1
|
Fizikova A, Subcheva E, Kozlov N, Tvorogova V, Samarina L, Lutova L, Khlestkina E. Agrobacterium Transformation of Tea Plants ( Camellia sinensis (L.) KUNTZE): A Small Experiment with Great Prospects. PLANTS (BASEL, SWITZERLAND) 2024; 13:675. [PMID: 38475520 DOI: 10.3390/plants13050675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024]
Abstract
Tea has historically been one of the most popular beverages, and it is currently an economically significant crop cultivated in over 50 countries. The Northwestern Caucasus is one of the northernmost regions for industrial tea cultivation worldwide. The domestication of the tea plant in this region took approximately 150 years, during which plantations spreading from the Ozurgeti region in northern Georgia to the southern city of Maykop in Russia. Consequently, tea plantations in the Northern Caucasus can serve as a source of unique genotypes with exceptional cold tolerance. Tea plants are known to be recalcitrant to Agrobacterium-mediated transfection. Research into optimal transfection and regeneration methodologies, as well as the identification of tea varieties with enhanced transformation efficiency, is an advanced strategy for improving tea plant culture. The aim of this study was to search for the optimal Agrobacterium tumefaciens-mediated transfection protocol for the Kolkhida tea variety. As a result of optimizing the transfection medium with potassium phosphate buffer at the stages of pre-inoculation, inoculation and co-cultivation, the restoration of normal morphology and improvement in the attachment of Agrobacterium cells to the surface of tea explants were observed by scanning electron microscopy. And an effective method of high-efficiency Agrobacteria tumefaciens-mediated transfection of the best local tea cultivar, Kolkhida, was demonstrated for the first time.
Collapse
Affiliation(s)
- Anastasia Fizikova
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, 2/28, Yana Fabritsiusa Street, 354002 Sochi, Russia
| | - Elena Subcheva
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia
| | - Nikolay Kozlov
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya Emb 7/9, 199034 Saint-Petersburg, Russia
| | - Varvara Tvorogova
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya Emb 7/9, 199034 Saint-Petersburg, Russia
| | - Lidia Samarina
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, 2/28, Yana Fabritsiusa Street, 354002 Sochi, Russia
| | - Ludmila Lutova
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya Emb 7/9, 199034 Saint-Petersburg, Russia
| | - Elena Khlestkina
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR), B. Morskaya Street, 42-44, 190000 St. Petersburg, Russia
| |
Collapse
|
2
|
Ma H, Liu N, Sun X, Zhu M, Mao T, Huang S, Meng X, Li H, Wang M, Liang H. Establishment of an efficient transformation system and its application in regulatory mechanism analysis of biological macromolecules in tea plants. Int J Biol Macromol 2023:125372. [PMID: 37321436 DOI: 10.1016/j.ijbiomac.2023.125372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
Tea (Camellia sinensis), one of the most important beverage crops originated from China and is now cultivated worldwide, provides numerous secondary metabolites that account for its health benefits and rich flavor. However, the lack of an efficient and reliable genetic transformation system has seriously hindered the gene function investigation and precise breeding of C. sinensis. In this study, we established a highly efficient, labor-saving, and cost-effective Agrobacterium rhizogenes-mediated hairy roots genetic transformation system for C. sinensis, which can be used for gene overexpression and genome editing. The established transformation system was simple to operate, bypassing tissue culture and antibiotic screening, and only took two months to complete. We used this system to conduct function analysis of transcription factor CsMYB73 and found that CsMYB73 negatively regulates L-theanine synthesis in tea plant. Additionally, callus formation was successfully induced using transgenic roots, and the transgenic callus exhibited normal chlorophyll production, enabling the study of the corresponding biological functions. Furthermore, this genetic transformation system was effective for multiple C. sinensis varieties and other woody plant species. By overcoming technical obstacles such as low efficiency, long experimental periods, and high costs, this genetic transformation will be a valuable tool for routine gene investigation and precise breeding in tea plants.
Collapse
Affiliation(s)
- Haijie Ma
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, China.
| | - Ningge Liu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Mengling Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Tingfeng Mao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Suya Huang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Xinyue Meng
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Hangfei Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Min Wang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Huiling Liang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| |
Collapse
|
3
|
Zhang ZB, Xiong T, Chen JH, Ye F, Cao JJ, Chen YR, Zhao ZW, Luo T. Understanding the Origin and Evolution of Tea (Camellia sinensis [L.]): Genomic Advances in Tea. J Mol Evol 2023; 91:156-168. [PMID: 36859501 DOI: 10.1007/s00239-023-10099-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023]
Abstract
Tea, which is processed by the tender shoots or leaves of tea plant (Camellia sinensis), is one of the most popular nonalcoholic beverages in the world and has numerous health benefits for humans. Along with new progress in biotechnologies, the refined chromosome-scale reference tea genomes have been achieved, which facilitates great promise for the understanding of fundamental genomic architecture and evolution of the tea plants. Here, we summarize recent achievements in genome sequencing in tea plants and review the new progress in origin and evolution of tea plants by population sequencing analysis. Understanding the genomic characterization of tea plants is import to improve tea quality and accelerate breeding in tea plants.
Collapse
Affiliation(s)
- Zai-Bao Zhang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China.
| | - Tao Xiong
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Jia-Hui Chen
- College of International Education, Xinyang Normal University, Xinyang, 464000, China
| | - Fan Ye
- College of International Education, Xinyang Normal University, Xinyang, 464000, China
| | - Jia-Jia Cao
- College of International Education, Xinyang Normal University, Xinyang, 464000, China
| | - Yu-Rui Chen
- College of International Education, Xinyang Normal University, Xinyang, 464000, China
| | - Zi-Wei Zhao
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Tian Luo
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| |
Collapse
|
4
|
Zheng XQ, Dong SL, Li ZY, Lu JL, Ye JH, Tao SK, Hu YP, Liang YR. Variation of Major Chemical Composition in Seed-Propagated Population of Wild Cocoa Tea Plant Camellia ptilophylla Chang. Foods 2022; 12:foods12010123. [PMID: 36613339 PMCID: PMC9818582 DOI: 10.3390/foods12010123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Excessive intake of high-caffeine tea will induce health-related risk. Therefore, breeding and cultivating tea cultivars with less caffeine is a feasible way to control daily caffeine intake. Cocoa tea (Camellia ptilophylla Chang) is a wild tea plant which grows leaves with little or no caffeine. However, the vegetative propagation of cocoa tea plants is difficult due to challenges with rooting. Whether natural seeds collected from wild cocoa tea plants can be used to produce less-caffeinated tea remains unknown, because research on the separation of traits among the seed progeny population is lacking. The present study was set to investigate the variation of caffeine and other chemical compositions in seed-propagated plant individuals using colorimetric and HPLC methods. It shows that there were great differences in chemical composition among the seed-propagated population of wild cocoa tea plants, among which some individuals possessed caffeine contents as high as those of normal cultivated tea cultivars (C. sinensis), suggesting that the naturally seed-propagated cocoa tea seedlings are not suitable for directly cultivating leaf materials to produce low-caffeine tea. Therefore, the cocoa tea plants used for harvesting seeds for growing low-caffeine tea plants should be isolated in order to prevent their hybridization with normal cultivated C. sinensis plants. Interestingly, the leaves of cocoa tea seedlings contained high levels of gallocatechin gallate (GCG) and would be a good source of leaf materials for extracting more stable antioxidant, because GCG is a more stable antioxidant than epigallocatechin gallate (EGCG), the dominant component of catechins in normal cultivated tea cultivars. Some plant individuals which contained low levels of caffeine along with high levels of amino acids and medium levels of catechins, are considered to be promising for further screening of less-caffeinated green tea cultivars.
Collapse
Affiliation(s)
- Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Shu-Ling Dong
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Ze-Yu Li
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Shi-Ke Tao
- Tea Research Institute of Pu’er City, Pu’er 665000, China
| | - Yan-Ping Hu
- Tea Research Institute of Pu’er City, Pu’er 665000, China
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
- Correspondence:
| |
Collapse
|
5
|
Zhou MZ, O'Neill Rothenberg D, Zeng W, Luo L, Yan CY, Zeng Z, Huang YH. Discovery and Biochemical Characterization of N-methyltransferase Genes Involved in Purine Alkaloid Biosynthetic Pathway of Camellia gymnogyna Hung T.Chang (Theaceae) from Dayao Mountain. PHYTOCHEMISTRY 2022; 199:113167. [PMID: 35378107 DOI: 10.1016/j.phytochem.2022.113167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
In the present study, purine alkaloid analysis and transcriptome of Camellia gymnogyna Hung T. Chang (Theaceae) from Dayao Mountain were performed by high-performance liquid chromatography (HPLC) and RNA-Seq, respectively. The results showed that the major purine alkaloids accumulated in Camellia gymnogyna Hung T. Chang (Theaceae) were theobromine together with a small amount of theacrine and caffeine. Through polymerase chain reaction (PCR), three types of cDNA encoding N-methyltransferases were isolated from the leaves of Camellia gymnogyna Hung T. Chang (Theaceae) and designated GCS1, GCS2, and GCS3. We subsequently expressed GCS1, GCS2, and GCS3 in Escherichia coli and incubated lysates of the bacterial cells with a variety of xanthine substrates in the presence of S-adenosyl-L-methionine as the methyl donor. We found that the recombinant GCS1 proteins catalyzed 1,3,7-trimethyluric acid to produce theacrine, the recombinant GCS3 proteins catalyzed 7-methylxanthine to produce theobromine, while the recombinant GCS2 proteins did not catalyze any xanthine derivatives. Simultaneous analysis of the expressions of GCS1, GCS2, GCS3, and a caffeine synthase gene (TCS1) in Camellia gymnogyna Hung T. Chang (Theaceae) and other tea plants provided a reference for further research on the functions of these genes.
Collapse
Affiliation(s)
- Meng-Zhen Zhou
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China; Tea Research Institute, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou, 514071, China
| | - Dylan O'Neill Rothenberg
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wen Zeng
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Li Luo
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Chang-Yu Yan
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhen Zeng
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Ya-Hui Huang
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Jin K, Tian N, da Silva Ferreira JF, Sandhu D, Xiao L, Gu M, Luo Y, Zhang X, Liu G, Liu Z, Huang J, Liu S. Comparative Transcriptome Analysis of Agrobacterium tumefaciens Reveals the Molecular Basis for the Recalcitrant Genetic Transformation of Camellia sinensis L. Biomolecules 2022; 12:688. [PMID: 35625616 PMCID: PMC9138961 DOI: 10.3390/biom12050688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Tea (Camellia sinensis L.), an important economic crop, is recalcitrant to Agrobacterium-mediated transformation (AMT), which has seriously hindered the progress of molecular research on this species. The mechanisms leading to low efficiency of AMT in tea plants, related to the morphology, growth, and gene expression of Agrobacterium tumefaciens during tea-leaf explant infection, were compared to AMT of Nicotiana benthamiana leaves in the present work. Scanning electron microscopy (SEM) images showed that tea leaves induced significant morphological aberrations on bacterial cells and affected pathogen-plant attachment, the initial step of a successful AMT. RNA sequencing and transcriptomic analysis on Agrobacterium at 0, 3 and 4 days after leaf post-inoculation resulted in 762, 1923 and 1656 differentially expressed genes (DEGs) between the tea group and the tobacco group, respectively. The expressions of genes involved in bacterial fundamental metabolic processes, ATP-binding cassette (ABC) transporters, two-component systems (TCSs), secretion systems, and quorum sensing (QS) systems were severely affected in response to the tea-leaf phylloplane. Collectively, these results suggest that compounds in tea leaves, especially gamma-aminobutyrate (GABA) and catechins, interfered with plant-pathogen attachment, essential minerals (iron and potassium) acquisition, and quorum quenching (QQ) induction, which may have been major contributing factors to hinder AMT efficiency of the tea plant.
Collapse
Affiliation(s)
- Ke Jin
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Na Tian
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Jorge Freire da Silva Ferreira
- United States Salinity Laboratory, United States Department of Agriculture, Agricultural Research Service, Riverside, CA 92507, USA; (J.F.d.S.F.); (D.S.)
| | - Devinder Sandhu
- United States Salinity Laboratory, United States Department of Agriculture, Agricultural Research Service, Riverside, CA 92507, USA; (J.F.d.S.F.); (D.S.)
| | - Lizheng Xiao
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
| | - Meiyi Gu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
| | - Yiping Luo
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Xiangqin Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Guizhi Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Zhonghua Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Jianan Huang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Shuoqian Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| |
Collapse
|
7
|
Yu S, Bekkering CS, Tian L. Metabolic engineering in woody plants: challenges, advances, and opportunities. ABIOTECH 2021; 2:299-313. [PMID: 36303882 PMCID: PMC9590576 DOI: 10.1007/s42994-021-00054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/06/2021] [Indexed: 06/16/2023]
Abstract
Woody plant species represent an invaluable reserve of biochemical diversity to which metabolic engineering can be applied to satisfy the need for commodity and specialty chemicals, pharmaceuticals, and renewable energy. Woody plants are particularly promising for this application due to their low input needs, high biomass, and immeasurable ecosystem services. However, existing challenges have hindered their widespread adoption in metabolic engineering efforts, such as long generation times, large and highly heterozygous genomes, and difficulties in transformation and regeneration. Recent advances in omics approaches, systems biology modeling, and plant transformation and regeneration methods provide effective approaches in overcoming these outstanding challenges. Promises brought by developments in this space are steadily opening the door to widespread metabolic engineering of woody plants to meet the global need for a wide range of sustainably sourced chemicals and materials.
Collapse
Affiliation(s)
- Shu Yu
- Department of Plant Sciences, Mail Stop 3, University of California, Davis, CA 95616 USA
| | - Cody S. Bekkering
- Department of Plant Sciences, Mail Stop 3, University of California, Davis, CA 95616 USA
| | - Li Tian
- Department of Plant Sciences, Mail Stop 3, University of California, Davis, CA 95616 USA
| |
Collapse
|
8
|
Liao Y, Zhou X, Zeng L. How does tea ( Camellia sinensis) produce specialized metabolites which determine its unique quality and function: a review. Crit Rev Food Sci Nutr 2021; 62:3751-3767. [PMID: 33401945 DOI: 10.1080/10408398.2020.1868970] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tea (Camellia sinensis) is both a plant and a foodstuff. Many bioactive compounds, which are present in the final tea product and related to its quality or functional properties, are produced during the tea manufacturing process. However, the characteristic secondary metabolites, which give tea its unique qualities and are beneficial to human health, are produced mainly in the leaves during the process of plant growth. Therefore, it is important to understand how tea leaves produce these specialized metabolites. In this review, we first compare the common metabolites and specialized metabolites in tea, coffee, cocoa, and grape and discuss the occurrence of characteristic secondary metabolites in tea. Progress in research into the formation of these characteristic secondary metabolites in tea is summarized, including establishing a biological database and genetic transformation system, and the biosynthesis of characteristic secondary metabolites. Finally, speculation on future research into the characteristic secondary metabolites of tea is provided from the viewpoints of the origin, resources, cultivation, and processing of tea. This review provides an important reference for future research on the specialized metabolites of tea in terms of its characteristics.
Collapse
Affiliation(s)
- Yinyin Liao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaochen Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
9
|
Xia EH, Tong W, Wu Q, Wei S, Zhao J, Zhang ZZ, Wei CL, Wan XC. Tea plant genomics: achievements, challenges and perspectives. HORTICULTURE RESEARCH 2020; 7:7. [PMID: 31908810 PMCID: PMC6938499 DOI: 10.1038/s41438-019-0225-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/17/2019] [Accepted: 11/03/2019] [Indexed: 05/18/2023]
Abstract
Tea is among the world's most widely consumed non-alcoholic beverages and possesses enormous economic, health, and cultural values. It is produced from the cured leaves of tea plants, which are important evergreen crops globally cultivated in over 50 countries. Along with recent innovations and advances in biotechnologies, great progress in tea plant genomics and genetics has been achieved, which has facilitated our understanding of the molecular mechanisms of tea quality and the evolution of the tea plant genome. In this review, we briefly summarize the achievements of the past two decades, which primarily include diverse genome and transcriptome sequencing projects, gene discovery and regulation studies, investigation of the epigenetics and noncoding RNAs, origin and domestication, phylogenetics and germplasm utilization of tea plant as well as newly developed tools/platforms. We also present perspectives and possible challenges for future functional genomic studies that will contribute to the acceleration of breeding programs in tea plants.
Collapse
Affiliation(s)
- En-Hua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Qiong Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Shu Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Zheng-Zhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Chao-Ling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Xiao-Chun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| |
Collapse
|
10
|
RNAi and Homologous Over-Expression Based Functional Approaches Reveal Triterpenoid Synthase Gene-Cycloartenol Synthase Is Involved in Downstream Withanolide Biosynthesis in Withania somnifera. PLoS One 2016; 11:e0149691. [PMID: 26919744 PMCID: PMC4769023 DOI: 10.1371/journal.pone.0149691] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/02/2016] [Indexed: 12/24/2022] Open
Abstract
Withania somnifera Dunal, is one of the most commonly used medicinal plant in Ayurvedic and indigenous medicine traditionally owing to its therapeutic potential, because of major chemical constituents, withanolides. Withanolide biosynthesis requires the activities of several enzymes in vivo. Cycloartenol synthase (CAS) is an important enzyme in the withanolide biosynthetic pathway, catalyzing cyclization of 2, 3 oxidosqualene into cycloartenol. In the present study, we have cloned full-length WsCAS from Withania somnifera by homology-based PCR method. For gene function investigation, we constructed three RNAi gene-silencing constructs in backbone of RNAi vector pGSA and a full-length over-expression construct. These constructs were transformed in Agrobacterium strain GV3101 for plant transformation in W. somnifera. Molecular and metabolite analysis was performed in putative Withania transformants. The PCR and Southern blot results showed the genomic integration of these RNAi and overexpression construct(s) in Withania genome. The qRT-PCR analysis showed that the expression of WsCAS gene was considerably downregulated in stable transgenic silenced Withania lines compared with the non-transformed control and HPLC analysis showed that withanolide content was greatly reduced in silenced lines. Transgenic plants over expressing CAS gene displayed enhanced level of CAS transcript and withanolide content compared to non-transformed controls. This work is the first full proof report of functional validation of any metabolic pathway gene in W. somnifera at whole plant level as per our knowledge and it will be further useful to understand the regulatory role of different genes involved in the biosynthesis of withanolides.
Collapse
|
11
|
Mukhopadhyay M, Mondal TK, Chand PK. Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review. PLANT CELL REPORTS 2016; 35:255-87. [PMID: 26563347 DOI: 10.1007/s00299-015-1884-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/10/2015] [Accepted: 10/13/2015] [Indexed: 05/28/2023]
Abstract
This article presents a comprehensive review on the success and limitations of biotechnological approaches aimed at genetic improvement of tea with a purpose to explore possibilities to address challenging areas. Tea is a woody perennial tree with a life span of more than 100 years. Conventional breeding of tea is slow and limited primarily to selection which leads to narrowing down of its genetic base. Harnessing the benefits of wild relatives has been negligible due to low cross-compatibility, genetic drag and undesirable alleles for low yield. Additionally, being a recalcitrant species, in vitro propagation of tea is constrained too. Nevertheless, maneuvering with tissue/cell culture techniques, a considerable success has been achieved in the area of micropropagation, somatic embryogenesis as well as genetic transformation. Besides, use of molecular markers, "expressomics" (transcriptomics, proteomics, metabolomics), map-based cloning towards construction of physical maps, generation of expressed sequenced tags (ESTs) have facilitated the identification of QTLs and discovery of genes associated with abiotic or biotic stress tolerance and agronomic traits. Furthermore, the complete genome (or at least gene space) sequence of tea is expected to be accessible in the near future which will strengthen combinational approaches for improvement of tea. This review presents a comprehensive account of the success and limitations of the biotechnological tools and techniques hitherto applied to tea and its wild relatives. Expectedly, this will form a basis for making further advances aimed at genetic improvement of tea in particular and of economically important woody perennials in general.
Collapse
Affiliation(s)
- Mainaak Mukhopadhyay
- Department of Botany, University of Kalyani, Kalyani, 741235, Nadia, West Bengal, India.
| | - Tapan K Mondal
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, Pusa, New Delhi, 110012, India.
| | - Pradeep K Chand
- Plant Cell and Tissue Culture Facility, Post-Graduate Department of Botany, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India.
| |
Collapse
|
12
|
Effects of epicatechin gallate (ECG) on fetal bovine serum (FBS)-induced steatosis in human liver cell line L02 and 2,2′-azobis (2-amidinopropane) (AAPH)-induced oxidative stress in human erythrocytes. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2560-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Singh HR, Deka M, Das S. Enhanced resistance to blister blight in transgenic tea (Camellia sinensis [L.] O. Kuntze) by overexpression of class I chitinase gene from potato (Solanum tuberosum). Funct Integr Genomics 2015; 15:461-80. [PMID: 25772466 DOI: 10.1007/s10142-015-0436-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 02/17/2015] [Accepted: 03/02/2015] [Indexed: 12/01/2022]
Abstract
Tea is the second most consumed beverage in the world. A crop loss of up to 43 % has been reported due to blister blight disease of tea caused by a fungus, Exobasidium vexans. Thus, it directly affects the tea industry qualitatively and quantitatively. Solanum tuberosum class I chitinase gene (AF153195) is a plant pathogenesis-related gene. It was introduced into tea genome via Agrobacterium-mediated transformation with hygromycin phosphotransferase (hpt) gene conferring hygromycin resistance as plant selectable marker. A total of 41 hygromycin resistant plantlets were obtained, and PCR analysis established 12 plantlets confirming about the stable integration of transgene in the plant genome. Real-time PCR detected transgene expression in four transgenic plantlets (T28, C57, C9, and T31). Resistance to biotrophic fungal pathogen, E. vexans, was tested by detached leaf infection assay of greenhouse acclimated plantlets. An inhibitory activity against the fungal pathogen was evident from the detached leaves from the transformants compared with the control. Fungal lesion formed on control plantlet whereas the transgenic plantlets showed resistance to inoculated fungal pathogen by the formation of hypersensitivity reaction area. This result suggests that constitutive expression of the potato class I chitinase gene can be exploited to improve resistance to fungal pathogen, E. vexans, in economical perennial plantation crop like tea.
Collapse
Affiliation(s)
- H Ranjit Singh
- Biotechnology Department, Tocklai Tea Research Institute, Jorhat, Assam, India,
| | | | | |
Collapse
|
14
|
Horn P, Santala J, Nielsen SL, Hühns M, Broer I, Valkonen JPT. Composite potato plants with transgenic roots on non-transgenic shoots: a model system for studying gene silencing in roots. PLANT CELL REPORTS 2014; 33:1977-92. [PMID: 25182479 DOI: 10.1007/s00299-014-1672-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/19/2014] [Accepted: 08/04/2014] [Indexed: 05/04/2023]
Abstract
Composite potato plants offer an extremely fast, effective and reliable system for studies on gene functions in roots using antisense or inverted-repeat but not sense constructs for gene inactivation. Composite plants, with transgenic roots on a non-transgenic shoot, can be obtained by shoot explant transformation with Agrobacterium rhizogenes. The aim of this study was to generate composite potato plants (Solanum tuberosum) to be used as a model system in future studies on root-pathogen interactions and gene silencing in the roots. The proportion of transgenic roots among the roots induced was high (80-100%) in the four potato cultivars tested (Albatros, Desirée, Sabina and Saturna). No wild-type adventitious roots were formed at mock inoculation site. All strains of A. rhizogenes tested induced phenotypically normal roots which, however, showed a reduced response to cytokinin as compared with non-transgenic roots. Nevertheless, both types of roots were infected to a similar high rate with the zoospores of Spongospora subterranea, a soilborne potato pathogen. The transgenic roots of composite potato plants expressed significantly higher amounts of β-glucuronidase (GUS) than the roots of a GUS-transgenic potato line event. Silencing of the uidA transgene (GUS) was tested by inducing roots on the GUS-transgenic cv. Albatros event with strains of A. rhizogenes over-expressing either the uidA sense or antisense transcripts, or inverted-repeat or hairpin uidA RNA. The three last mentioned constructs caused 2.5-4.0 fold reduction in the uidA mRNA expression. In contrast, over-expression of uidA resulted in over 3-fold increase in the uidA mRNA and GUS expression, indicating that sense-mediated silencing (co-suppression) was not functional in roots. The results suggest that composite plants offer a useful experimental system for potato research, which has gained little previous attention.
Collapse
Affiliation(s)
- Patricia Horn
- Institute for Land Use, University of Rostock, Rostock, Germany
| | | | | | | | | | | |
Collapse
|