1
|
Dénes B, Fuller RN, Kelin W, Levin TR, Gil J, Harewood A, Lőrincz M, Wall NR, Firek AF, Langridge WHR. A CTB-SARS-CoV-2-ACE-2 RBD Mucosal Vaccine Protects Against Coronavirus Infection. Vaccines (Basel) 2023; 11:1865. [PMID: 38140268 PMCID: PMC10747655 DOI: 10.3390/vaccines11121865] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Mucosal vaccines protect against respiratory virus infection by stimulating the production of IgA antibodies that protect against virus invasion of the mucosal epithelium. In this study, a novel protein subunit mucosal vaccine was constructed for protection against infection by the beta coronavirus SARS-CoV-2. The vaccine was assembled by linking a gene encoding the SARS-CoV-2 virus S1 angiotensin converting enzyme receptor binding domain (ACE-2-RBD) downstream from a DNA fragment encoding the cholera toxin B subunit (CTB), a mucosal adjuvant known to stimulate vaccine immunogenicity. A 42 kDa vaccine fusion protein was identified in homogenates of transformed E. coli BL-21 cells by acrylamide gel electrophoresis and by immunoblotting against anti-CTB and anti-ACE-2-RBD primary antibodies. The chimeric CTB-SARS-CoV-2-ACE-2-RBD vaccine fusion protein was partially purified from clarified bacterial homogenates by nickel affinity column chromatography. Further vaccine purification was accomplished by polyacrylamide gel electrophoresis and electro-elution of the 42 kDa chimeric vaccine protein. Vaccine protection against SARS-CoV-2 infection was assessed by oral, nasal, and parenteral immunization of BALB/c mice with the CTB-SARS-CoV-2-ACE-2-RBD protein. Vaccine-induced SARS-CoV-2 specific antibodies were quantified in immunized mouse serum by ELISA analysis. Serum from immunized mice contained IgG and IgA antibodies that neutralized SARS-CoV-2 infection in Vero E6 cell cultures. In contrast to unimmunized mice, cytological examination of cell necrosis in lung tissues excised from immunized mice revealed no detectable cellular abnormalities. Mouse behavior following vaccine immunization remained normal throughout the duration of the experiments. Together, our data show that a CTB-adjuvant-stimulated CTB-SARS-CoV-2-ACE-2-RBD chimeric mucosal vaccine protein synthesized in bacteria can produce durable and persistent IgA antibodies in mice that neutralize the SARS-CoV-2 subvariant Omicron BA.1.1.
Collapse
Affiliation(s)
- Béla Dénes
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, 1143 Budapest, Hungary;
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Ryan N. Fuller
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
| | - Wayne Kelin
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
| | - Tessa R. Levin
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
| | - Jaipuneet Gil
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
| | - Aaren Harewood
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
- Department of Basic Sciences, Oakwood University, Huntsville, AL 35896, USA
| | - Márta Lőrincz
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, 1143 Budapest, Hungary;
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Nathan R. Wall
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Anthony F. Firek
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
- Comparative Effectiveness and Clinical Outcomes Research Center (CECORC), Riverside University Health System Medical Center, Moreno Valley, CA 92555, USA
| | - William H. R. Langridge
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
2
|
Vaernewyck V, Arzi B, Sanders NN, Cox E, Devriendt B. Mucosal Vaccination Against Periodontal Disease: Current Status and Opportunities. Front Immunol 2021; 12:768397. [PMID: 34925337 PMCID: PMC8675580 DOI: 10.3389/fimmu.2021.768397] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Approximately 9 out of 10 adults have some form of periodontal disease, an infection-induced inflammatory disease of the tooth-supporting tissues. The initial form, gingivitis, often remains asymptomatic, but this can evolve into periodontitis, which is typically associated with halitosis, oral pain or discomfort, and tooth loss. Furthermore, periodontitis may contribute to systemic disorders like cardiovascular disease and type 2 diabetes mellitus. Control options remain nonspecific, time-consuming, and costly; largely relying on the removal of dental plaque and calculus by mechanical debridement. However, while dental plaque bacteria trigger periodontal disease, it is the host-specific inflammatory response that acts as main driver of tissue destruction and disease progression. Therefore, periodontal disease control should aim to alter the host's inflammatory response as well as to reduce the bacterial triggers. Vaccines may provide a potent adjunct to mechanical debridement for periodontal disease prevention and treatment. However, the immunopathogenic complexity and polymicrobial aspect of PD appear to complicate the development of periodontal vaccines. Moreover, a successful periodontal vaccine should induce protective immunity in the oral cavity, which proves difficult with traditional vaccination methods. Recent advances in mucosal vaccination may bridge the gap in periodontal vaccine development. In this review, we offer a comprehensive overview of mucosal vaccination strategies to induce protective immunity in the oral cavity for periodontal disease control. Furthermore, we highlight the need for additional research with appropriate and clinically relevant animal models. Finally, we discuss several opportunities in periodontal vaccine development such as multivalency, vaccine formulations, and delivery systems.
Collapse
Affiliation(s)
- Victor Vaernewyck
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, United States
- Veterinary Institute for Regenerative Cures (VIRC) School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Niek N. Sanders
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eric Cox
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
3
|
Kim TG, Lan TT, Lee JY. Immunogenicity of Fusion Protein of Cholera Toxin B Subunit-Porphyromonas gingivalis 53-kDa Minor Fimbrial Protein Produced in Nicotiana benthamiana. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Zhang Q, Xu B, Pan J, Liu D, Lv R, Yan D. Expression and active testing of VP7 from GCRV (Grass carp reovirus) fused with cholera toxin B subunit in rice calli. Protein Expr Purif 2019; 158:1-8. [PMID: 30753891 DOI: 10.1016/j.pep.2019.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 12/16/2018] [Accepted: 02/06/2019] [Indexed: 12/22/2022]
Abstract
Grass carp reovirus (GCRV) is one of the most serious pathogens threatening grass carp (Ctenopharyngodon idellus) production and results in high mortality in China. VP7 from GCRV is involved in viral infection and could be suitable for developing vaccines for the control of GCRV infection. To obtain a genetically engineered vaccine and a plant-based oral vaccine and to evaluate their immune efficacy as an oral vaccine against GCRV, cholera toxin B subunit (CTB) of Vibrio cholerae fused to VP7 (CTB-VP7) was transformed into BL21(DE3) for expression. SDS-PAGE and Western blotting showed that the purified CTB-VP7 fusion protein (rCTB-VP7) was approximately 49.0 kDa. Meanwhile, CTB-VP7 was transformed into rice callus cells by Agrobacterium tumefaciens-mediated gene transformation. CTB-VP7 was integrated into the nuclear genome by PCR, and mRNA transcripts of CTB-VP7 were detected. ELISA and Western blot analyses revealed that the CTB-VP7 fusion protein (CTB-VP7) could be expressed in rice callus lines. The level of expression was determined to be 1.54% ± 0.43 of the total soluble protein. CTB-VP7 showed a binding affinity for monosialoganglioside(GM1), a receptor for CTB. CTB-VP7 showed a higher affinity towards GM1 compared to rCTB-VP7. CTB-VP7 bonded to GM1 with different affinities under different temperatures. Maximum binding of CTB-VP7 to GM1 was reported to occur within 2 h at 37 °C, and approximately half of the binding affinity remained at 25 °C. Our results suggest that CTB-VP7 could be produced in rice calli, increasing the possibility that edible plants can be employed in mucosal vaccines for protection against GCRV in aquaculture.
Collapse
Affiliation(s)
- Qiusheng Zhang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Binglian Xu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jiajia Pan
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Danyang Liu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Ruoxian Lv
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Dongchun Yan
- School of Agriculture, Ludong University, Yantai, 264025, China
| |
Collapse
|
5
|
Tien NQD, Kim TJ, Kim TG. Viral hemorrhagic septicemia virus glycoprotein production in tobacco. Protein Expr Purif 2017; 133:170-176. [PMID: 28192199 DOI: 10.1016/j.pep.2017.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/12/2017] [Accepted: 02/08/2017] [Indexed: 11/27/2022]
Abstract
Viral hemorrhagic septicemia virus (VHSV) causes mortality in numerous marine and freshwater fish species resulting in heavy losses in fish farming. The glycoprotein gene of VHSV was fused with the cholera toxin B subunit (CTB) and expressed transiently in leaf tissues of Nicotiana benthamiana via the agroinfiltration method. The glycoprotein gene was divided into two parts to improve assembly of CTB fusion proteins (CTB-VHSV99-235 and CTB-VHSV258-417). Production of CTB fusion proteins was confirmed in the agroinfiltrated leaf tissue by western blot analysis. The plant-produced CTB fusion proteins showed biological activity to GM1-ganglioside, a receptor for biologically active CTB, on GM1-ELISA. The expression level of the CTB-VHSV fusion proteins was 0.86% (CTB-VHSV99-235) and 0.93% (CTB-VHSV258-417) of total proteins in agroinfiltrated leaf tissue, as determined by GM1-ELISA. These results suggest that Agrobacterium-mediated transient expression of CTB fusion antigens of VHSV is a rapid and convenient method and demonstrate the feasibility of using agroinfiltrated plant leaf tissues expressing CTB-fusion antigens as a plant-based vaccine to prevent VHSV infection.
Collapse
Affiliation(s)
- Nguyen-Quang-Duc Tien
- Department of Bioactive Material Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeollabuk-do 54896, Republic of Korea
| | - Tae-Jung Kim
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Tae-Geum Kim
- Center for Jeongup Industry-Academy-Institute Cooperation, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeollabuk-do 54896, Republic of Korea.
| |
Collapse
|
6
|
Kim MY, Kim BY, Oh SM, Reljic R, Jang YS, Yang MS. Oral immunisation of mice with transgenic rice calli expressing cholera toxin B subunit fused to consensus dengue cEDIII antigen induces antibodies to all four dengue serotypes. PLANT MOLECULAR BIOLOGY 2016; 92:347-56. [PMID: 27566485 DOI: 10.1007/s11103-016-0517-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/19/2016] [Indexed: 05/23/2023]
Abstract
Dengue virus (DENV) infection is an emerging global health threat. DENV consists of four distinct serotypes, necessitating a tetravalent vaccine. In this study, expression of consensus envelope protein domain III (cEDIII) fused to cholera toxin B subunit (CTB) in transgenic rice calli was improved using the luminal binding protein BiP at the N-terminus and the SEKDEL signal sequences at the C-terminus, targeting the recombinant protein to endoplasmic reticulum (ER). We found that the fusion protein showed higher levels of expression when compared to the fusion proteins using rice amylase 3D (RAmy3D) or CTB native signal sequence only. The CTB-cEDIII fusion protein was evaluated as an oral dengue vaccine candidate in mice. Serotype specific systemic IgG antibodies and specific IgA response in feces were detected and furthermore, T cell proliferation and high frequency antibody-secreting B cells were detected in the spleen. These results suggest the possible use of plant-based dengue tetravalent vaccine targeted to the mucosal immune system for induction of systemic and mucosal immune responses to DENV infection.
Collapse
Affiliation(s)
- Mi-Young Kim
- Department of Molecular Biology, Chonbuk National University, Jeonju, South Korea
- Institute for Infection and Immunity, St George's University of London, London, UK
| | - Byeong-Young Kim
- Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, South Korea
| | - Sun-Mi Oh
- Department of Molecular Biology, Chonbuk National University, Jeonju, South Korea
| | - Rajko Reljic
- Institute for Infection and Immunity, St George's University of London, London, UK
| | - Yong-Suk Jang
- Department of Molecular Biology, Chonbuk National University, Jeonju, South Korea
- Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, South Korea
- Research Center of Bioactive Materials, Chonbuk National University, Jeonju, South Korea
| | - Moon-Sik Yang
- Department of Molecular Biology, Chonbuk National University, Jeonju, South Korea.
- Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, South Korea.
- Research Center of Bioactive Materials, Chonbuk National University, Jeonju, South Korea.
| |
Collapse
|
7
|
Huy NX, Tien NQD, Kim MY, Kim TG, Jang YS, Yang MS. Immunogenicity of an S1D epitope from porcine epidemic diarrhea virus and cholera toxin B subunit fusion protein transiently expressed in infiltrated Nicotiana benthamiana leaves. PLANT CELL, TISSUE AND ORGAN CULTURE 2016; 127:369-380. [PMID: 32214565 PMCID: PMC7088629 DOI: 10.1007/s11240-016-1059-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/31/2016] [Indexed: 05/17/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV) belongs to the Coronaviridae family and causes acute enteritis in pigs. A fragment of the large spike glycoprotein, termed the S1D epitope (aa 636-789), alone and fused with cholera toxin B subunit, were independently cloned into plant expression vectors, yielding plasmids pMYV717 and pMYV719, respectively. Plant expression vectors were transformed into Agrobacterium tumefaciens and subsequently infiltrated into Nicotiana benthamiana leaves. The highest expression level of S1D was found at 2 days post infiltration (dpi), reached 0.04 % of total soluble protein, and rapidly decreased thereafter. The expression and assembly of CTB-S1D fusion protein were confirmed by Western blot and GM1-ELISA. The highest expression level of CTB-S1D fusion protein was 0.07 % of TSP at 4 dpi, with a rapid decrease thereafter. In the presence of p19 protein from tomato bushy stunt virus, the S1D and CTB-S1D protein levels peaked at 6 dpi and were fourfold to sevenfold higher than in the absence of p19, respectively. After oral administration of transiently expressed CTB-S1D fusion protein, or with bacterial cholera toxin or rice callus expressing mutant cholera toxin 61F, mice exhibited significantly greater serum IgG and sIgA levels against bacterial CTB and S1D antigen, peaking at week 6. Transiently expressed CTB-S1D fusion protein will be administered orally to pigs to assess the immune response against PEDV.
Collapse
Affiliation(s)
- Nguyen-Xuan Huy
- Department of Molecular Biology, Chonbuk National University, Jeonju, Republic of Korea
- Biology Department, Hue University of Education, 34 Le Loi, Hue, Vietnam
| | - Nguyen-Quang-Duc Tien
- Department of Bioactive Material Science, Chonbuk National University, Jeonju, Republic of Korea
| | - Mi-Young Kim
- Department of Molecular Biology, Chonbuk National University, Jeonju, Republic of Korea
| | - Tae-Geum Kim
- Research Center of Bioactive Materials, Chonbuk National University, Jeonju, Republic of Korea
- Center for Jeongup Industry-Academy-Institute Cooperation, Chonbuk National University, Jeonju, Republic of Korea
| | - Yong-Suk Jang
- Department of Molecular Biology, Chonbuk National University, Jeonju, Republic of Korea
- Department of Bioactive Material Science, Chonbuk National University, Jeonju, Republic of Korea
- Research Center of Bioactive Materials, Chonbuk National University, Jeonju, Republic of Korea
| | - Moon-Sik Yang
- Department of Molecular Biology, Chonbuk National University, Jeonju, Republic of Korea
- Department of Bioactive Material Science, Chonbuk National University, Jeonju, Republic of Korea
- Research Center of Bioactive Materials, Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
8
|
Kim TG, Kim MY, Huy NX, Kim SH, Yang MS. M Cell-Targeting Ligand and Consensus Dengue Virus Envelope Protein Domain III Fusion Protein Production in Transgenic Rice Calli. Mol Biotechnol 2012; 54:880-7. [DOI: 10.1007/s12033-012-9637-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
The FomA porin from Fusobacterium nucleatum is a Toll-like receptor 2 agonist with immune adjuvant activity. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1093-101. [PMID: 22623652 DOI: 10.1128/cvi.00236-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many bacterial components selectively activate immune and nonhematopoietic target cells via Toll-like receptor (TLR) signaling; modulation of such host responses defines the immune adjuvant properties of these bacterial products. For example, the outer membrane protein porins from Neisseria, Salmonella, and Shigella are known TLR2 agonists with established systemic and mucosal immune adjuvanticity. Early work indicated that the FomA porin from Fusobacterium nucleatum has immune adjuvant activity in mice. Using a purified recombinant FomA, we have verified its immune stimulatory properties and have defined a role for TLR2 signaling in its in vitro and in vivo activity. FomA induces interleukin 8 (IL-8) secretion and NF-κB-dependent luciferase activity in HEK cells expressing TLR2, IL-6 secretion, and cell surface upregulation of CD86 and major histocompatibility complex (MHC) II in primary B cells from wild-type mice, but it fails to activate cells from TLR2 knockout mice. Accordingly, the immune adjuvant activity of FomA is also TLR2 dependent. In a mouse model of immunization with ovalbumin (OVA), FomA induces enhanced production of OVA-specific IgM and IgG, including IgG1 and IgG2b antibodies, as well as enhanced secretion of IL-10 and IL-6, consistent with a Th2-type adjuvant effect. We also observe a moderate production of anti-FomA antibodies, suggesting that FomA is also immunogenic, a quality that is also TLR2 dependent. Therefore, modulation of host immune responses by FomA may be effective for targeting general host immunity not only to pathogens (as a novel TLR2 adjuvant) but also to F. nucleatum itself (as an antigen), expanding its use as a self-adjuvanted antigen in an immunization strategy against polymicrobial infections, including those by F. nucleatum.
Collapse
|
10
|
Yu F, Xu QA, Chen W. A targeted fimA DNA vaccine prevents alveolar bone loss in mice after intra-nasal administration. J Clin Periodontol 2011; 38:334-40. [PMID: 21261672 DOI: 10.1111/j.1600-051x.2010.01700.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To construct a dendritic cell (DC)-targeted DNA vaccine against FimA of Porphyromonas gingivalis and evaluate the immunogenicity and protection in mice. MATERIALS AND METHODS A targeted DNA plasmid pCTLA4-FimA, which encodes the signal peptide and extracellular regions of mouse cytotoxic T lymphocyte-associated antigen 4 (CTLA4), the hinge and Fc regions of human Igγ1 and FimA of P. gingivalis, was constructed. Mice were immunized with pCTLA4-FimA, the non-targeted DNA plasmid pFimA, which contains only fimA gene, or pCI vector intra-nasally. Serum and saliva antibody responses were detected by enzyme-linked immunosorbent assay. The protection against P. gingivalis-induced periodontitis was evaluated by measuring alveolar bone loss in mice. RESULTS Mice immunized with pCTLA4-FimA showed elevated levels of specific serum IgG and salivary IgA antibody responses compared with mice immunized with pFimA (p<0.01). Both pFimA and pCTLA4-FimA immunized groups showed significantly lower alveolar bone loss, with the magnitude protection greater in the latter (p<0.01), compared with the pCI immunized group. CONCLUSIONS The DC-targeted DNA construct pCTLA4-FimA enhanced both systemic and mucosal immunity following intra-nasal immunization. A DNA-based immunization strategy may be an effective way to attenuate periodontitis induced by P. gingivalis.
Collapse
Affiliation(s)
- Fei Yu
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | | | | |
Collapse
|
11
|
Kim TG, Kim MY, Yang MS. Cholera toxin B subunit-domain III of dengue virus envelope glycoprotein E fusion protein production in transgenic plants. Protein Expr Purif 2010; 74:236-41. [PMID: 20691270 DOI: 10.1016/j.pep.2010.07.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/21/2010] [Accepted: 07/30/2010] [Indexed: 01/11/2023]
Abstract
Envelope glycoprotein E of the dengue virus, which plays a crucial role in its entry into host cells, has an immunogenic domain III (EIII, amino acids 297-394), which is capable of inducing neutralizing antibodies. However, mice immunized with EIII protein without adjuvant elicited low immune responses. To improve low immune responses, a DNA fragment, consisting of cholera toxin B subunit and EIII gene (CTB-EIII), was constructed and introduced into tobacco plant cells (Nicotiana tabacum L. cv. MD609) by Agrobacterium tumefaciens-mediated transformation methods. The integration and transcription of CTB-EIII fusion gene were confirmed in transgenic plants by genomic DNA PCR amplification and Northern blot analysis, respectively. The results of immunoblot analysis with anti-CTB and anti-dengue virus antibodies showed the expression of the CTB-EIII fusion protein in transgenic plant extracts. Based on the G(M1)-ELISA results, the CTB-EIII protein expressed in plants showed the biological activity for intestinal epithelial cell membrane glycolipid receptor, G(M1)-ganglioside, and its expression level was up to about 0.019% of total soluble protein in transgenic plant leaf tissues. The feasibility of using a plant-produced CTB-EIII fusion protein to generate immunogenicity against domain III will be tested in future animal experiments.
Collapse
Affiliation(s)
- Tae-Geum Kim
- Department of Molecular Biology, Chonbuk National University, Jeonju, Republic of Korea
| | | | | |
Collapse
|
12
|
Expression of dengue virus E glycoprotein domain III in non-nicotine transgenic tobacco plants. BIOTECHNOL BIOPROC E 2010. [DOI: 10.1007/s12257-009-3011-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Cloning, expression, purification and characterization of the cholera toxin B subunit and triple glutamic acid decarboxylase epitopes fusion protein in Escherichia coli. Protein Expr Purif 2009; 66:191-7. [PMID: 19364533 DOI: 10.1016/j.pep.2009.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/06/2009] [Accepted: 04/06/2009] [Indexed: 11/22/2022]
Abstract
Induction of specific immunological unresponsiveness by oral autoantigens such as glutamic acid decarboxylase 65 (GAD65) is termed oral tolerance and may be a potential therapy for autoimmune diabetes. However, the requirement for large amounts of protein will limit clinical testing of autoantigens, which are difficult to produce. Mucosal adjuvants such as cholera toxin B subunit (CTB) may lower the level of autoantigens required. Here we describe cloning, expression, purification and identification study of the CTB and triple GAD(531-545) epitopes fusion gene. The fusion gene was ligated via a flexible hinge tetrapeptide and expressed as a soluble protein in Escherichia coli BL21 (DE3) driven by the T7 promoter. We purified the recombination protein from the cell lysate and obtained approximately 2.5mg of CTB-GAD((531-545)3) per liter of culture with greater than 90% purity by a Ni-NTA resin column. The bacteria produced this protein as the pentameric form, which retained the GM1-ganglioside binding affinity and the native antigenicity of CTB and GAD65. Further studies revealed that oral administration of bacterial CTB-GAD((531-545)3) fusion protein showed the prominent reduction in pancreatic islet inflammation in non-obese diabetic mice. The results presented here demonstrate that the bacteria bioreactor is an ideal production system for an oral protein vaccine designed to develop immunological tolerance against autoimmune diabetes.
Collapse
|