcl-2 expression was considered as positive when at least 65% of tumor cells were immunohistochemically stained. Thirty-one out of 180 FMCs (17%) were Bcl-2-positive. There was no significant association between Bcl-2 expression, and the tumor size, nodal stage, histological grade, or ER, PR, Ki-67, HER2, and CK5/6 expression. By multivariate survival analysis (Cox proportional-hazards regression), Bcl-2 positivity in FMCs was associated with longer disease-free interval (p = 0.005, HR = 0.38), overall survival (p = 0.028, HR = 0.61), and cancer-specific survival (p = 0.019, HR = 0.54) independently of other powerful prognostic factors such as pathologic tumor size, pathologic nodal stage, and distant metastasis. The positive prognostic value of Bcl-2 was confirmed in both luminal FMCs, of which 9/57 (16%) were Bcl-2-positive, and in basal-like triple-negative (ER-, PR-, HER2-, CK5/6+) FMCs, of which 14/76 (18%) were Bcl-2-positive. CONCLUSIONS Compared to human breast cancer, Bcl-2 positivity in feline invasive mammary carcinomas is also associated with better outcome, but is less common, and not associated with ER, PR, and HER2 expression. Cats with spontaneous Bcl-2-positive FMCs could be useful in preclinical trials evaluating anti-Bcl-2 strategies for chemoresistant luminal or triple-negative breast cancers.
Collapse
Affiliation(s)
- Elie Dagher
- AMaROC, Oniris (Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering), Oniris site Chantrerie, CS40706, 44307, Cedex 3, Nantes, France
| | - Jérôme Abadie
- AMaROC, Oniris (Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering), Oniris site Chantrerie, CS40706, 44307, Cedex 3, Nantes, France.,CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Delphine Loussouarn
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Hôtel-Dieu CHU de Nantes, Anatomie Pathologique, cedex 01, Nantes, 44093, France
| | - Dominique Fanuel
- AMaROC, Oniris (Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering), Oniris site Chantrerie, CS40706, 44307, Cedex 3, Nantes, France
| | - Mario Campone
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Integrated Center for Oncology, ICO, 15 rue André Boquet, cedex 02, 49055, Angers, France
| | - Frédérique Nguyen
- AMaROC, Oniris (Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering), Oniris site Chantrerie, CS40706, 44307, Cedex 3, Nantes, France. .,CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France. .,Integrated Center for Oncology, ICO, 15 rue André Boquet, cedex 02, 49055, Angers, France.
| |
Collapse
|
8
|
Hypermethylated LATS2 gene with decreased expression in female breast cancer: A case control study from North India. Gene 2018; 676:156-163. [PMID: 30010037 DOI: 10.1016/j.gene.2018.07.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/25/2018] [Accepted: 07/11/2018] [Indexed: 01/27/2023]
Abstract
BACKGROUND LATS2, a presumed tumor suppressor gene located on chromosome 13q11-12 is involved in cell growth related activity like regulation of cell cycle at G1/S. The reduced expression of LATS2 has been reported in many tumors; including tumors of Breast, which is to the best of our knowledge has not been studied in north Indian female breast cancer population. OBJECTIVE Here, we looked upon the expression pattern and methylation status of the LATS2 gene in north Indian female breast cancer cases to further strengthen its role as a tumor suppressor gene and more importantly as a cancer biomarker. METHODS mRNA expression level was determined by real time PCR in 140 Breast cancer patients, Protein expression was studied by Immunohistochemistry and Promoter methylation was studied by Methylation specific PCR. All findings were correlated with clinicopathological features. RESULTS LATS2 mRNA expression was remarkably downregulated in 67.85% (95/140) cases. The expression of Large Associated Tumor Suppressor 2 at protein level was also absent in 67.85% (95/140) cases. The absence of LATS2 protein strongly correlated with promoter hypermethylation where 91 out of a total of 107 hyper methylated cases showed absence of protein (91/107, 85%). The absence of LATS2 protein was strongly significant with HER2 neu status (0.01), TNM staging (0.009) and Molecular subtype (0.024). CONCLUSION The decreased expression in breast cancer seems to be associated with hypermethylation of LATS2 promoter regions. Further LATS2 as a tumor suppressor can be recognized as a promising Biomarker in Breast cancer pathogenesis. Though, further studies, targeting larger sets of breast cancer population are required to establish LATS2 as a promising biomarker.
Collapse
|
9
|
BCL2L12: a multiply spliced gene with independent prognostic significance in breast cancer. ACTA ACUST UNITED AC 2018; 57:276-287. [DOI: 10.1515/cclm-2018-0272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/06/2018] [Indexed: 11/15/2022]
Abstract
Abstract
Background
Alternative splicing is a key process in carcinogenesis and, from a clinical aspect, holds great promises, as alternatively spliced variants have emerged as an untapped source of diagnostic and prognostic markers. Our aim was to assess the prognostic value of three recently recognized splice variants of the apoptosis-related gene, BCL2L12, in breast cancer (BC).
Methods
Total RNA was extracted from breast samples (150 BC and 80 tumor-adjacent normal tissues) and, following cDNA synthesis, a variant-specific qPCR was performed for the expressional quantification of BCL2L12 v.1, v.2 and v.4 transcript variants. Extensive statistical analysis, including bootstrap resampling and internal validation, was conducted in order to evaluate the associations of v.1, v.2 and v.4 expression with patients’ clinopathological and survival data.
Results
All examined BCL2L12 variants were significantly upregulated in BC specimens compared to their non-cancerous counterpart (v.1, p<0.001; v.2, p=0.009; v.4, p=0.004). Increased BCL2L12 v.4 mRNA expression was associated with markers of unfavorable prognosis namely, advanced tumor grade (p=0.002), ER- (p=0.015)/PR- (p<0.001) negativity, Ki-67-positivity (p=0.007) and high NPI (Nottingham prognostic index) score (p=0.033). Moreover, v.4 was significantly overexpressed in women with triple negative BC (TNBC) and HER2-positive tumors compared to those harboring luminal tumors (p<0.001). Survival analysis disclosed that BCL2L12 v.2 overexpression, as a continuous variable ([HR]=0.45, 95% CI=0.17–0.82, p=0.010), is a strong and independent marker of favorable prognosis for BC patients. Interestingly, v.2 retains its prognostic value in patients with Grade II/III ([HR]=0.21, 95% CI=0.05–0.57, p=0.006) or HER2-positive/TNBC tumors ([HR]=0.25, 95% CI=0.05–0.74, p=0.042).
Conclusions
BCL2L12 v.1, v.2, v.4 are aberrantly expressed in BC. Their expressional analysis by cost-effective molecular methods could provide a novel molecular tool for BC management.
Collapse
|