1
|
Ceballos-Sánchez D, Sáez-Fuertes L, Casanova-Crespo S, Rodríguez-Lagunas MJ, Castell M, Pérez-Cano FJ, Massot-Cladera M. Influence of Dietary Fiber and Polyphenols During Pre-Gestation, Gestation, or Lactation on Intestinal Gene Expression. Nutrients 2025; 17:341. [PMID: 39861471 PMCID: PMC11767784 DOI: 10.3390/nu17020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Diet composition is important for health, especially during critical periods such as pre-gestation (P), gestation (G), or lactation (S), due to its potential impact not only on the mother but on the offspring. The Mediterranean diet includes many healthy foods rich in fiber and/or polyphenols, such as whole grains, fruits, vegetables, beans, and nuts. The present preclinical study assesses the impact of a diet rich in fiber and polyphenols (HFP diet) during one of those three periods (P, G, or S, three weeks each) on the rat gene expression of the small intestine obtained at the end of the lactation period. METHODS This analysis was performed by the mRNA two step PCR amplification by random primers and poly-T, followed by library generation and HiSeq X-Ten Illumina sequencing (Seqplexing), and further confirmed by Real time PCR and ELISA. RESULTS The results showed a broad number of genes significantly modulated after the HFP diet compared to the reference diet, with a higher number of genes modulated when the supplementing period was closer to the analysis day (S > G > P). Notably, genes involved in immune signaling, intestinal absorption, and cell growth were among those more significantly affected by the HFP dietary intervention. The HFP diet influenced the expression of key genes such as ferritin, fatty acid synthase, apelin, and complement proteins, among others. There was a unique gene modified in all the intervention periods (Family with Sequence Similarity 117 Member A, Fam117A, which codifies a protein with unknown function), indicating that this molecule may participate critically in the effects induced by fiber and polyphenols during these periods. CONCLUSIONS Overall, in rats, the influence of diet for a three-week period around birth is able to modulate the intestinal gene expression, and consequently, maternal health, which can eventually have an indirect impact on the offspring.
Collapse
Affiliation(s)
- Daniela Ceballos-Sánchez
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (D.C.-S.); (L.S.-F.); (S.C.-C.); (M.J.R.-L.); (M.C.); (M.M.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Laura Sáez-Fuertes
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (D.C.-S.); (L.S.-F.); (S.C.-C.); (M.J.R.-L.); (M.C.); (M.M.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Sergi Casanova-Crespo
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (D.C.-S.); (L.S.-F.); (S.C.-C.); (M.J.R.-L.); (M.C.); (M.M.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Maria J. Rodríguez-Lagunas
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (D.C.-S.); (L.S.-F.); (S.C.-C.); (M.J.R.-L.); (M.C.); (M.M.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Margarida Castell
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (D.C.-S.); (L.S.-F.); (S.C.-C.); (M.J.R.-L.); (M.C.); (M.M.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco J. Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (D.C.-S.); (L.S.-F.); (S.C.-C.); (M.J.R.-L.); (M.C.); (M.M.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Malen Massot-Cladera
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (D.C.-S.); (L.S.-F.); (S.C.-C.); (M.J.R.-L.); (M.C.); (M.M.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
2
|
Yang H, Lei Z, He J, Zhang L, Lai T, Zhou L, Wang N, Tang Z, Sui J, Wu Y. Single-cell RNA sequencing reveals recruitment of the M2-like CCL8 high macrophages in Lewis lung carcinoma-bearing mice following hypofractionated radiotherapy. J Transl Med 2024; 22:306. [PMID: 38528587 PMCID: PMC10964592 DOI: 10.1186/s12967-024-05118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) play a pivotal role in reshaping the tumor microenvironment following radiotherapy. The mechanisms underlying this reprogramming process remain to be elucidated. METHODS Subcutaneous Lewis lung carcinoma (LLC) murine model was treated with hypofrationated radiotherapy (8 Gy × 3F). Single-cell RNA sequencing was utilized to identify subclusters and functions of TAMs. Multiplex assay and enzyme-linked immunosorbent assay (ELISA) were employed to measure serum chemokine levels. Bindarit was used to inhibit CCL8, CCL7, and CCL2. The infiltration of TAMs after combination treatment with hypofractionated radiotherapy and Bindarit was quantified with flow cytometry, while the influx of CD206 and CCL8 was assessed by immunostaining. RESULTS Transcriptome analysis identified a distinct subset of M2-like macrophages characterized by elevated Ccl8 expression level following hypofractionated radiotherapy in LLC-bearing mice. Remarkbly, hypofractionated radiotherapy not only promoted CCL8high macrophages infiltration but also reprogrammed them by upregulating immunosuppressive genes, thereby fostering an immunosuppressive tumor microenvironment. Additioinally, hypofractionated radiotherapy enhanced the CCL signaling pathway, augmenting the pro-tumorigenic functions of CCL8high macrophages and boosting TAMs recruitment. The adjunctive treatment combining hypofractionated radiotherapy with Bindarit effectively reduced M2 macrophages infiltration and prolonged the duration of local tumor control. CONCLUSIONS Hypofractionated radiotherapy enhances the infiltration of CCL8high macrophages and amplifies their roles in macrophage recruitment through the CCL signaling pathway, leading to an immunosuppressive tumor microenvironment. These findings highlight the potential of targeting TAMs and introduces a novel combination to improve the efficacy of hypofractionated radiotherapy.
Collapse
Affiliation(s)
- Haonan Yang
- School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Zheng Lei
- School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Jiang He
- School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Lu Zhang
- School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Tangmin Lai
- Radiation Oncology Center, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Liu Zhou
- Radiation Oncology Center, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Nuohan Wang
- School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Zheng Tang
- Radiation Oncology Center, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Jiangdong Sui
- Radiation Oncology Center, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, China.
| | - Yongzhong Wu
- Radiation Oncology Center, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, China.
| |
Collapse
|