1
|
Patel MG, Patel AC, Raval SH, Sharma KK, Patel SS, Chauhan HC, Parmar RS, Shrimali MD, Vamja HG, Bhatol J, Mohapatra SK. Ante-mortem and Post-mortem Diagnosis Modalities and Phylogenetic Analysis of Rabies Virus in Domestic and Wild Animals of Gujarat, India. Indian J Microbiol 2023; 63:645-657. [PMID: 38031621 PMCID: PMC10682330 DOI: 10.1007/s12088-023-01126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
In the present study, total of 32 ante-mortem (AM) samples (saliva = 18 and corneal smears = 14) from six animal species (cattle = 5; camel = 1; goat = 1; horse = 1; buffalo = 4; dog = 6) and 28 post-mortem (PM) samples of domestic (cattle = 6; camel = 1; goat = 1; buffalo = 5; dog = 7) and wild animals (lion = 4, mongoose = 2; bear = 1; leopard = 1) were examined for rabies diagnosis in Gujarat, India. Direct fluorescent antibody test (dFAT) and reverse transcriptase polymerase chain reaction (RT-PCR) were applied on AM samples, whereas along with dFAT and RT-PCR, histopathological examination, immunohistochemistry (IHC) and real time PCR (qPCR) were used for PM diagnosis. Nucleotide sequencing of full nucleoprotein (N) and glycoprotein (G) genes were carried out upon representative amplicons. In AM examination, 7/18 saliva and 5/14 corneal impressions samples were found positive in dFAT and 8/18 saliva samples were found positive in RT-PCR. In PM examination, 14/28 samples showed positive results in dFAT and IHC with unusual large fluorescent foci in two samples. In histopathology, 11/28 samples showed appreciable lesion and Negri bodies were visible in 6 samples, only. Out of 23 brain samples examined. 12 samples were found positive in N gene RT-PCR and qPCR, and 10 samples in G gene RT-PCR. Phylogenetic analysis of N gene revealed that test isolates (except sample ID: lion-1; lion, Gir) form a close group with sequence ID, KM099393.1 (Mongoose, Hyderabad) and KF660246.1 (Water Buffalo, Hyderabad) which was far from some south Indian and Sri Lankan isolates but similar to Indian isolates from rest of India and neighboring countries. In G gene analysis, the test isolates form a close group with sequence ID, KP019943.1. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01126-0.
Collapse
Affiliation(s)
- Maulik G. Patel
- Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University (Now Under Kamdhenu University), Sardarkrushinagar, Banaskantha, Gujarat 385005 India
| | - Arun C. Patel
- Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University (Now Under Kamdhenu University), Sardarkrushinagar, Banaskantha, Gujarat 385005 India
| | - Samir H. Raval
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University (Now Under Kamdhenu University), Sardarkrushinagar, Banaskantha, Gujarat 385005 India
| | - Kishan K. Sharma
- Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University (Now Under Kamdhenu University), Sardarkrushinagar, Banaskantha, Gujarat 385005 India
| | - Sandip S. Patel
- Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University (Now Under Kamdhenu University), Sardarkrushinagar, Banaskantha, Gujarat 385005 India
| | - Harshad C. Chauhan
- Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University (Now Under Kamdhenu University), Sardarkrushinagar, Banaskantha, Gujarat 385005 India
| | - Rohit S. Parmar
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University (Now Under Kamdhenu University), Sardarkrushinagar, Banaskantha, Gujarat 385005 India
| | - Mehul D. Shrimali
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University (Now Under Kamdhenu University), Sardarkrushinagar, Banaskantha, Gujarat 385005 India
| | - Hitesh G. Vamja
- Gir (East) Forest Division-Dhari, Gov. of Gujarat, Dhari, Gujarat India
| | - Jitendra Bhatol
- Forest Division- Banaskantha, Gov. of Gujarat, Banaskantha, Gujarat India
| | - Sushil K. Mohapatra
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University (Now Under Kamdhenu University), Sardarkrushinagar, Banaskantha, Gujarat 385005 India
| |
Collapse
|
2
|
Semple SL, Au SKW, Jacob RA, Mossman KL, DeWitte-Orr SJ. Discovery and Use of Long dsRNA Mediated RNA Interference to Stimulate Antiviral Protection in Interferon Competent Mammalian Cells. Front Immunol 2022; 13:859749. [PMID: 35603190 PMCID: PMC9120774 DOI: 10.3389/fimmu.2022.859749] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
In invertebrate cells, RNA interference (RNAi) acts as a powerful immune defense that stimulates viral gene knockdown thereby preventing infection. With this pathway, virally produced long dsRNA (dsRNA) is cleaved into short interfering RNA (siRNA) by Dicer and loaded into the RNA-induced silencing complex (RISC) which can then destroy/disrupt complementary viral mRNA sequences. Comparatively, in mammalian cells it is believed that the type I interferon (IFN) pathway is the cornerstone of the innate antiviral response. In these cells, dsRNA acts as a potent inducer of the IFN system, which is dependent on dsRNA length, but not sequence, to stimulate an antiviral state. Although the cellular machinery for RNAi is intact and functioning in mammalian cells, its role to trigger an antiviral response using long dsRNA (dsRNAi) remains controversial. Here we show that dsRNAi is not only functional but has a significant antiviral effect in IFN competent mammalian cells. We found that pre-soaking mammalian cells with concentrations of sequence specific dsRNA too low to induce IFN production could significantly inhibit vesicular stomatitis virus expressing green fluorescent protein (VSV-GFP), and the human coronaviruses (CoV) HCoV-229E and SARS-CoV-2 replication. This phenomenon was shown to be dependent on dsRNA length, was comparable in effect to transfected siRNAs, and could knockdown multiple sequences at once. Additionally, knockout cell lines revealed that functional Dicer was required for viral inhibition, revealing that the RNAi pathway was indeed responsible. These results provide the first evidence that soaking with gene-specific long dsRNA can generate viral knockdown in mammalian cells. We believe that this novel discovery provides an explanation as to why the mammalian lineage retained its RNAi machinery and why vertebrate viruses have evolved methods to suppress RNAi. Furthermore, demonstrating RNAi below the threshold of IFN induction has uses as a novel therapeutic platform, both antiviral and gene targeting in nature.
Collapse
Affiliation(s)
- Shawna L. Semple
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Sarah K. W. Au
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Rajesh A. Jacob
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Karen L. Mossman
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Stephanie J. DeWitte-Orr
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
- *Correspondence: Stephanie J. DeWitte-Orr,
| |
Collapse
|
3
|
Lu Y, Cheng L, Liu J. Optimization of Inhibitory Peptides Targeting Phosphoprotein of Rabies Virus. Int J Pept Res Ther 2020; 26:1043-1049. [PMID: 32431572 PMCID: PMC7222161 DOI: 10.1007/s10989-019-09906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 11/29/2022]
Abstract
Rabies is a serious zoonosis caused by rabies virus (RABV) of the genus Lyssavirus, and immunotherapy is now the only approved, effective method for post-exposure prophylaxis against rabies in humans, whereas an effective antiviral therapy is still unavailable if the central nervous system is invaded. Phosphoprotein (P) is known to play pivotal roles in the life cycle of RABV, and has been regarded as a prime target for inhibitors of viral replication. This study aimed to carry out intracellular administration of a kind of P-binding peptide for RABV inhibition. A group of reported P-binding peptides were focused on for activity improvement by quantitative structure–activity relationship (QSAR) method, and then were mediated by cell penetrating peptide (CPP) for intracellular activity evaluation. The QSAR models had good performance in reliability and predictability (R2 ≥ 0.852, Q2 ≥ 0.601, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{Q}}_{\text{ext}}^{2}$$\end{document}Qext2 ≥ 0.595), and the peptide screened by partial least squares (PLS) QSAR model (R2 = 0.994, Q2 = 0.937, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{Q}}_{\text{ext}}^{2}$$\end{document}Qext2 = 0.981) exhibited even higher antiviral activity when it was delivered into the cells by CPP. Above all, this study provided an effective way for development of peptide drug against RABV.
Collapse
Affiliation(s)
- Yongzhong Lu
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, No. 53, Zhengzhou Road, 266042 Qingdao, China
| | - Linyue Cheng
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, No. 53, Zhengzhou Road, 266042 Qingdao, China
| | - Jie Liu
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, No. 53, Zhengzhou Road, 266042 Qingdao, China
| |
Collapse
|
4
|
Lentiviral-mediated delivery of classical swine fever virus Erns gene into porcine kidney-15 cells for production of recombinant ELISA diagnostic antigen. Mol Biol Rep 2019; 46:3865-3876. [PMID: 31016614 DOI: 10.1007/s11033-019-04829-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/16/2019] [Indexed: 10/27/2022]
Abstract
Classical swine fever virus (CSFV), a member of the Pestivirus genus within the Flaviviridae family causes contagious fatal disease in swine. Antibodies against E2, Erns and NS3 proteins of virus can be detected in infected animals. Development of an ELISA coating antigen to improve the sensitivity of detecting Erns-specific antibodies in pig sera is always desirable for diagnosis as well as for differentiation of infected from vaccinated animals. In present study, a lentivirus-based gene delivery system was used to develop a stable PK-15 cell line expressing Erns (PK-Erns) for production of diagnostic antigen. The Lenti-Erns virus was purified from the supernatant of co-transfected 293LTV cells and used to transduce PK-15 cells. The homogenous PK-Erns cell line was produced by single cell cloning by monitoring eGFP expression. The Erns gene in the genomic DNA and RNA transcripts in total RNA isolated from PK-Erns cells were detected by PCR and RT-PCR, respectively. Expression of 45 kDa Erns glycoprotein was detected in western blot using CSFV-specific hyperimmune sera. The use of PK-Erns cell lysate as antigen in serial dilution and single dilution ELISAs with known positive and negative pig sera was investigated. The PK-Erns ELISA revealed sensitivity equivalent to commercial HerdChek ELISA kit. The sensitivity, specificity and accuracy of the PK-Erns ELISA was 95%, 100% and 96.66%, respectively compared to ELISA using purified CSFV as coating antigen. When field pig sera (n = 69) were tested in PK-Erns ELISA, a significant correlation between the titers from serial dilution and single dilution ELISA was observed. This indicated that PK-Erns cell line can serve as continuous source of ELISA diagnostic antigen for detection of CSFV-specific antibodies in pig sera.
Collapse
|
5
|
Chin WX, Ang SK, Chu JJH. Recent advances in therapeutic recruitment of mammalian RNAi and bacterial CRISPR-Cas DNA interference pathways as emerging antiviral strategies. Drug Discov Today 2017; 22:17-30. [DOI: 10.1016/j.drudis.2016.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/20/2016] [Accepted: 08/19/2016] [Indexed: 01/01/2023]
|
6
|
Zhu S, Guo C. Rabies Control and Treatment: From Prophylaxis to Strategies with Curative Potential. Viruses 2016; 8:v8110279. [PMID: 27801824 PMCID: PMC5127009 DOI: 10.3390/v8110279] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/17/2016] [Accepted: 10/20/2016] [Indexed: 12/25/2022] Open
Abstract
Rabies is an acute, fatal, neurological disease that affects almost all kinds of mammals. Vaccination (using an inactivated rabies vaccine), combined with administration of rabies immune globulin, is the only approved, effective method for post-exposure prophylaxis against rabies in humans. In the search for novel rabies control and treatment strategies, live-attenuated viruses have recently emerged as a practical and promising approach for immunizing and controlling rabies. Unlike the conventional, inactivated rabies vaccine, live-attenuated viruses are genetically modified viruses that are able to replicate in an inoculated recipient without causing adverse effects, while still eliciting robust and effective immune responses against rabies virus infection. A number of viruses with an intrinsic capacity that could be used as putative candidates for live-attenuated rabies vaccine have been intensively evaluated for therapeutic purposes. Additional novel strategies, such as a monoclonal antibody-based approach, nucleic acid-based vaccines, or small interfering RNAs (siRNAs) interfering with virus replication, could further add to the arena of strategies to combat rabies. In this review, we highlight current advances in rabies therapy and discuss the role that they might have in the future of rabies treatment. Given the pronounced and complex impact of rabies on a patient, a combination of these novel modalities has the potential to achieve maximal anti-rabies efficacy, or may even have promising curative effects in the future. However, several hurdles regarding clinical safety considerations and public awareness should be overcome before these approaches can ultimately become clinically relevant therapies.
Collapse
Affiliation(s)
- Shimao Zhu
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen 518107, China.
| | - Caiping Guo
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen 518107, China.
| |
Collapse
|
7
|
Scott TP, Nel LH. Subversion of the Immune Response by Rabies Virus. Viruses 2016; 8:v8080231. [PMID: 27548204 PMCID: PMC4997593 DOI: 10.3390/v8080231] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/24/2022] Open
Abstract
Rabies has affected mankind for several centuries and is one of the oldest known zoonoses. It is peculiar how little is known regarding the means by which rabies virus (RABV) evades the immune response and kills its host. This review investigates the complex interplay between RABV and the immune system, including the various means by which RABV evades, or advantageously utilizes, the host immune response in order to ensure successful replication and spread to another host. Different factors that influence immune responses—including age, sex, cerebral lateralization and temperature—are discussed, with specific reference to RABV and the effects on host morbidity and mortality. We also investigate the role of apoptosis and discuss whether it is a detrimental or beneficial mechanism of the host’s response to infection. The various RABV proteins and their roles in immune evasion are examined in depth with reference to important domains and the downstream effects of these interactions. Lastly, an overview of the means by which RABV evades important immune responses is provided. The research discussed in this review will be important in determining the roles of the immune response during RABV infections as well as to highlight important therapeutic target regions and potential strategies for rabies treatment.
Collapse
Affiliation(s)
- Terence P Scott
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa.
| | - Louis H Nel
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa.
| |
Collapse
|
8
|
Samir M, Pessler F. Small Non-coding RNAs Associated with Viral Infectious Diseases of Veterinary Importance: Potential Clinical Applications. Front Vet Sci 2016; 3:22. [PMID: 27092305 PMCID: PMC4819147 DOI: 10.3389/fvets.2016.00022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/22/2016] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) represent a class of small non-coding RNA (sncRNA) molecules that can regulate mRNAs by inducing their degradation or by blocking translation. Considering that miRNAs are ubiquitous, stable, and conserved across animal species, it seems feasible to exploit them for clinical applications. Unlike in human viral diseases, where some miRNA-based molecules have progressed to clinical application, in veterinary medicine, this concept is just starting to come into view. Clinically, miRNAs could represent powerful diagnostic tools to pinpoint animal viral diseases and/or prognostic tools to follow up disease progression or remission. Additionally, the possible consequences of miRNA dysregulation make them potential therapeutic targets and open the possibilities to use them as tools to generate viral disease-resistant livestock. This review presents an update of preclinical studies on using sncRNAs to combat viral diseases that affect pet and farm animals. Moreover, we discuss the possibilities and challenges of bringing these bench-based discoveries to the veterinary clinic.
Collapse
Affiliation(s)
- Mohamed Samir
- TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany; Zoonoses Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Frank Pessler
- TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany; Helmholtz Center for Infection Research, Braunschweig, Germany
| |
Collapse
|
9
|
Patel AC, Upmanyu V, Ramasamy S, Gupta PK, Singh R, Singh RP. Molecular and immunogenic characterization of BHK-21 cell line adapted CVS-11 strain of rabies virus and future prospect in vaccination strategy. Virusdisease 2015; 26:288-96. [PMID: 26645040 PMCID: PMC4663707 DOI: 10.1007/s13337-015-0285-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022] Open
Abstract
Development of a cost effective quality vaccine is a key issue in rabies control programme in developing countries. With this perspective, in the present study, challenge virus standard (CVS)-11 strain of rabies virus was adapted to grow in BHK-21 cells, characterized, compared with other viruses including global vaccine strains and field isolates from Indian subcontinent and China at molecular level. This cell adapted virus was evaluated for the production of cost effective veterinary vaccine. The maximum virus titre achieved was 10(7) fluorescent focus unit (FFU)/mL at 10th passage level. There was no nucleotide difference in the nucleoprotein (N) and glycoprotein (G) genes after adaptation in cell line. Phylogenetic analysis showed that adapted virus was grouped with global vaccine strains, closest being with other CVS strains but distinct from the Indian field isolates. Global vaccine strains including cell adapted CVS-11 virus have 83-87 % identity at nucleotide level of G gene with Indian field viruses. Growth kinetics of cell culture adapted virus showed that the optimum virus titer (around 10(7) FFU/mL) could be obtained at around 48 h post infection by co-cultivation method using 0.1 multiplicity of infection inoculums at 37 °C. These findings can be used for up scaling of vaccine production. The protective efficacy of test vaccine produced using 10(6.95) FFU/mL cell culture harvest showed 1.17 IU/mL relative potency by NIH test. Further, adapted virus was found to be suitable for use in rapid fluorescent focus inhibition test.
Collapse
Affiliation(s)
- Arunkumar C. Patel
- />Division of Biological Products, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122 India
| | - Vikramaditya Upmanyu
- />Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122 India
| | - Santhamani Ramasamy
- />Division of Biological Products, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122 India
| | - Praveen Kumar Gupta
- />Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122 India
| | - Rajendra Singh
- />Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122 India
| | - Rabindra Prasad Singh
- />Division of Biological Products, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122 India
| |
Collapse
|
10
|
Appolinario CM, Allendorf SD, Peres MG, Fonseca CR, Vicente AF, Antunes JMADP, Pantoja JCF, Megid J. Evaluation of short-interfering RNAs treatment in experimental rabies due to wild-type virus. Braz J Infect Dis 2015; 19:453-8. [PMID: 26254692 PMCID: PMC9427455 DOI: 10.1016/j.bjid.2015.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 11/11/2022] Open
Abstract
We have evaluated the efficacy of short-interfering RNAs targeting the nucleoprotein gene and also the brain immune response in treated and non-treated infected mice. Mice were inoculated with wild-type virus, classified as dog (hv2) or vampire bat (hv3) variants and both groups were treated or leaved as controls. No difference was observed in the lethality rate between treated and non-treated groups, although clinical evaluation of hv2 infected mice showed differences in the severity of clinical disease (p = 0.0006). Evaluation of brain immune response 5 days post-inoculation in treated hv2 group showed no difference among the analyzed genes, whereas after 10 days post-inoculation there was increased expression of 2′,5′-oligoadenylate synthetase 1, tumor necrosis factor alpha, interleukin 12, interferon gamma, and C-X-C motif chemokine 10 associated with higher expression of N gene in the same period (p < 0.0001). In hv2 non-treated group only higher interferon beta expression was found at day 5. The observed differences in results of the immune response genes between treated and non-treated groups is not promising as they had neither impact on mortality nor even a reduction in the expression of N gene in siRNA treated animals. This finding suggests that the use of pre-designed siRNA alone may not be useful in rabies treatment.
Collapse
Affiliation(s)
- Camila Michele Appolinario
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia (DHVSP-FMVZ), Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - Susan Dora Allendorf
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia (DHVSP-FMVZ), Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - Marina Gea Peres
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia (DHVSP-FMVZ), Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - Clovis Reynaldo Fonseca
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia (DHVSP-FMVZ), Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - Acacia Ferreira Vicente
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia (DHVSP-FMVZ), Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - João Marcelo Azevedo de Paula Antunes
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia (DHVSP-FMVZ), Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - José Carlos Figueiredo Pantoja
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia (DHVSP-FMVZ), Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - Jane Megid
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia (DHVSP-FMVZ), Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil.
| |
Collapse
|
11
|
Albrecht C, Hosiner S, Tichy B, Aldrian S, Hajdu S, Nürnberger S. Comparison of Lentiviral Packaging Mixes and Producer Cell Lines for RNAi Applications. Mol Biotechnol 2015; 57:499-505. [DOI: 10.1007/s12033-015-9843-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Zhang X, Shi Y, Weng Y, Lai Q, Luo T, Zhao J, Ren G, Li W, Pan H, Ke Y, Zhang W, He Q, Wang Q, Zhou R. The truncate mutation of Notch2 enhances cell proliferation through activating the NF-κB signal pathway in the diffuse large B-cell lymphomas. PLoS One 2014; 9:e108747. [PMID: 25314575 PMCID: PMC4196756 DOI: 10.1371/journal.pone.0108747] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/25/2014] [Indexed: 12/13/2022] Open
Abstract
The Notch2 is a critical membrane receptor for B-cell functions, and also displays various biological roles in lymphoma pathogenesis. In this article, we reported that 3 of 69 (4.3%) diffuse large B-cell lymphomas (DLBCLs) exhibited a truncate NOTCH2 mutation at the nucleotide 7605 (G/A) in the cDNA sequence, which led to partial deletion of the C-terminal of PEST (proline-, glutamic acid-, serine- and threonine-rich) domain. The truncate Notch2 activated both the Notch2 and the NF-κB signals and promoted the proliferation of B-cell lymphoma cell lines, including DLBCL and Burkitt's lymphoma cell lines. Moreover, the ectopic proliferation was completely inhibited by ammonium pyrrolidinedithiocarbamate (PDTC), an NF-κB inhibitor. Simultaneously, PDTC also reduced the expression level of Notch2. Based on these results, we conclude that the Notch2 receptor with PEST domain truncation enhances cell proliferation which may be associated with the activation of the Notch2 and the NF-κB signaling. Our results are expected to provide a possible target for new DLBCL therapies by suppressing the Notch2 and the NF-κB signaling.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Base Sequence
- Burkitt Lymphoma/metabolism
- Burkitt Lymphoma/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Exons
- HEK293 Cells
- Humans
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mutagenesis, Site-Directed
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- Protein Structure, Tertiary
- Pyrrolidines/pharmacology
- Receptor, Notch2/chemistry
- Receptor, Notch2/genetics
- Receptor, Notch2/metabolism
- Signal Transduction
- Thiocarbamates/pharmacology
Collapse
Affiliation(s)
- Xinxia Zhang
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaoyao Shi
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanyuan Weng
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Lai
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Taobo Luo
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhao
- Department of Pathology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoping Ren
- Department of Pathology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wande Li
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Hongyang Pan
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Epitomics (Hangzhou) Inc., Hangzhou, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhang
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang He
- Zhejiang Province People's Hospital, Hangzhou, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ren Zhou
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail:
| |
Collapse
|