1
|
Fragkiadaki V, Panagiotidis E, Vlontzou E, Kalathas T, Paschali A, Kypraios C, Chatzipavlidou V, Datseris I. Correlation of PSA blood levels with standard uptake value maximum (SUV max ) and total metabolic tumor volume (TMTV) in 18F-PSMA-1007 and 18F-choline PET/CT in patients with biochemically recurrent prostate cancer. Nucl Med Commun 2024; 45:924-930. [PMID: 39082074 DOI: 10.1097/mnm.0000000000001881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
OBJECTIVES In this prospective study, we investigated the correlation between prostate-specific antigen (PSA) levels in the blood of patients with prostate cancer in biochemical recurrence after radical treatment with the semiquantitative parameters standard uptake value maximum (SUV max ) and the total metabolic tumor volume (TMTV) in the metastatic foci depicted in 18F-prostate-specific membrane antigen (PSMA)-1007 and 18F-choline PET/computed tomography (CT) imaging. METHODS We prospectively examined 104 patients with biochemical relapse of prostate cancer after primary definitive treatment. All patients underwent one 18F-PSMA-1007 and one 18F-choline PET/CT examination in randomized order within a time frame of 10 days and were followed for at least 6 months (182 ± 10 days). The semiquantitative parameters of SUV max and metabolic tumor volume (MTV) of each neoplastic lesion in PET/CT imaging were calculated, and further summation of each MTV value was done to calculate the TMTV. RESULTS According to the Spearman correlation analysis, a positive correlation was found between PSA levels and SUV max and TMTV scores in the metastatic foci of 18F-PSMA-1007 PET/CT ( r = 0.24 and 0.35, respectively; P < 0.05) and SUV max in the lesions of 18F-choline PET/CT ( r = 0.28; P < 0.0239). However, a positive but NS correlation was demonstrated between values of PSA and TMTV for each lesion in the 18F-choline PET/CT study ( r = 0.22; P = 0.0795). The detection rate of the different PSA levels with a cutoff of 1 ng/ml was higher for 18F-PSMA-1007 than 18F-choline. CONCLUSION In biochemical relapse patients there is a positive correlation between PSA levels in the blood and the semiquantitative parameters SUV max and TMTV of the metastatic foci in the 18F-PSMA-1007 and 18F-Choline PET/CT imaging.
Collapse
Affiliation(s)
| | | | - Evaggelia Vlontzou
- Department of Nuclear Medicine, Evaggelismos General Hospital, Athens and
| | | | - Anna Paschali
- Department of Nuclear Medicine, Theageneio Cancer Center, Thessaloniki,
| | | | | | - Ioannis Datseris
- Department of Nuclear Medicine, Evaggelismos General Hospital, Athens and
| |
Collapse
|
2
|
Panagiotidis E, Andreou S, Paschali A, Angeioplasti K, Vlontzou E, Kalathas T, Pipintakou A, Fothiadaki A, Makridou A, Chatzimarkou M, Papanastasiou E, Datseris I, Chatzipavlidou V. Towards improved diagnosis: radiomics and quantitative biomarkers in 18 F-PSMA-1007 and 18 F-fluorocholine PET/CT for prostate cancer recurrence. Nucl Med Commun 2024; 45:796-803. [PMID: 38832429 DOI: 10.1097/mnm.0000000000001867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
OBJECTIVE This study compared the radiomic features and quantitative biomarkers of 18 F-PSMA-1007 [prostate-specific membrane antigen (PSMA)] and 18 F-fluorocholine (FCH) PET/computed tomography (CT) in prostate cancer patients with biochemical recurrence (BCR) enrolled in the phase 3, prospective, multicenter BIO-CT-001 trial. METHODS A total of 106 patients with BCR, who had undergone primary definitive treatment for prostate cancer, were recruited to this prospective study. All patients underwent one PSMA and one FCH PET/CT examination in randomized order within 10 days. They were followed up for a minimum of 6 months. Pathology, prostate-specific antigen (PSA), PSA doubling time, PSA velocity, and previous or ongoing treatment were analyzed. Using LifeX software, standardized uptake value (SUV) maximum, SUV mean , PSMA and choline total volume (PSMA-TV/FCH-TV), and total lesion PSMA and choline (TL-PSMA/TL-FCH) of all identified metastatic lesions in both tracers were calculated. RESULTS Of the 286 lesions identified, the majority 140 (49%) were lymph node metastases, 118 (41.2%) were bone metastases and 28 lesions (9.8%) were locoregional recurrences of prostate cancer. The median SUV max value was significantly higher for 18 F-PSMA compared with FCH for all 286 lesions (8.26 vs. 4.99, respectively, P < 0.001). There were statistically significant differences in median SUV mean , TL-PSMA/FCH, and PSMA/FCH-TV between the two radiotracers (4.29 vs. 2.92, 1.97 vs. 1.53, and 7.31 vs. 4.37, respectively, P < 0.001). The correlation between SUV mean /SUV max and PSA level was moderate, both for 18 F-PSMA ( r = 0.44, P < 0.001; r = 0.44, P < 0.001) and FCH ( r = 0.35, P < 0.001; r = 0.41, P < 0.001). TL-PSMA/FCH demonstrated statistically significant positive correlations with both PSA level and PSA velocity for both 18 F-PSMA ( r = 0.56, P < 0.001; r = 0.57, P < 0.001) and FCH ( r = 0.49, P < 0.001; r = 0.51, P < 0.001). While patients who received hormone therapy showed higher median SUV max values for both radiotracers compared with those who did not, the difference was statistically significant only for 18 F-PSMA ( P < 0.05). CONCLUSION Our analysis using both radiomic features and quantitative biomarkers demonstrated the improved performance of 18 F-PSMA-1007 compared with FCH in identifying metastatic lesions in prostate cancer patients with BCR.
Collapse
Affiliation(s)
| | - Sotiria Andreou
- Department of Nuclear Medicine - PET/CT, 'Theageneio' Cancer Center, Thessaloniki,
| | - Anna Paschali
- Department of Nuclear Medicine - PET/CT, 'Theageneio' Cancer Center, Thessaloniki,
| | - Kyra Angeioplasti
- Department of Nuclear Medicine - PET/CT, 'Theageneio' Cancer Center, Thessaloniki,
| | - Evaggelia Vlontzou
- Department of Nuclear Medicine - PET/CT, 'Evaggelismos' General Hospital, Athens and
| | - Theodore Kalathas
- Department of Nuclear Medicine - PET/CT, 'Theageneio' Cancer Center, Thessaloniki,
| | - Angeliki Pipintakou
- Department of Nuclear Medicine - PET/CT, 'Theageneio' Cancer Center, Thessaloniki,
| | - Athina Fothiadaki
- Department of Nuclear Medicine - PET/CT, 'Evaggelismos' General Hospital, Athens and
| | - Anna Makridou
- Department of Nuclear Medicine - PET/CT, 'Theageneio' Cancer Center, Thessaloniki,
| | - Michael Chatzimarkou
- Department of Nuclear Medicine - PET/CT, 'Theageneio' Cancer Center, Thessaloniki,
| | - Emmanouil Papanastasiou
- Laboratory of Medical Physics and Digitial Innovation, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Datseris
- Department of Nuclear Medicine - PET/CT, 'Evaggelismos' General Hospital, Athens and
| | | |
Collapse
|
3
|
Bezverkhniaia E, Kanellopoulos P, Rosenström U, Tolmachev V, Orlova A. Influence of Molecular Design on the Tumor Targeting and Biodistribution of PSMA-Binding Tracers Labeled with Technetium-99m. Int J Mol Sci 2024; 25:3615. [PMID: 38612427 PMCID: PMC11011439 DOI: 10.3390/ijms25073615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Previously, we designed the EuK-based PSMA ligand BQ0413 with an maE3 chelator for labeling with technetium-99m. It showed efficient tumor targeting, but our preclinical data and preliminary clinical results indicated that the renal excretion levels need to be decreased. We hypothesized that this could be achieved by a decrease in the ligand's total negative charge, achieved by substituting negatively charged glutamate residues in the chelator with glycine. The purpose of this study was to evaluate the tumor targeting and biodistribution of two new PSMA inhibitors, BQ0411 and BQ0412, compared to BQ0413. Conjugates were radiolabeled with Tc-99m and characterized in vitro, using PC3-pip cells, and in vivo, using NMRI and PC3-pip tumor-bearing mice. [99mTc]Tc-BQ0411 and [99mTc]Tc-BQ0412 demonstrated PSMA-specific binding to PC3-pip cells with picomolar affinity. The biodistribution pattern for the new conjugates was characterized by rapid excretion. The tumor uptake for [99mTc]Tc-BQ0411 was 1.6-fold higher compared to [99mTc]Tc-BQ0412 and [99mTc]Tc-BQ0413. [99mTc]Tc-BQ0413 has demonstrated predominantly renal excretion, while the new conjugates underwent both renal and hepatobiliary excretion. In this study, we have demonstrated that in such small targeting ligands as PSMA-binding EuK-based pseudopeptides, the structural blocks that do not participate in binding could have a crucial role in tumor targeting and biodistribution. The presence of a glycine-based coupling linker in BQ0411 and BQ0413 seems to optimize biodistribution. In conclusion, the substitution of amino acids in the chelating sequence is a promising method to alter the biodistribution of [99mTc]Tc-labeled small-molecule PSMA inhibitors. Further improvement of the biodistribution properties of BQ0413 is needed.
Collapse
Affiliation(s)
- Ekaterina Bezverkhniaia
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (E.B.); (P.K.); (U.R.)
| | - Panagiotis Kanellopoulos
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (E.B.); (P.K.); (U.R.)
| | - Ulrika Rosenström
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (E.B.); (P.K.); (U.R.)
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden;
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (E.B.); (P.K.); (U.R.)
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| |
Collapse
|
4
|
Dyer MR, Jing Z, Duncan K, Godbe J, Shokeen M. Advancements in the development of radiopharmaceuticals for nuclear medicine applications in the treatment of bone metastases. Nucl Med Biol 2024; 130-131:108879. [PMID: 38340369 DOI: 10.1016/j.nucmedbio.2024.108879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Bone metastases are a painful and complex condition that overwhelmingly impacts the prognosis and quality of life of cancer patients. Over the years, nuclear medicine has made remarkable progress in the diagnosis and management of bone metastases. This review aims to provide a comprehensive overview of the recent advancements in nuclear medicine for the diagnosis and management of bone metastases. Furthermore, the review explores the role of targeted radiopharmaceuticals in nuclear medicine for bone metastases, focusing on radiolabeled molecules that are designed to selectively target biomarkers associated with bone metastases, including osteocytes, osteoblasts, and metastatic cells. The applications of radionuclide-based therapies, such as strontium-89 (Sr-89) and radium-223 (Ra-223), are also discussed. This review also highlights the potential of theranostic approaches for bone metastases, enabling personalized treatment strategies based on individual patient characteristics. Importantly, the clinical applications and outcomes of nuclear medicine in osseous metastatic disease are discussed. This includes the assessment of treatment response, predictive and prognostic value of imaging biomarkers, and the impact of nuclear medicine on patient management and outcomes. The review identifies current challenges and future perspectives on the role of nuclear medicine in treating bone metastases. It addresses limitations in imaging resolution, radiotracer availability, radiation safety, and the need for standardized protocols. The review concludes by emphasizing the need for further research and advancements in imaging technology, radiopharmaceutical development, and integration of nuclear medicine with other treatment modalities. In summary, advancements in nuclear medicine have significantly improved the diagnosis and management of osseous metastatic disease and future developements in the integration of innovative imaging modalities, targeted radiopharmaceuticals, radionuclide production, theranostic approaches, and advanced image analysis techniques hold great promise in improving patient outcomes and enhancing personalized care for individuals with bone metastases.
Collapse
Affiliation(s)
- Michael R Dyer
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhenghan Jing
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathleen Duncan
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacqueline Godbe
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Monica Shokeen
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA; Alvin J. Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Unterrainer LM, Calais J, Bander NH. Prostate-Specific Membrane Antigen: Gateway to Management of Advanced Prostate Cancer. Annu Rev Med 2024; 75:49-66. [PMID: 38285513 DOI: 10.1146/annurev-med-081522-031439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Prostate-specific membrane antigen (PSMA) as a transmembrane protein is overexpressed by prostate cancer (PC) cells and is accessible for binding antibodies or low-molecular-weight radioligands due to its extracellular portion. Successful targeting of PSMA began with the development of humanized J591 antibody. Due to their faster clearance compared to antibodies, small-molecule radioligands for targeted imaging and therapy of PC have been favored in recent development efforts. PSMA positron emission tomography (PET) imaging has higher diagnostic performance than conventional imaging for initial staging of high-risk PC and biochemical recurrence detection/localization. However, it remains to be demonstrated how to integrate PSMA PET imaging for therapy response assessment and as an outcome endpoint measure in clinical trials. With the recent approval of 177Lu-PSMA-617 by the US Food and Drug Administration for metastatic castration-resistant PC progressing after chemotherapy, the high value of PSMA-targeted therapy was confirmed. Compared to standard of care, PSMA-based radioligand therapy led to a better outcome and a higher quality of life. This review, focusing on the advanced PC setting, provides an overview of different approved and nonapproved PSMA-targeted imaging and therapeutic modalities and discusses the future of PSMA-targeted theranostics, also with an outlook on non-radiopharmaceutical-based PSMA-targeted therapies.
Collapse
Affiliation(s)
- Lena M Unterrainer
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA; ,
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA; ,
| | - Neil H Bander
- Department of Urology, Weill Cornell Medicine, New York, NY, USA;
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
6
|
Patell K, Kurian M, Garcia JA, Mendiratta P, Barata PC, Jia AY, Spratt DE, Brown JR. Lutetium-177 PSMA for the treatment of metastatic castrate resistant prostate cancer: a systematic review. Expert Rev Anticancer Ther 2023; 23:731-744. [PMID: 37194261 DOI: 10.1080/14737140.2023.2213892] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/10/2023] [Indexed: 05/18/2023]
Abstract
INTRODUCTION Metastatic castrate resistant prostate cancer (mCPRC) remains an aggressive form of prostate cancer that no longer responds to traditional hormonal treatment alone. Despite the advent of novel anti-androgen medications, many patients continue to progress, and as a result, there is a growing need for additional treatment options. AREAS COVERED Lutetium-177 (177Lu) - PSMA-617 has become one of the new frontline treatment options for refractory metastatic castrate resistant prostate cancer after the failure of novel anti-androgen therapy and chemotherapy. Lu-177 has been used in real-world prospective trials and is now becoming utilized in newer phase III clinical trials. Here, we present a comprehensive overview of the current literature, covering retrospective studies, prospective studies, and clinical trials that established Lutetium-177-PSMA-617 (177Lu-PSMA-617) for the treatment of mCRPC. EXPERT OPINION 177Lu - PSMA-617 has been approved for treatment of mCRPC based on positive phase III studies. While this treatment is tolerable and effective, biomarkers are necessary to determine which patients will benefit. In the future, radioligand treatments will likely be utilized in earlier lines of therapy and potentially in combination with other prostate cancer treatments.
Collapse
Affiliation(s)
- Kanchi Patell
- Deparment of Internal Medicine, Division of Medical Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Matthew Kurian
- Deparment of Internal Medicine, Division of Medical Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Jorge A Garcia
- Deparment of Internal Medicine, Division of Medical Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Prateek Mendiratta
- Deparment of Internal Medicine, Division of Medical Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Pedro C Barata
- Deparment of Internal Medicine, Division of Medical Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Angela Y Jia
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Jason R Brown
- Deparment of Internal Medicine, Division of Medical Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| |
Collapse
|
7
|
Cheng L, Yang T, Zhang J, Gao F, Yang L, Tao W. The Application of Radiolabeled Targeted Molecular Probes for the Diagnosis and Treatment of Prostate Cancer. Korean J Radiol 2023; 24:574-589. [PMID: 37271211 DOI: 10.3348/kjr.2022.1002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 06/06/2023] Open
Abstract
Radiopharmaceuticals targeting prostate-specific membrane antigens (PSMA) are essential for the diagnosis, evaluation, and treatment of prostate cancer (PCa), particularly metastatic castration-resistant PCa, for which conventional treatment is ineffective. These molecular probes include [68Ga]PSMA, [18F]PSMA, [Al18F]PSMA, [99mTc]PSMA, and [89Zr]PSMA, which are widely used for diagnosis, and [177Lu]PSMA and [225Ac]PSMA, which are used for treatment. There are also new types of radiopharmaceuticals. Due to the differentiation and heterogeneity of tumor cells, a subtype of PCa with an extremely poor prognosis, referred to as neuroendocrine prostate cancer (NEPC), has emerged, and its diagnosis and treatment present great challenges. To improve the detection rate of NEPC and prolong patient survival, many researchers have investigated the use of relevant radiopharmaceuticals as targeted molecular probes for the detection and treatment of NEPC lesions, including DOTA-TOC and DOTA-TATE for somatostatin receptors, 4A06 for CUB domain-containing protein 1, and FDG. This review focused on the specific molecular targets and various radionuclides that have been developed for PCa in recent years, including those mentioned above and several others, and aimed to provide valuable up-to-date information and research ideas for future studies.
Collapse
Affiliation(s)
- Luyi Cheng
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Tianshuo Yang
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Jun Zhang
- Department of Nuclear Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lingyun Yang
- JYAMS PET Research and Development Limited, Nanjing, Jiangsu, China
| | - Weijing Tao
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China.
| |
Collapse
|
8
|
Berenguer CV, Pereira F, Câmara JS, Pereira JAM. Underlying Features of Prostate Cancer-Statistics, Risk Factors, and Emerging Methods for Its Diagnosis. Curr Oncol 2023; 30:2300-2321. [PMID: 36826139 PMCID: PMC9955741 DOI: 10.3390/curroncol30020178] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Prostate cancer (PCa) is the most frequently occurring type of malignant tumor and a leading cause of oncological death in men. PCa is very heterogeneous in terms of grade, phenotypes, and genetics, displaying complex features. This tumor often has indolent growth, not compromising the patient's quality of life, while its more aggressive forms can manifest rapid growth with progression to adjacent organs and spread to lymph nodes and bones. Nevertheless, the overtreatment of PCa patients leads to important physical, mental, and economic burdens, which can be avoided with careful monitoring. Early detection, even in the cases of locally advanced and metastatic tumors, provides a higher chance of cure, and patients can thus go through less aggressive treatments with fewer side effects. Furthermore, it is important to offer knowledge about how modifiable risk factors can be an effective method for reducing cancer risk. Innovations in PCa diagnostics and therapy are still required to overcome some of the limitations of the current screening techniques, in terms of specificity and sensitivity. In this context, this review provides a brief overview of PCa statistics, reporting its incidence and mortality rates worldwide, risk factors, and emerging screening strategies.
Collapse
Affiliation(s)
- Cristina V. Berenguer
- CQM—Centro de Química da Madeira, NPRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Ferdinando Pereira
- SESARAM—Serviço de Saúde da Região Autónoma da Madeira, EPERAM, Hospital Dr. Nélio Mendonça, Avenida Luís de Camões 6180, 9000-177 Funchal, Portugal
| | - José S. Câmara
- CQM—Centro de Química da Madeira, NPRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, NPRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Correspondence:
| |
Collapse
|
9
|
Crowley F, Mihalopoulos M, Gaglani S, Tewari AK, Tsao CK, Djordjevic M, Kyprianou N, Purohit RS, Lundon DJ. Prostate cancer in transgender women: considerations for screening, diagnosis and management. Br J Cancer 2023; 128:177-189. [PMID: 36261584 PMCID: PMC9902518 DOI: 10.1038/s41416-022-01989-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 02/08/2023] Open
Abstract
Transgender individuals represent 0.55% of the US population, equivalent to 1.4 million transgender adults. In transgender women, feminisation can include a number of medical and surgical interventions. The main goal is to deprive the phenotypically masculine body of androgens and simultaneously provide oestrogen therapy for feminisation. In gender-confirming surgery (GCS) for transgender females, the prostate is usually not removed. Due to limitations of existing cohort studies, the true incidence of prostate cancer in transgender females is unknown but is thought to be less than the incidence among cis-gender males. It is unclear how prostate cancer develops in androgen-deprived conditions in these patients. Six out of eleven case reports in the literature presented with metastatic disease. It is thought that androgen receptor-mediated mechanisms or tumour-promoting effects of oestrogen may be responsible. Due to the low incidence of prostate cancer identified in transgender women, there is little evidence to drive specific screening recommendations in this patient subpopulation. The treatment of early and locally advanced prostate cancer in these patients warrants an individualised thoughtful approach with input from patients' reconstructive surgeons. Both surgical and radiation treatment for prostate cancer in these patients can profoundly impact the patient's quality of life. In this review, we discuss the evidence surrounding screening and treatment of prostate cancer in transgender women and consider the current gaps in our knowledge in providing evidence-based guidance at the molecular, genomic and epidemiological level, for clinical decision-making in the management of these patients.
Collapse
Affiliation(s)
- Fionnuala Crowley
- Internal Medicine, Mount Sinai Morningside West, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meredith Mihalopoulos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Simita Gaglani
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ashutosh K Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Che-Kai Tsao
- Department of Medicine, Division of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miroslav Djordjevic
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology & Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rajveer S Purohit
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Dara J Lundon
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
10
|
Mercatelli D, Cabrelle C, Veltri P, Giorgi FM, Guzzi PH. Detection of pan-cancer surface protein biomarkers via a network-based approach on transcriptomics data. Brief Bioinform 2022; 23:6695270. [DOI: 10.1093/bib/bbac400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/28/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Cell surface proteins have been used as diagnostic and prognostic markers in cancer research and as targets for the development of anticancer agents. Many of these proteins lie at the top of signaling cascades regulating cell responses and gene expression, therefore acting as ‘signaling hubs’. It has been previously demonstrated that the integrated network analysis on transcriptomic data is able to infer cell surface protein activity in breast cancer. Such an approach has been implemented in a publicly available method called ‘SURFACER’. SURFACER implements a network-based analysis of transcriptomic data focusing on the overall activity of curated surface proteins, with the final aim to identify those proteins driving major phenotypic changes at a network level, named surface signaling hubs. Here, we show the ability of SURFACER to discover relevant knowledge within and across cancer datasets. We also show how different cancers can be stratified in surface-activity-specific groups. Our strategy may identify cancer-wide markers to design targeted therapies and biomarker-based diagnostic approaches.
Collapse
Affiliation(s)
- Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna , 40138 Bologna , Italy
| | - Chiara Cabrelle
- Department of Pharmacy and Biotechnology, University of Bologna , 40138 Bologna , Italy
| | - Pierangelo Veltri
- Department of Surgical and Medical Sciences, Magna Graecia University , 88100 Catanzaro , Italy
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna , 40138 Bologna , Italy
| | - Pietro H Guzzi
- Department of Surgical and Medical Sciences, Magna Graecia University , 88100 Catanzaro , Italy
| |
Collapse
|
11
|
Nanoparticles-Based Strategies to Improve the Delivery of Therapeutic Small Interfering RNA in Precision Oncology. Pharmaceutics 2022; 14:pharmaceutics14081586. [PMID: 36015212 PMCID: PMC9415718 DOI: 10.3390/pharmaceutics14081586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 02/07/2023] Open
Abstract
Small interfering RNA (siRNA) can selectively suppress the expression of disease-causing genes, holding great promise in the treatment of human diseases, including malignant cancers. In recent years, with the development of chemical modification and delivery technology, several siRNA-based therapeutic drugs have been approved for the treatment of non-cancerous liver diseases. Nevertheless, the clinical development of siRNA-based cancer therapeutics remains a major translational challenge. The main obstacles of siRNA therapeutics in oncology include both extracellular and intracellular barriers, such as instability under physiological conditions, insufficient tumor targeting and permeability (particularly for extrahepatic tumors), off-target effects, poor cellular uptake, and inefficient endosomal escape. The development of clinically suitable and effective siRNA delivery systems is expected to overcome these challenges. Herein, we mainly discuss recent strategies to improve the delivery and efficacy of therapeutic siRNA in cancer, including the application of non-viral nanoparticle-based carriers, the selection of target genes for therapeutic silencing, and the combination with other therapeutic modalities. In addition, we also provide an outlook on the ongoing challenges and possible future developments of siRNA-based cancer therapeutics during clinical translation.
Collapse
|
12
|
Leitão C, Matos B, Roque F, Herdeiro MT, Fardilha M. The Impact of Lifestyle on Prostate Cancer: A Road to the Discovery of New Biomarkers. J Clin Med 2022; 11:2925. [PMID: 35629050 PMCID: PMC9148038 DOI: 10.3390/jcm11102925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers among men, and its incidence has been rising through the years. Several risk factors have been associated with this disease and unhealthy lifestyles and inflammation were appointed as major contributors for PCa development, progression, and severity. Despite the advantages associated with the currently used diagnostic tools [prostate-specific antigen(PSA) serum levels and digital rectal examination (DRE)], the development of effective approaches for PCa diagnosis is still necessary. Finding lifestyle-associated proteins that may predict the development of PCa seems to be a promising strategy to improve PCa diagnosis. In this context, several biomarkers have been identified, including circulating biomarkers (CRP, insulin, C-peptide, TNFα-R2, adiponectin, IL-6, total PSA, free PSA, and p2PSA), urine biomarkers (PCA3, guanidine, phenylacetylglycine, and glycine), proteins expressed in exosomes (afamin, vitamin D-binding protein, and filamin A), and miRNAs expressed in prostate tissue (miRNA-21, miRNA-101, and miRNA-182). In conclusion, exploring the impact of lifestyle and inflammation on PCa development and progression may open doors to the identification of new biomarkers. The discovery of new PCa diagnostic biomarkers should contribute to reduce overdiagnosis and overtreatment.
Collapse
Affiliation(s)
- Catarina Leitão
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (C.L.); (M.T.H.)
| | - Bárbara Matos
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal;
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fátima Roque
- Research Unit for Inland Development, Polytechnic of Guarda (UDI-IPG), Avenida Doutor Francisco Sá Carneiro, 6300-559 Guarda, Portugal;
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Maria Teresa Herdeiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (C.L.); (M.T.H.)
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
13
|
Gene therapy of prostate cancer using liposomes containing perforin expression vector driven by the promoter of prostate-specific antigen gene. Sci Rep 2022; 12:1442. [PMID: 35087064 PMCID: PMC8795355 DOI: 10.1038/s41598-021-03324-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022] Open
Abstract
Perforin secreted from cytotoxic lymphocytes plays a critical role in cancer immunosurveillance. The aim of this study was to investigate the therapeutic potential of liposomes containing perforin expression vector driven by the promotor of prostate-specific antigen (PSA). The anti-tumor effect of perforin was analyzed using prostate cancer (PC) PC-3 cells in which perforin expression was controlled by Tet-on system (PC-3PRF cells). Liposomes encapsulating PSA promoter-driven perforin expression vector (pLipo) were constructed for its specific expression in PC. The anti-tumor effect of pLipo was evaluated in vitro using docetaxel-resistant PC 22Rv1 PC cell line, 22Rv1DR, and PC-3 cells in the presence of human peripheral blood mono nuclear cells (PBMCs) and also in vivo using male nude mice bearing 22Rv1DR cell-derived tumor xenograft. Induction of perforin significantly inhibited growth of PC-3PRF cells. Treatment with pLipo induced perforin expression in 22Rv1DR cells expressing PSA but not in PC-3 cells lacking it. Treatment with pLipo at a low concentration was prone to inhibit growth of both cell lines and significantly inhibited growth of 22Rv1DR cells when co-incubated with PBMCs. The combined use of pLipo at a high concentration with PBMCs showed nearly complete inhibition of 22Rv1DR cell growth. Intravenous administration of pLipo via tail vein increased the level of perforin in tumor and serum and significantly decreased the tumor volume. Our results suggest that liposome-mediated PC-specific expression of perforin could be a novel therapy for advanced PC.
Collapse
|
14
|
Deep Membrane Proteome Profiling Reveals Overexpression of Prostate-Specific Membrane Antigen (PSMA) in High-Risk Human Paraganglioma and Pheochromocytoma, Suggesting New Theranostic Opportunity. Molecules 2021; 26:molecules26216567. [PMID: 34770976 PMCID: PMC8587166 DOI: 10.3390/molecules26216567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors arising from chromaffin cells of adrenal medulla or sympathetic or parasympathetic paraganglia, respectively. To identify new therapeutic targets, we performed a detailed membrane-focused proteomic analysis of five human paraganglioma (PGL) samples. Using the Pitchfork strategy, which combines specific enrichments of glycopeptides, hydrophobic transmembrane segments, and non-glycosylated extra-membrane peptides, we identified over 1800 integral membrane proteins (IMPs). We found 45 “tumor enriched” proteins, i.e., proteins identified in all five PGLs but not found in control chromaffin tissue. Among them, 18 IMPs were predicted to be localized on the cell surface, a preferred drug targeting site, including prostate-specific membrane antigen (PSMA), a well-established target for nuclear imaging and therapy of advanced prostate cancer. Using specific antibodies, we verified PSMA expression in 22 well-characterized human PPGL samples. Compared to control chromaffin tissue, PSMA was markedly overexpressed in high-risk PPGLs belonging to the established Cluster 1, which is characterized by worse clinical outcomes, pseudohypoxia, multiplicity, recurrence, and metastasis, specifically including SDHB, VHL, and EPAS1 mutations. Using immunohistochemistry, we localized PSMA expression to tumor vasculature. Our study provides the first direct evidence of PSMA overexpression in PPGLs which could translate to therapeutic and diagnostic applications of anti-PSMA radio-conjugates in high-risk PPGLs.
Collapse
|