1
|
Qi P, Yao QL, Lao IW, Ren M, Bai QM, Cai X, Xue T, Wei R, Zhou XY. A custom next-generation sequencing panel for 1p/19q codeletion and mutational analysis in gliomas. J Neuropathol Exp Neurol 2024; 83:258-267. [PMID: 38408388 DOI: 10.1093/jnen/nlae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
The World Health Organization has updated their classification system for the diagnosis of gliomas, combining histological features with molecular data including isocitrate dehydrogenase 1 and codeletion of chromosomal arms 1p and 19q. 1p/19q codeletion analysis is commonly performed by fluorescence in situ hybridization (FISH). In this study, we developed a 57-gene targeted next-generation sequencing (NGS) panel including 1p/19q codeletion detection mainly to assess diagnosis and potential treatment response in melanoma, gastrointestinal stromal tumor, and glioma patients. Loss of heterozygosity analysis was performed using the NGS method on 37 formalin-fixed paraffin-embedded glioma tissues that showed 1p and/or 19q loss determined by FISH. Conventional methods were applied for the validation of some glioma-related gene mutations. In 81.1% (30 of 37) and 94.6% (35 of 37) of cases, 1p and 19q were found to be in agreement whereas concordance for 1p/19q codeletion and no 1p/19q codeletion was found in 94.7% (18 of 19) and 94.4% (17 of 18) of cases, respectively. Overall, comparing NGS results with those of conventional methods showed high concordance. In conclusion, the NGS panel allows reliable analysis of 1p/19q codeletion and mutation at the same time.
Collapse
Affiliation(s)
- Peng Qi
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Qian-Lan Yao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - I Weng Lao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Min Ren
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Qian-Ming Bai
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Xu Cai
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Tian Xue
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Ran Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Xiao-Yan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Brandner S, McAleenan A, Jones HE, Kernohan A, Robinson T, Schmidt L, Dawson S, Kelly C, Leal ES, Faulkner CL, Palmer A, Wragg C, Jefferies S, Vale L, Higgins JPT, Kurian KM. Diagnostic accuracy of 1p/19q codeletion tests in oligodendroglioma: A comprehensive meta-analysis based on a Cochrane systematic review. Neuropathol Appl Neurobiol 2022; 48:e12790. [PMID: 34958131 PMCID: PMC9208578 DOI: 10.1111/nan.12790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022]
Abstract
Codeletion of chromosomal arms 1p and 19q, in conjunction with a mutation in the isocitrate dehydrogenase 1 or 2 gene, is the molecular diagnostic criterion for oligodendroglioma, IDH mutant and 1p/19q codeleted. 1p/19q codeletion is a diagnostic marker and allows prognostication and prediction of the best drug response within IDH-mutant tumours. We performed a Cochrane review and simple economic analysis to establish the most sensitive, specific and cost-effective techniques for determining 1p/19q codeletion status. Fluorescent in situ hybridisation (FISH) and polymerase chain reaction (PCR)-based loss of heterozygosity (LOH) test methods were considered as reference standard. Most techniques (FISH, chromogenic in situ hybridisation [CISH], PCR, real-time PCR, multiplex ligation-dependent probe amplification [MLPA], single nucleotide polymorphism [SNP] array, comparative genomic hybridisation [CGH], array CGH, next-generation sequencing [NGS], mass spectrometry and NanoString) showed good sensitivity (few false negatives) for detection of 1p/19q codeletions in glioma, irrespective of whether FISH or PCR-based LOH was used as the reference standard. Both NGS and SNP array had a high specificity (fewer false positives) for 1p/19q codeletion when considered against FISH as the reference standard. Our findings suggest that G banding is not a suitable test for 1p/19q analysis. Within these limits, considering cost per diagnosis and using FISH as a reference, MLPA was marginally more cost-effective than other tests, although these economic analyses were limited by the range of available parameters, time horizon and data from multiple healthcare organisations.
Collapse
Affiliation(s)
- Sebastian Brandner
- Division of Neuropathology, The National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
- Department of Neurodegenerative Disease, Queen Square Instituite of NeurologyUniversity College LondonLondonUK
| | - Alexandra McAleenan
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Hayley E. Jones
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Ashleigh Kernohan
- Population Health Sciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Tomos Robinson
- Population Health Sciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Lena Schmidt
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Sarah Dawson
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Claire Kelly
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | | | - Claire L. Faulkner
- Bristol Genetics Laboratory, Pathology SciencesSouthmead HospitalBristolUK
| | - Abigail Palmer
- Bristol Genetics Laboratory, Pathology SciencesSouthmead HospitalBristolUK
| | - Christopher Wragg
- Bristol Genetics Laboratory, Pathology SciencesSouthmead HospitalBristolUK
| | | | - Luke Vale
- Population Health Sciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Julian P. T. Higgins
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Kathreena M. Kurian
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
- Bristol Medical School: Brain Tumour Research Centre, Public Health SciencesUniversity of BristolBristolUK
| |
Collapse
|
3
|
McAleenan A, Jones HE, Kernohan A, Robinson T, Schmidt L, Dawson S, Kelly C, Spencer Leal E, Faulkner CL, Palmer A, Wragg C, Jefferies S, Brandner S, Vale L, Higgins JP, Kurian KM. Diagnostic test accuracy and cost-effectiveness of tests for codeletion of chromosomal arms 1p and 19q in people with glioma. Cochrane Database Syst Rev 2022; 3:CD013387. [PMID: 35233774 PMCID: PMC8889390 DOI: 10.1002/14651858.cd013387.pub2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Complete deletion of both the short arm of chromosome 1 (1p) and the long arm of chromosome 19 (19q), known as 1p/19q codeletion, is a mutation that can occur in gliomas. It occurs in a type of glioma known as oligodendroglioma and its higher grade counterpart known as anaplastic oligodendroglioma. Detection of 1p/19q codeletion in gliomas is important because, together with another mutation in an enzyme known as isocitrate dehydrogenase, it is needed to make the diagnosis of an oligodendroglioma. Presence of 1p/19q codeletion also informs patient prognosis and prediction of the best drug treatment. The main two tests in use are fluorescent in situ hybridisation (FISH) and polymerase chain reaction (PCR)-based loss of heterozygosity (LOH) assays (also known as PCR-based short tandem repeat or microsatellite analysis). Many other tests are available. None of the tests is perfect, although PCR-based LOH is expected to have very high sensitivity. OBJECTIVES To estimate the sensitivity and specificity and cost-effectiveness of different deoxyribonucleic acid (DNA)-based techniques for determining 1p/19q codeletion status in glioma. SEARCH METHODS We searched MEDLINE, Embase and BIOSIS up to July 2019. There were no restrictions based on language or date of publication. We sought economic evaluation studies from the results of this search and using the National Health Service Economic Evaluation Database. SELECTION CRITERIA We included cross-sectional studies in adults with glioma or any subtype of glioma, presenting raw data or cross-tabulations of two or more DNA-based tests for 1p/19q codeletion. We also sought economic evaluations of these tests. DATA COLLECTION AND ANALYSIS We followed procedures outlined in the Cochrane Handbook for Diagnostic Test Accuracy Reviews. Two review authors independently screened titles/abstracts/full texts, performed data extraction, and undertook applicability and risk of bias assessments using QUADAS-2. Meta-analyses used the hierarchical summary ROC model to estimate and compare test accuracy. We used FISH and PCR-based LOH as alternate reference standards to examine how tests compared with those in common use, and conducted a latent class analysis comparing FISH and PCR-based LOH. We constructed an economic model to evaluate cost-effectiveness. MAIN RESULTS We included 53 studies examining: PCR-based LOH, FISH, single nucleotide polymorphism (SNP) array, next-generation sequencing (NGS), comparative genomic hybridisation (CGH), array comparative genomic hybridisation (aCGH), multiplex-ligation-dependent probe amplification (MLPA), real-time PCR, chromogenic in situ hybridisation (CISH), mass spectrometry (MS), restriction fragment length polymorphism (RFLP) analysis, G-banding, methylation array and NanoString. Risk of bias was low for only one study; most gave us concerns about how patients were selected or about missing data. We had applicability concerns about many of the studies because only patients with specific subtypes of glioma were included. 1520 participants contributed to analyses using FISH as the reference, 1304 participants to analyses involving PCR-based LOH as the reference and 262 participants to analyses of comparisons between methods from studies not including FISH or PCR-based LOH. Most evidence was available for comparison of FISH with PCR-based LOH (15 studies, 915 participants): PCR-based LOH detected 94% of FISH-determined codeletions (95% credible interval (CrI) 83% to 98%) and FISH detected 91% of codeletions determined by PCR-based LOH (CrI 78% to 97%). Of tumours determined not to have a deletion by FISH, 94% (CrI 87% to 98%) had a deletion detected by PCR-based LOH, and of those determined not to have a deletion by PCR-based LOH, 96% (CrI 90% to 99%) had a deletion detected by FISH. The latent class analysis suggested that PCR-based LOH may be slightly more accurate than FISH. Most other techniques appeared to have high sensitivity (i.e. produced few false-negative results) for detection of 1p/19q codeletion when either FISH or PCR-based LOH was considered as the reference standard, although there was limited evidence. There was some indication of differences in specificity (false-positive rate) with some techniques. Both NGS and SNP array had high specificity when considered against FISH as the reference standard (NGS: 6 studies, 243 participants; SNP: 6 studies, 111 participants), although we rated certainty in the evidence as low or very low. NGS and SNP array also had high specificity when PCR-based LOH was considered the reference standard, although with much more uncertainty as these results were based on fewer studies (just one study with 49 participants for NGS and two studies with 33 participants for SNP array). G-banding had low sensitivity and specificity when PCR-based LOH was the reference standard. Although MS had very high sensitivity and specificity when both FISH and PCR-based LOH were considered the reference standard, these results were based on only one study with a small number of participants. Real-time PCR also showed high specificity with FISH as a reference standard, although there were only two studies including 40 participants. We found no relevant economic evaluations. Our economic model using FISH as the reference standard suggested that the resource-optimising test depends on which measure of diagnostic accuracy is most important. With FISH as the reference standard, MLPA is likely to be cost-effective if society was willing to pay GBP 1000 or less for a true positive detected. However, as the value placed on a true positive increased, CISH was most cost-effective. Findings differed when the outcome measure changed to either true negative detected or correct diagnosis. When PCR-based LOH was used as the reference standard, MLPA was likely to be cost-effective for all measures of diagnostic accuracy at lower threshold values for willingness to pay. However, as the threshold values increased, none of the tests were clearly more likely to be considered cost-effective. AUTHORS' CONCLUSIONS In our review, most techniques (except G-banding) appeared to have good sensitivity (few false negatives) for detection of 1p/19q codeletions in glioma against both FISH and PCR-based LOH as a reference standard. However, we judged the certainty of the evidence low or very low for all the tests. There are possible differences in specificity, with both NGS and SNP array having high specificity (fewer false positives) for 1p/19q codeletion when considered against FISH as the reference standard. The economic analysis should be interpreted with caution due to the small number of studies.
Collapse
Affiliation(s)
- Alexandra McAleenan
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Hayley E Jones
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ashleigh Kernohan
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tomos Robinson
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne , UK
| | - Lena Schmidt
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sarah Dawson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Claire Kelly
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emmelyn Spencer Leal
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Claire L Faulkner
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Abigail Palmer
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Christopher Wragg
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Sarah Jefferies
- Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Luke Vale
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | - Julian Pt Higgins
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kathreena M Kurian
- Bristol Medical School: Brain Tumour Research Centre, Public Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
4
|
Van der Eecken K, Van der Linden M, Raman L, Creytens D, Dedeurwaerdere F, De Winne K, Ferdinande L, Lammens M, Menten B, Rottiers I, Van Gaever B, Van den Broecke C, Van de Vijver K, Van Roy N, Verbeke S, Van Dorpe J. Shallow whole-genome sequencing: a useful, easy to apply molecular technique for CNA detection on FFPE tumor tissue-a glioma-driven study. Virchows Arch 2022; 480:677-686. [PMID: 35034191 DOI: 10.1007/s00428-022-03268-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/10/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022]
Abstract
Copy number alterations (CNAs) have increasingly become part of the diagnostic algorithm of glial tumors. Alterations such as homozygous deletion of CDKN2A/B, 7 +/ 10 - chromosome copy number changes or EGFR amplification are predictive of a poor prognosis. The codeletion of chromosome arms 1p and 19q, typically associated with oligodendroglioma, implies a more favorable prognosis. Detection of this codeletion by the current diagnostic standard, being fluorescence in situ hybridization (FISH), is sometimes however subject to technical and interpretation problems. In this study, we evaluated CNA detection by shallow whole-genome sequencing (sWGS) as an inexpensive, complementary molecular technique. A cohort of 36 glioma tissue samples, enriched with "difficult" and "ambiguous" cases, was analyzed by sWGS. sWGS results were compared with FISH assays of chromosomes 1p and 19q. In addition, CNAs relevant to glioblastoma diagnosis were explored. In 4/36 samples, EGFR (7p11.2) amplifications and homozygous loss of CDKN2A/B were identified by sWGS. Six out of 8 IDH-wild-type glioblastomas demonstrated a prognostic chromosome 7/chromosome 10 signature. In 11/36 samples, local interstitial and terminal 1p/19q alterations were detected by sWGS, implying that FISH's targeted nature might promote false arm-level extrapolations. In this cohort, differences in overall survival between patients with and without codeletion were better pronounced by the sequencing-based distinction (likelihood ratio of 7.48) in comparison to FISH groupings (likelihood ratio of 0.97 at diagnosis and 1.79 ± 0.62 at reobservation), suggesting sWGS is more accurate than FISH. We recognized adverse effects of tissue block age on FISH signals. In addition, we show how sWGS reveals relevant aberrations beyond the 1p/19q state, such as EGFR amplification, combined gain of chromosome 7 and loss of chromosome 10, and homozygous loss of CDKN2A/B. The findings presented by this study might stimulate implementation of sWGS as a complementary, easy to apply technique for copy number detection.
Collapse
Affiliation(s)
- Kim Van der Eecken
- Department of Pathology, Ghent University, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute (CRIG), Ghent, Belgium
| | - Malaïka Van der Linden
- Department of Pathology, Ghent University, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute (CRIG), Ghent, Belgium
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Lennart Raman
- Department of Pathology, Ghent University, Ghent University Hospital, Ghent, Belgium
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - David Creytens
- Department of Pathology, Ghent University, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute (CRIG), Ghent, Belgium
| | | | - Koen De Winne
- Department of Pathology, Antwerp University Hospital, Antwerp, Belgium
| | - Liesbeth Ferdinande
- Department of Pathology, Ghent University, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute (CRIG), Ghent, Belgium
| | - Martin Lammens
- Department of Pathology, Antwerp University Hospital, Antwerp, Belgium
| | - Björn Menten
- Cancer Research Institute (CRIG), Ghent, Belgium
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Isabelle Rottiers
- Department of Pathology, Ghent University, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute (CRIG), Ghent, Belgium
| | - Bram Van Gaever
- Department of Pathology, Ghent University, Ghent University Hospital, Ghent, Belgium
| | | | - Koen Van de Vijver
- Department of Pathology, Ghent University, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute (CRIG), Ghent, Belgium
| | - Nadine Van Roy
- Cancer Research Institute (CRIG), Ghent, Belgium
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Sofie Verbeke
- Department of Pathology, Ghent University, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute (CRIG), Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University, Ghent University Hospital, Ghent, Belgium.
- Cancer Research Institute (CRIG), Ghent, Belgium.
| |
Collapse
|
5
|
Zhang W, Cai YY, Wang XL, Wang XX, Li Y, Han GY, Chu YJ, Zhang YX, Hao FR. Bone Metastases of Glioblastoma: A Case Report and Review of the Literature. Front Oncol 2021; 11:705455. [PMID: 34646764 PMCID: PMC8504694 DOI: 10.3389/fonc.2021.705455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/02/2021] [Indexed: 01/05/2023] Open
Abstract
Background Glioblastoma (GBM) is the most common primary intracranial tumor and originates from the small pool of adult neural stem and progenitor cells (NSPCs). According to the World Health Organization (WHO) classification of brain tumors, gliomas are classified into grades I–IV, and GBM is defined as the highest grade (IV). GBM can be disseminated by cerebrospinal fluid (CSF), but extracranial metastasis is rare. Additionally, the pathway and mechanism involved remain unclear. Case Presentation We report a rare case of left temporal lobe GBM with multiple bone metastases and soft tissue metastasis. This 49-year-old right-handed man who was diagnosed with GBM underwent surgery on May 9, 2017, followed by radiochemotherapy in June 2017. On August 13, 2019, local relapse was found. Then, the patient received a second surgery but not radiochemotherapy. In November 2019, the patient was reported to be suffering from low back pain for nearly 1 month. On December 6, 2019, magnetic resonance imaging (MRI) of the thoracolumbar vertebrae and abdominal computed tomography (CT) confirmed metastases on the ninth posterior rib on the right, the third anterior rib on the left, and the T7 and T10 vertebrae and their appendages. CT-guided rib space-occupying puncture biopsy was performed, and GBM was identified by pathology. Conclusion We should pay attention to extracranial metastasis of GBM. Timely detection and early treatment improve overall quality of patients’ life. The extracranial metastasis in this patient may have occurred through the spinal nerve root or intercostal nerve. Further clinical observations are required to clarify the pathway and mechanism involved.
Collapse
Affiliation(s)
- Wei Zhang
- Clinical School, Weifang Medical University, Weifang, China
| | - Yuan-Yuan Cai
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China
| | - Xiao-Li Wang
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China
| | - Xiao-Xiao Wang
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China
| | - Yang Li
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China
| | - Gui-Yan Han
- Department of Pathology, Weifang People's Hospital, Weifang, China
| | - Yu-Jing Chu
- Department of Imaging, Weifang People's Hospital, Weifang, China
| | - Yun-Xiang Zhang
- Department of Pathology, Weifang People's Hospital, Weifang, China
| | - Fu-Rong Hao
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China.,Weifang Key Laboratory of Radiophysics and Oncological Radiobiology, Weifang, China
| |
Collapse
|
6
|
de Biase D, Acquaviva G, Visani M, Marucci G, De Leo A, Maloberti T, Sanza V, Di Oto E, Franceschi E, Mura A, Ragazzi M, Serra S, Froio E, Bisagni A, Brandes AA, Pession A, Tallini G. Next-Generation Sequencing Panel for 1p/19q Codeletion and IDH1-IDH2 Mutational Analysis Uncovers Mistaken Overdiagnoses of 1p/19q Codeletion by FISH. J Mol Diagn 2021; 23:1185-1194. [PMID: 34186176 DOI: 10.1016/j.jmoldx.2021.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/15/2021] [Accepted: 06/08/2021] [Indexed: 02/08/2023] Open
Abstract
The 1p/19q codeletion is the result of a translocation between chromosome 1 (Chr1p) and chromosome 19 (Chr19q) with the loss of derivative (1;19)(p10;q10) chromosome. The 1p/19q codeletion has predictive and prognostic significance, and it is essential for the classification of gliomas. In routine practice, the fluorescence in situ hybridization (FISH) diagnosis of 1p/19q codeletion is sometimes unexpected. This study aimed to develop a next-generation sequencing panel for the concurrent definition of the 1p/19q codeletion and IDH1/IDH2 mutation status to resolve these equivocal cases. A total of 65 glioma samples were investigated using a 1p/19q-single-nucleotide polymorphism (SNP)-IDH panel. The panel consists of 192 amplicons, including SNPs mapping to Chr1 and Chr19 and amplicons for IDH1/IDH2 analysis. The 1p/19q SNP-IDH panel consistently identified IDH1/IDH2 mutations. In 49 of 60 cases (81.7%), it provided the same 1p/19q results obtained by FISH. In the remaining 11 cases, the 1p/19q SNP-IDH panel uncovered partial chromosome imbalances as a result of interstitial amplification or deletion of the regions where the FISH probes map, leading to a mistaken overdiagnosis of 1p/19q codeletion by FISH. The 1p/19q SNP-IDH next-generation sequencing panel allows reliable analysis of the 1p/19q codeletion and IDH1/IDH2 mutation at the same time. The panel not only allows resolution of difficult cases but also represents a cost-effective alternative to standard molecular diagnostics procedures.
Collapse
Affiliation(s)
- Dario de Biase
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy; Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giorgia Acquaviva
- Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), University of Bologna, Bologna, Italy
| | - Michela Visani
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), University of Bologna, Bologna, Italy
| | - Gianluca Marucci
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Antonio De Leo
- Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), University of Bologna, Bologna, Italy
| | - Thais Maloberti
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), University of Bologna, Bologna, Italy
| | - Viviana Sanza
- Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), University of Bologna, Bologna, Italy
| | - Enrico Di Oto
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), University of Bologna, Bologna, Italy
| | - Enrico Franceschi
- Department of Oncology, Azienda Unitá Sanitaria Locale (AUSL) Bologna, Bologna, Italy
| | - Antonella Mura
- Department of Oncology, Azienda Unitá Sanitaria Locale (AUSL) Bologna, Bologna, Italy
| | - Moira Ragazzi
- Anatomic Pathology Unit, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Silvia Serra
- Anatomic Pathology Unit, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Elisabetta Froio
- Anatomic Pathology Unit, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessandra Bisagni
- Anatomic Pathology Unit, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alba A Brandes
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Annalisa Pession
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy; Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanni Tallini
- Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), University of Bologna, Bologna, Italy.
| |
Collapse
|
7
|
Higa N, Akahane T, Yokoyama S, Yonezawa H, Uchida H, Takajo T, Kirishima M, Hamada T, Matsuo K, Fujio S, Hanada T, Hosoyama H, Yonenaga M, Sakamoto A, Hiraki T, Tanimoto A, Yoshimoto K. A tailored next-generation sequencing panel identified distinct subtypes of wildtype IDH and TERT promoter glioblastomas. Cancer Sci 2020; 111:3902-3911. [PMID: 32748499 PMCID: PMC7541004 DOI: 10.1111/cas.14597] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Central nervous system tumors are classified based on an integrated diagnosis combining histology and molecular characteristics, including IDH1/2 and H3-K27M mutations, as well as 1p/19q codeletion. Here, we aimed to develop and assess the feasibility of a glioma-tailored 48-gene next-generation sequencing (NGS) panel for integrated glioma diagnosis. We designed a glioma-tailored 48-gene NGS panel for detecting 1p/19q codeletion and mutations in IDH1/2, TP53, PTEN, PDGFRA, NF1, RB1, CDKN2A/B, CDK4, and the TERT promoter (TERTp). We analyzed 106 glioma patients (grade II: 19 cases, grade III: 23 cases, grade IV: 64 cases) using this system. The 1p/19q codeletion was detected precisely in oligodendroglial tumors using our NGS panel. In a cohort of 64 grade Ⅳ gliomas, we identified 56 IDH-wildtype glioblastomas. Within these IDH-wildtype glioblastomas, 33 samples (58.9%) showed a mutation in TERTp. Notably, PDGFRA mutations and their amplification were more commonly seen in TERTp-wildtype glioblastomas (43%) than in TERTp-mutant glioblastomas (6%) (P = .001). Hierarchical molecular classification of IDH-wildtype glioblastomas revealed 3 distinct groups of IDH-wildtype glioblastomas. One major cluster was characterized by mutations in PDGFRA, amplification of CDK4 and PDGFRA, homozygous deletion of CDKN2A/B, and absence of TERTp mutations. This cluster was significantly associated with older age (P = .021), higher Ki-67 score (P = .007), poor prognosis (P = .012), and a periventricular tumor location. We report the development of a glioma-tailored NGS panel for detecting 1p/19q codeletion and driver gene mutations on a single platform. Our panel identified distinct subtypes of IDH- and TERTp-wildtype glioblastomas with frequent PDGFRA alterations.
Collapse
Affiliation(s)
- Nayuta Higa
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Toshiaki Akahane
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Center for Human Genome and Gene Analysis, Kagoshima University Hospital, Kagoshima, Japan
| | - Seiya Yokoyama
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hajime Yonezawa
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiroyuki Uchida
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoko Takajo
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Mari Kirishima
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Taiji Hamada
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kei Matsuo
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shingo Fujio
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoko Hanada
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiroshi Hosoyama
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masanori Yonenaga
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Akihisa Sakamoto
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tsubasa Hiraki
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Akihide Tanimoto
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Center for Human Genome and Gene Analysis, Kagoshima University Hospital, Kagoshima, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
8
|
1p/19q co-deleted fibrillary astrocytomas: Not everything that is co-deleted is an oligodendroglioma. Ann Diagn Pathol 2020; 46:151519. [PMID: 32305004 DOI: 10.1016/j.anndiagpath.2020.151519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/24/2020] [Indexed: 01/28/2023]
Abstract
The presence of chromosome 1p/19q co-deletion is one of the hallmark required criteria for the diagnosis of oligodendroglioma, using the 2016 World Health Organization (WHO) Classification of Tumours of the Central Nervous System. Descriptions in the literature of astrocytomas, primarily glioblastomas, demonstrating partial losses on one or the other chromosome have been described. The significance of these small deletions is uncertain. Only rarely have cases of fibrillary astrocytoma been described as having co-deletion, which may potentially cause diagnostic confusion with oligodendroglioma. The goal of this study is to examine a large number of fibrillary astrocytomas to document how often 1p/19q co-deletions are present by Fluorescent In Situ Hybridization (FISH) testing (the testing method of choice in many institutions) and to evaluate what other markers may be helpful in avoiding misdiagnosis. This study is a retrospective evaluation of 359 fibrillary astrocytomas (55 grade II, 62 grade III and 242 grade IV) encountered between June 2016 and June 2019, we identified 11 tumors (3.1%) that had 1p/19q co-deletion by FISH testing. The clinical and pathologic features of these cases were reviewed. The 11 cases with co-deletion included 5 females who ranged in age from 37 to 86 years (median 63 years). Tumors arose in the temporal lobe in 5 patients, frontal lobe in 2, parietal lobe in 2, occipital lobe in 1, and cerebellum in 1. Final diagnoses included glioblastoma in 8 patients, anaplastic astrocytoma in 2, and diffuse astrocytoma in 1. Only 1 case (anaplastic astrocytoma) demonstrated evidence of IDH-1 immunoreactivity; none of the other 10 tumors showed evidence of an IDH1/2 mutation by PCR testing. Four tumors demonstrated p53 immunostaining of 30% or more. ATRX mutation as evidenced by loss of staining was observed in only 2 cases. Evidence of EGFR amplification by FISH testing was noted in 5 cases. Of particular note in the one case that demonstrated both 1p/19q co-deletion and an IDH-1 mutation, LOH testing was done and showed only partial losses on both chromosomes. Additionally, this tumor also demonstrated evidence of ATRX and p53 mutations by immunohistochemistry. In conclusion, co-deletions were noted in a minority of astrocytomas (3.1% of cases in the current study). Only 1 of 11 of these cases also demonstrated evidence of an IDH mutation, potentially raising differential diagnostic confusion with oligodendroglioma. Use of LOH 1p/19q testing, if available, or other markers such as ATRX, p53 and EGFR may be helpful in avoiding misclassification of such tumors as oligodendroglioma.
Collapse
|
9
|
Neill SG, Hauenstein J, Li MM, Liu YJ, Luo M, Saxe DF, Ligon AH. Copy number assessment in the genomic analysis of CNS neoplasia: An evidence-based review from the cancer genomics consortium (CGC) working group on primary CNS tumors. Cancer Genet 2020; 243:19-47. [PMID: 32203924 DOI: 10.1016/j.cancergen.2020.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022]
Abstract
The period from the 1990s to the 2010s has witnessed a burgeoning sea change in the practice of surgical neuropathology due to the incorporation of genomic data into the assessment of a range of central nervous system (CNS) neoplasms. This change has since matured into the adoption of genomic information into the definition of several World Health Organization (WHO)-established diagnostic entities. The data needed to accomplish the modern diagnosis of CNS neoplasia includes DNA copy number aberrations that may be assessed through a variety of mechanisms. Through a review of the relevant literature and professional practice guidelines, here we provide a condensed and scored overview of the most critical DNA copy number aberrations to assess for a selection of primary CNS neoplasms.
Collapse
Affiliation(s)
- Stewart G Neill
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Jennifer Hauenstein
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Marilyn M Li
- Department of Pathology, Division of Genomic Diagnostics, Children's Hospital of Philadelphia and Perelman School of Medicine, Philadelphia, PA, United States
| | - Yajuan J Liu
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Minjie Luo
- Department of Pathology, Division of Genomic Diagnostics, Children's Hospital of Philadelphia and Perelman School of Medicine, Philadelphia, PA, United States
| | - Debra F Saxe
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Azra H Ligon
- Department of Pathology, Center for Advanced Molecular Diagnostics, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Dissecting Molecular Features of Gliomas: Genetic Loci and Validated Biomarkers. Int J Mol Sci 2020; 21:ijms21020685. [PMID: 31968687 PMCID: PMC7014190 DOI: 10.3390/ijms21020685] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, several studies focused on the genetics of gliomas. This allowed identifying several germline loci that contribute to individual risk for tumor development, as well as various somatic mutations that are key for disease classification. Unfortunately, none of the germline loci clearly confers increased risk per se. Contrariwise, somatic mutations identified within the glioma tissue define tumor genotype, thus representing valid diagnostic and prognostic markers. Thus, genetic features can be used in glioma classification and guided therapy. Such copious genomic variabilities are screened routinely in glioma diagnosis. In detail, Sanger sequencing or pyrosequencing, fluorescence in-situ hybridization, and microsatellite analyses were added to immunohistochemistry as diagnostic markers. Recently, Next Generation Sequencing was set-up as an all-in-one diagnostic tool aimed at detecting both DNA copy number variations and mutations in gliomas. This approach is widely used also to detect circulating tumor DNA within cerebrospinal fluid from patients affected by primary brain tumors. Such an approach is providing an alternative cost-effective strategy to genotype all gliomas, which allows avoiding surgical tissue collection and repeated tumor biopsies. This review summarizes available molecular features that represent solid tools for the genetic diagnosis of gliomas at present or in the next future.
Collapse
|
11
|
Kwon MJ, Kang SY, Cho H, Lee JI, Kim ST, Suh YL. Clinical relevance of molecular subgrouping of gliomatosis cerebri per 2016 WHO classification: a clinicopathological study of 89 cases. Brain Pathol 2019; 30:235-245. [PMID: 31435963 DOI: 10.1111/bpa.12782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022] Open
Abstract
The extremely invasive phenotypes and genotypes related to progression of gliomatosis cerebri (GC) remain unclear although GC has been removed as an independent entity from the 2016 WHO classification. Hence, categorization of GC under the current WHO molecular classification is essential, and the molecular subgroups that might contribute to GC progression should be compared with the histopathological differences between initial and new lesions identified during follow-up. Analyses of IDH1/2 and TERTp mutations and 1p/19q co-deletion, and immunohistochemistry of IDH1-R132H, ATRX, p53 and galectin-3 were performed. Anaplastic astrocytoma, IDH-wildtype (AA-IDHwt) was the common molecular subgroup (52.8%), followed by diffuse astrocytoma, IDH-wildtype (DA-IDHwt) and AA, IDH-mutant (AA-IDHmt) (each 16.9%), DA-IDHmt (7.9%), glioblastoma (GBM)-IDHwt (3.3%) and GBM-IDHmt (2.2%). Approximately 92% of the AA-IDHwt lesions progressed to histologically confirmed GBM in the newly enhanced lesions harboring the TERTp mutation and expressing galectin-3. Similar to primary GBMs, GC-related GBMs that progressed from the IDHwt subgroups showed microvascular proliferation, palisading necrosis or thrombotic occlusion, implying that a subset of IDHwt subgroups may evolve to overt GBM. Molecular subgrouping did not provide the perfect prediction for the survival of GC patients. The AA-IDHwt group showed worse overall and progression-free survival (PFS) than the AA-IDHmt group. Biopsy plus radiotherapy, chemotherapy and temozolomide treatment for DA-IDHwt, and resection plus radiotherapy and temozolomide treatment for AA-IDHwt prolonged PFS. In conclusions, majority of GC was of the AA-IDHwt subgroup, which progressed to GBM. Molecular subgroups may assist in the selection of treatment modalities, because "GC pattern" still remains as a special growth of gliomas in WHO 2016 classification without established treatment guideline.
Collapse
Affiliation(s)
- Mi Jung Kwon
- Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - So Young Kang
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University College of Medicine, Seoul, South Korea
| | - Haeyon Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University College of Medicine, Seoul, South Korea
| | - Jung Il Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University College of Medicine, Seoul, South Korea
| | - Sung Tae Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University College of Medicine, Seoul, South Korea
| | - Yeon-Lim Suh
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University College of Medicine, Seoul, South Korea
| |
Collapse
|
12
|
D'Haene N, Meléndez B, Blanchard O, De Nève N, Lebrun L, Van Campenhout C, Salmon I. Design and Validation of a Gene-Targeted, Next-Generation Sequencing Panel for Routine Diagnosis in Gliomas. Cancers (Basel) 2019; 11:cancers11060773. [PMID: 31167453 PMCID: PMC6627812 DOI: 10.3390/cancers11060773] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/17/2019] [Accepted: 05/31/2019] [Indexed: 01/06/2023] Open
Abstract
The updated 2016 World Health Organization (WHO) classification system for gliomas integrates molecular alterations and histology to provide a greater diagnostic and prognostic utility than the previous, histology-based classification. The increasing number of markers that are tested in a correct diagnostic procedure makes gene-targeted, next-generation sequencing (NGS) a powerful tool in routine pathology practice. We designed a 14-gene NGS panel specifically aimed at the diagnosis of glioma, which allows simultaneous detection of mutations and copy number variations, including the 1p/19q-codeletion and Epidermal Growth Factor Receptor (EGFR) amplification. To validate this panel, we used reference mutated DNAs, nontumor and non-glioma samples, and 52 glioma samples that were previously characterized. The panel was then prospectively applied to 91 brain lesions. A specificity of 100% and sensitivity of 99.4% was achieved for mutation detection. Orthogonal methods, such as in situ hybridization and immunohistochemical techniques, were used for validation, which showed high concordance. The molecular alterations that were identified allowed diagnosis according to the updated WHO criteria, and helped in the differential diagnosis of difficult cases. This NGS panel is an accurate and sensitive method, which could replace multiple tests for the same sample. Moreover, it is a rapid and cost-effective approach that can be easily implemented in the routine diagnosis of gliomas.
Collapse
Affiliation(s)
- Nicky D'Haene
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium.
| | - Bárbara Meléndez
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium.
| | - Oriane Blanchard
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium.
| | - Nancy De Nève
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium.
| | - Laetitia Lebrun
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium.
| | - Claude Van Campenhout
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium.
| | - Isabelle Salmon
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium.
| |
Collapse
|
13
|
Park H, Chun SM, Shim J, Oh JH, Cho EJ, Hwang HS, Lee JY, Kim D, Jang SJ, Nam SJ, Hwang C, Sohn I, Sung CO. Detection of chromosome structural variation by targeted next-generation sequencing and a deep learning application. Sci Rep 2019; 9:3644. [PMID: 30842562 PMCID: PMC6403216 DOI: 10.1038/s41598-019-40364-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/14/2019] [Indexed: 12/30/2022] Open
Abstract
Molecular testing is increasingly important in cancer diagnosis. Targeted next generation sequencing (NGS) is widely accepted method but structural variation (SV) detection by targeted NGS remains challenging. In the brain tumor, identification of molecular alterations, including 1p/19q co-deletion, is essential for accurate glial tumor classification. Hence, we used targeted NGS to detect 1p/19q co-deletion using a newly developed deep learning (DL) model in 61 tumors, including 19 oligodendroglial tumors. An ensemble 1-dimentional convolution neural network was developed and used to detect the 1p/19q co-deletion. External validation was performed using 427 low-grade glial tumors from The Cancer Genome Atlas (TCGA). Manual review of the copy number plot from the targeted NGS identified the 1p/19q co-deletion in all 19 oligodendroglial tumors. Our DL model also perfectly detected the 1p/19q co-deletion (area under the curve, AUC = 1) in the testing set, and yielded reproducible results (AUC = 0.9652) in the validation set (n = 427), although the validation data were generated on a completely different platform (SNP Array 6.0 platform). In conclusion, targeted NGS using a cancer gene panel is a promising approach for classifying glial tumors, and DL can be successfully integrated for the SV detection in NGS data.
Collapse
Affiliation(s)
- Hosub Park
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sung-Min Chun
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,Center for Cancer Genome Discovery, Asan Institute for Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jooyong Shim
- Institute of Statistical Information, Department of Statistics, Inje University, Gyeongsangnam-do, Korea
| | - Ji-Hye Oh
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Eun Jeong Cho
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hee Sang Hwang
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Ji-Young Lee
- Center for Cancer Genome Discovery, Asan Institute for Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Deokhoon Kim
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,Center for Cancer Genome Discovery, Asan Institute for Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Se Jin Jang
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,Center for Cancer Genome Discovery, Asan Institute for Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Soo Jeong Nam
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Changha Hwang
- Department of Applied Statistics, Dankook University, Gyeonggido, Korea.
| | - Insuk Sohn
- Biostatistics and Clinical Epidemiology Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea.
| | - Chang Ohk Sung
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea. .,Center for Cancer Genome Discovery, Asan Institute for Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea. .,Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
| |
Collapse
|
14
|
Yang H, Jin L, Sun X. A thirteen‑gene set efficiently predicts the prognosis of glioblastoma. Mol Med Rep 2019; 19:1613-1621. [PMID: 30628650 PMCID: PMC6390043 DOI: 10.3892/mmr.2019.9801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of brain cancer; it usually recurs and patients have a short survival time. The present study aimed to construct a gene expression classifier and to screen key genes associated with GBM prognosis. GSE7696 microarray data set included samples from 10 recurrent GBM tissues, 70 primary GBM tissues and 4 normal brain tissues. Seed genes were identified by the 'survival' package in R and subjected to pathway enrichment analysis. Prognostic genes were selected from the seed genes using the 'rbsurv' package in R, unsupervised hierarchical clustering, survival analysis and enrichment analysis. Multivariate survival analysis was performed for the prognostic genes, and the GBM data set from The Cancer Genome Atlas database was utilized to validate the prognostic genes. Of the 1,785 seed genes analyzed, 13 prognostic feature genes, including collagen type XXVIII α1 chain (COL28A1), PDS5 cohesin‑associated factor A (PDS5A), zinc‑finger DHHC‑type containing 2 (ZDHHC2), zinc‑finger protein 24 (ZNF24), myosin VA (MYO5A) and myeloid/lymphoid or mixed‑lineage leukemia translocated to 4 (MLLT4), were identified. These genes performed well on sample classification and prognostic risk differentiation, and six pathways, including adherens junction, cyclic adenosine 3',5'‑monophosphate signaling and Ras signaling pathways, were enriched for these feature genes. The high‑risk group was slightly older compared with the low‑risk group. The validation data set confirmed the prognostic value of the 13 feature genes for GBM; of these, COL28A1, PDS5A, ZDHHC2, ZNF24, MYO5A and MLLT4 may be crucial. These results may aid the understanding of the pathogenesis of GBM and provide important clues for the development of novel diagnostic markers or therapeutic targets.
Collapse
Affiliation(s)
- Huyin Yang
- Department of Neurosurgery, Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Luhao Jin
- Department of Neurosurgery, Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xiaoyang Sun
- Department of Neurosurgery, Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|