1
|
Chen H, Zhang X, Zhang G, Zhang Z, Ma G, Sun Z, Liu C, Huang L. The complete chloroplast genome sequence of Nepeta bracteata and comparison with congeneric species. Gene 2024; 893:147919. [PMID: 37884103 DOI: 10.1016/j.gene.2023.147919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Nepeta bracteata (N. bracteata) is an important medicinal plant used by Chinese ethnic minorities. However, the lack of knowledge regarding the chloroplast genome of N. bracteata has imposed current limitations on our study. Here, we used Next-generation sequencing to obtain the chloroplast genome of N. bracteata. The findings suggested that the 151,588 bp cp genome of N. bracteata comprises 130 genes, including 35 tRNA genes and 87 protein-coding genes. And its chloroplast genome exhibits a typical quadripartite structure, the largest single copy (LSC; 82,819 bp) and the smallest single copy (SSC; 17,557 bp) separate a pair of inverted repeats IR regions (IRa and IRb; 25,606 bp) from one another. Interestingly, palindromic repeats are more common, as shown by the examination of repetition. In the interim, 18 SSRs were discovered in the interim, the bulk of which were Adenine-Thymine (A-T) mononucleotides. Meanwhile, we compared it with five other species from the Nepeta genus. Five hypervariable areas were found by the study, including ndhH-rps15, accD-psal, ndhG-ndhl, trnH-GUG-psbA, and rpoC1-rpoB. Furthermore, the phylogenetic study revealed that N. bracteata and Nepeta stewartiana (N. stewartiana) were linked to each other most closely. In summary, our findings enrich the resources available for chloroplast genomes in the Nepeta genus. Moreover, these hypervariable regions have the potential to be developed into molecular markers, enabling the rapid identification of species within the Nepeta genus. Comparative analysis of species within the Nepeta genus can help enhance our study of their phylogenetic relationships, potential medicinal properties and bioprospecting.
Collapse
Affiliation(s)
- Haiyu Chen
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xinke Zhang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Guoshuai Zhang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Zhi Zhang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Guoxu Ma
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Zhaocui Sun
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chang Liu
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Linfang Huang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
2
|
Villano C, Procino S, Blaiotta G, Carputo D, D’Agostino N, Di Serio E, Fanelli V, La Notte P, Miazzi MM, Montemurro C, Taranto F, Aversano R. Genetic diversity and signature of divergence in the genome of grapevine clones of Southern Italy varieties. FRONTIERS IN PLANT SCIENCE 2023; 14:1201287. [PMID: 37771498 PMCID: PMC10525710 DOI: 10.3389/fpls.2023.1201287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023]
Abstract
Sexual reproduction has contributed to a significant degree of variability in cultivated grapevine populations. However, the additional influence of spontaneous somatic mutations has played a pivotal role in shaping the diverse landscape of grapevine agrobiodiversity. These naturally occurring selections, termed 'clones,' represent a vast reservoir of potentially valuable traits and alleles that hold promise for enhancing grape quality and bolstering plant resilience against environmental and biotic challenges. Despite their potential, many of these clones remain largely untapped.In light of this context, this study aims to delve into the population structure, genetic diversity, and distinctive genetic loci within a collection of 138 clones derived from six Campanian and Apulian grapevine varieties, known for their desirable attributes in viticulture and winemaking. Employing two reduced representation sequencing methods, we extracted Single-Nucleotide Polymorphism (SNP) markers. Population structure analysis and fixation index (FST) calculations were conducted both between populations and at individual loci. Notably, varieties originating from the same geographical region exhibited pronounced genetic similarity.The resulting SNP dataset facilitated the identification of approximately two hundred loci featuring divergent markers (FST ≥ 0.80) within annotated exons. Several of these loci exhibited associations with essential traits like phenotypic adaptability and environmental responsiveness, offering compelling opportunities for grapevine breeding initiatives. By shedding light on the genetic variability inherent in these treasured traditional grapevines, our study contributes to the broader understanding of their potential. Importantly, it underscores the urgency of preserving and characterizing these valuable genetic resources to safeguard their intra-varietal diversity and foster future advancements in grapevine cultivation.
Collapse
Affiliation(s)
- Clizia Villano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Silvia Procino
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
- Institute of Biosciences and Bioresources (CNR-IBBR), Bari, Italy
| | - Giuseppe Blaiotta
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Nunzio D’Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Institute of Biosciences and Bioresources (CNR-IBBR), Bari, Italy
| | - Ermanno Di Serio
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Valentina Fanelli
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Pierfederico La Notte
- Support Unit Bari, Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Bari, Italy
| | | | - Cinzia Montemurro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
- Support Unit Bari, Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Bari, Italy
- SINAGRI S.r.l., Spin Off of the University of Bari Aldo Moro, Bari, Italy
| | | | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
3
|
Villano C, Corrado G, Basile B, Di Serio E, Mataffo A, Ferrara E, Aversano R. Morphological and Genetic Clonal Diversity within the 'Greco Bianco' Grapevine ( Vitis vinifera L.) Variety. PLANTS (BASEL, SWITZERLAND) 2023; 12:515. [PMID: 36771600 PMCID: PMC9921137 DOI: 10.3390/plants12030515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Grapevine (Vitis vinifera L.) has been propagated vegetatively for hundreds of years. Therefore, plants tend to accumulate somatic mutations that can result in an intra-varietal diversity capable of generating distinct clones. Although it is common that winemakers request specific clones or selections for planting new vineyards, relatively limited information is available on the extent, degree, and morphological impact of the clonal diversity in traditional, highly valued grapevine varieties within production areas protected by geographical denomination of origin. Here, we present a morphological and genetic investigation of the intra-varietal diversity in 'Greco Bianco', the grapevine variety used to produce the DOCG and PDO "Greco di Tufo" wine. Seventeen clones from different farms (all within the allowed production area) were phenotypically characterized using ampelographic and ampelometric traits. The clones were also genotyped with Simple Sequence Repeats (SSR) and retrotransposon-based DNA markers (REMAP). The morphological analysis indicated a uniformity in the qualitatively scored traits, and a limited variability for the quantitative traits of the bunch and of the berry composition. The molecular markers also depicted variability among clones, which was more evident with the use of REMAPs. The comparison of the discriminatory information of the three analyses indicated that they provided different estimates of the level of diversity. The evaluation described herein of the clonal variability has implications for the management and protection of clonal selections in 'Greco Bianco' and prompts for further multidisciplinary investigations on its possible role in winemaking.
Collapse
Affiliation(s)
- Clizia Villano
- Department of Agricultural Science, University of Naples Federico II, 80055 Portici, Italy
| | - Giandomenico Corrado
- Department of Agricultural Science, University of Naples Federico II, 80055 Portici, Italy
| | - Boris Basile
- Department of Agricultural Science, University of Naples Federico II, 80055 Portici, Italy
| | - Ermanno Di Serio
- Department of Agricultural Science, University of Naples Federico II, 80055 Portici, Italy
| | - Alessandro Mataffo
- Department of Agricultural Science, University of Naples Federico II, 80055 Portici, Italy
| | - Elvira Ferrara
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Riccardo Aversano
- Department of Agricultural Science, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
4
|
Gomès É, Maillot P, Duchêne É. Molecular Tools for Adapting Viticulture to Climate Change. FRONTIERS IN PLANT SCIENCE 2021; 12:633846. [PMID: 33643361 PMCID: PMC7902699 DOI: 10.3389/fpls.2021.633846] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 05/04/2023]
Abstract
Adaptation of viticulture to climate change includes exploration of new geographical areas, new training systems, new management practices, or new varieties, both for rootstocks and scions. Molecular tools can be defined as molecular approaches used to study DNAs, RNAs, and proteins in all living organisms. We present here the current knowledge about molecular tools and their potential usefulness in three aspects of grapevine adaptation to the ongoing climate change. (i) Molecular tools for understanding grapevine response to environmental stresses. A fine description of the regulation of gene expression is a powerful tool to understand the physiological mechanisms set up by the grapevine to respond to abiotic stress such as high temperatures or drought. The current knowledge on gene expression is continuously evolving with increasing evidence of the role of alternative splicing, small RNAs, long non-coding RNAs, DNA methylation, or chromatin activity. (ii) Genetics and genomics of grapevine stress tolerance. The description of the grapevine genome is more and more precise. The genetic variations among genotypes are now revealed with new technologies with the sequencing of very long DNA molecules. High throughput technologies for DNA sequencing also allow now the genetic characterization at the same time of hundreds of genotypes for thousands of points in the genome, which provides unprecedented datasets for genotype-phenotype associations studies. We review the current knowledge on the genetic determinism of traits for the adaptation to climate change. We focus on quantitative trait loci and molecular markers available for developmental stages, tolerance to water stress/water use efficiency, sugar content, acidity, and secondary metabolism of the berries. (iii) Controlling the genome and its expression to allow breeding of better-adapted genotypes. High-density DNA genotyping can be used to select genotypes with specific interesting alleles but genomic selection is also a powerful method able to take into account the genetic information along the whole genome to predict a phenotype. Modern technologies are also able to generate mutations that are possibly interesting for generating new phenotypes but the most promising one is the direct editing of the genome at a precise location.
Collapse
Affiliation(s)
- Éric Gomès
- EGFV, University of Bordeaux – Bordeaux Sciences-Agro – INRAE, Villenave d’Ornon, France
| | - Pascale Maillot
- SVQV, INRAE – University of Strasbourg, Colmar, France
- University of Haute Alsace, Mulhouse, France
| | - Éric Duchêne
- SVQV, INRAE – University of Strasbourg, Colmar, France
| |
Collapse
|
5
|
Aponte M, Romano R, Villano C, Blaiotta G. Dominance of S. cerevisiae Commercial Starter Strains during Greco di Tufo and Aglianico Wine Fermentations and Evaluation of Oenological Performances of Some Indigenous/Residential Strains. Foods 2020; 9:foods9111549. [PMID: 33114667 PMCID: PMC7692326 DOI: 10.3390/foods9111549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022] Open
Abstract
In order to evaluate dominance/implantation of starter cultures for wine fermentation, both commercial starters and wild strains were monitored during the fermentation of Greco di Tufo (GR) and Aglianico of Taurasi (AGL) musts. Preliminary characterization of commercial strains was carried out by several molecular markers. Five fermentations—four starter-inoculated and one spontaneous—were carried out in duplicates by using grapes from GR and AGL. Trials were monitored, and yeast cultures were isolated within the dominant microflora. Comparison of Interdelta patterns allowed to assess the real occurrence of both starters and indigenous strains. A high genetic diversity within S. cerevisiae strains was detected. In starter-led fermentations (except for few cases), in addition to the starter strains, indigenous S. cerevisiae biotypes were found, as well. Native strains isolated from replicates of the same fermentation showed different genetic profiles. Spontaneous fermentations were conducted, during the first 5 days, by non-Saccharomyces yeasts and, afterwards, by a high number (16 in the AGL and 20 in the GR) of S. cerevisiae biotypes. Indigenous biotypes isolated by GR revealed a high variability in oenological features and, in several cases, showed better performances than those recorded for commercial strains. The study further highlighted the low dominance of some commercial starter cultures. Moreover, autochthonous yeast strains proved to be sometimes more aggressive in terms of fermentation vigor in GR must, likely because better adapted to ecological and technological conditions occurring during winemaking. Finally, the use of such strains for production of autochthonous “pied de cuve” may be a useful strategy for lowering production cost of winemaking.
Collapse
Affiliation(s)
- Maria Aponte
- Division of Microbiology, Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Naples, Italy;
| | - Raffaele Romano
- Division of Food Science and Technology, Department of Agricultural Sciences, University of Naples Federico II, Via Università 133, 80055 Portici, Naples, Italy;
| | - Clizia Villano
- Division of Vine and Wine Sciences, Department of Agricultural Sciences, University of Naples Federico II, Viale Italia, 83100 Avellino, Italy;
| | - Giuseppe Blaiotta
- Division of Vine and Wine Sciences, Department of Agricultural Sciences, University of Naples Federico II, Viale Italia, 83100 Avellino, Italy;
- Correspondence: ; Tel.: +39-081-25-32-610
| |
Collapse
|
6
|
Assessment of genetic diversity of cultivated and wild Iranian grape germplasm using retrotransposon-microsatellite amplified polymorphism (REMAP) markers and pomological traits. Mol Biol Rep 2020; 47:7593-7606. [PMID: 32949305 DOI: 10.1007/s11033-020-05827-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
Understanding the genetic diversity and relationships between genotypes is an effective step in designing effective breeding programs. Insertional polymorphisms of retrotransposons were studied in 75 cultivated and wild grape genotypes using retrotransposon-microsatellite amplified polymorphism (REMAP) technique. In the morphological part of work, seven pomological traits with a high breeding interest were also analyzed in the cultivated genotypes. A total of 328 markers were produced by 42 primer pairs, out of which 313 markers (95.43%) were polymorphic. Number of markers ranged from 4 in loci Tvv1Fa-873, Vine1-811, Gret1Ra-855 and Tvv1Fa-890 to 12 in locus Vine1Ra-841 with an average value of 7.45. Similarity values based on Dice's coefficient among all 75 grapevine genotypes varied from 0.41 to 0.77. Classification of genotypes using unweighted pair-group method using complete-linkage clustering led to six distinct groups. Some wild and cultivated varieties placed in the same groups. It seems there are close relationship between wild and cultivated genotypes and maybe wild genotypes are ancestor of native grapevines. Grouping of grapevine genotypes based on molecular marker data was not in agreement with clustering by agro-morphological data indicating that the most of multiplied sequences are confined to the non-coding regions of transposon elements. Results showed a substantial level of genetic diversity at molecular and pomological level and the potential of this diversity for future grape breeding programs.
Collapse
|
7
|
Molecular characterization of a diverse Iranian table grapevine germplasm using REMAP markers: population structure, linkage disequilibrium and association mapping of berry yield and quality traits. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0158-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Aversano R, Basile B, Buonincontri MP, Carucci F, Carputo D, Frusciante L, Di Pasquale G. Dating the beginning of the Roman viticultural model in the Western Mediterranean: The case study of Chianti (Central Italy). PLoS One 2017; 12:e0186298. [PMID: 29140987 PMCID: PMC5687709 DOI: 10.1371/journal.pone.0186298] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/28/2017] [Indexed: 11/19/2022] Open
Abstract
Although domestication of the grapevine (Vitis vinifera L.) has been extensively documented, the history of genotype selection and evolution of vineyard management remain relatively neglected fields of study. The find of 454 waterlogged grapevine pips from a well-dated Etrusco-Roman site in the Chianti district (Tuscany, Central Italy) is an extraordinary chance to gain insights into the progress of viticulture occurring in a key historical period in one of the world's most famous wine regions. The molecular and geometrical analyses of grape seeds showed (a) the presence in the site of different grapevine individuals and (b) a sudden increase in pip size, occurring at around 200 BC, whic explainable by the selection and introduction of new varieties. In this period, the Etruscans settlers in Chianti were stimulated by northward-expanding Roman culture to use novel vineyard management practices. We hypothesize that one of the most important innovations may have been the introduction of pruning, inducing vine physiological conditions more favorable to pip growth. Such changes were the consequence of specific entrepreneurial choices made by the Romans in a period of economic investment in grape cultivation and wine making to satisfy the increased trade demand after the conquest of the Central-Western Mediterranean basin.
Collapse
Affiliation(s)
- Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Boris Basile
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | - Francesca Carucci
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Gaetano Di Pasquale
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
9
|
Villano C, Lisanti MT, Gambuti A, Vecchio R, Moio L, Frusciante L, Aversano R, Carputo D. Wine varietal authentication based on phenolics, volatiles and DNA markers: State of the art, perspectives and drawbacks. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.04.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Maneesha, Upadhyaya KC. Analysis of genetic diversity in pigeon pea germplasm using retrotransposon-based molecular markers. J Genet 2017; 96:551-561. [PMID: 28947703 DOI: 10.1007/s12041-017-0802-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pigeon pea (Cajanus cajan), an important legume crop is predominantly cultivated in tropical and subtropical regions of Asia and Africa. It is normally considered to have a low degree of genetic diversity, an impediment in undertaking crop improvement programmes.We have analysed genetic polymorphism of domesticated pigeon pea germplasm (47 accessions) across the world using earlier characterized panzee retrotransposon-based molecularmarkers. Itwas conjectured that since retrotransposons are interspersed throughout the genome, retroelements-based markers would be able to uncover polymorphism possibly inherent in the diversity of retroelement sequences. Two PCR-based techniques, sequence-specific amplified polymorphism (SSAP) and retrotransposon microsatellite amplified polymorphism (REMAP) were utilized for the analyses.We show that a considerable degree of polymorphism could be detected using these techniques. Three primer combinations in SSAP generated 297 amplified products across 47 accessions with an average of 99 amplicons per assay. Degree of polymorphism varied from 84-95%. In the REMAP assays, the number of amplicons was much less but up to 73% polymorphism could be detected. On the basis of similarity coefficients, dendrograms were constructed. The results demonstrate that the retrotransposon-based markers could serve as a better alternative for the assessment of genetic diversity in crops with apparent low genetic base.
Collapse
Affiliation(s)
- Maneesha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India.
| | | |
Collapse
|
11
|
Rinaldi A, Villano C, Lanzillo C, Tamburrino A, Jourdes M, Teissedre PL, Moio L, Frusciante L, Carputo D, Aversano R. Metabolic and RNA profiling elucidates proanthocyanidins accumulation in Aglianico grape. Food Chem 2017; 233:52-59. [PMID: 28530607 DOI: 10.1016/j.foodchem.2017.04.093] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 11/16/2016] [Accepted: 04/16/2017] [Indexed: 12/21/2022]
Abstract
Aglianico grapes are known for their high content of proanthocyanidins (PAs), which are responsible for the astringency of wines derived from this cultivar. However, the accumulation of PAs and their genetic control during berry development remain largely unexplored. This work aimed to monitor astringency-causing PAs in Aglianico berries and correlate them with the expression of 14 key genes. Berries were collected during ripening and dissected in skins and seeds. PAs were fractionated and the content of total phenolics, flavans, anthocyanins, tannins reactive towards salivary proteins and tannin structural composition were evaluated. The results provided evidence that PAs were more abundant in seeds than in skins as expected, with differences in the structural composition between tissues, which did not varied during ripening. Expression analysis showed that Aglianico is able to accumulate polyphenols due to its ability to modulate key genes in a tissue-specific manner.
Collapse
Affiliation(s)
- Alessandra Rinaldi
- Università degli Studi di Napoli Federico II, Department of Agricultural Sciences, Division of Grape and Wine Sciences, Viale Italia, 83100 Avellino, Italy; Biolaffort, 126 Quai de la Souys, 33100 Bordeaux, France
| | - Clizia Villano
- Università degli Studi di Napoli Federico II, Department of Agricultural Sciences, Division of Plant Genetics and Biotechnology, Via Università, 100, 80055 Portici, Italy
| | - Carmine Lanzillo
- Università degli Studi di Napoli Federico II, Department of Agricultural Sciences, Division of Plant Genetics and Biotechnology, Via Università, 100, 80055 Portici, Italy
| | - Angelo Tamburrino
- Università degli Studi di Napoli Federico II, Department of Agricultural Sciences, Division of Plant Genetics and Biotechnology, Via Università, 100, 80055 Portici, Italy
| | - Michael Jourdes
- Université Bordeaux Segalen, USC 1366, EA 4577, Oenologie INRA-UBS-IPB, ISVV, 210 chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon Cedex, France
| | - Pierre-Louis Teissedre
- Université Bordeaux Segalen, USC 1366, EA 4577, Oenologie INRA-UBS-IPB, ISVV, 210 chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon Cedex, France
| | - Luigi Moio
- Università degli Studi di Napoli Federico II, Department of Agricultural Sciences, Division of Grape and Wine Sciences, Viale Italia, 83100 Avellino, Italy
| | - Luigi Frusciante
- Università degli Studi di Napoli Federico II, Department of Agricultural Sciences, Division of Plant Genetics and Biotechnology, Via Università, 100, 80055 Portici, Italy
| | - Domenico Carputo
- Università degli Studi di Napoli Federico II, Department of Agricultural Sciences, Division of Plant Genetics and Biotechnology, Via Università, 100, 80055 Portici, Italy
| | - Riccardo Aversano
- Università degli Studi di Napoli Federico II, Department of Agricultural Sciences, Division of Grape and Wine Sciences, Viale Italia, 83100 Avellino, Italy.
| |
Collapse
|
12
|
Gavazzi F, Braglia L, Mastromauro F, Gianì S, Morello L, Breviario D. The Tubulin-Based-Polymorphism Method Provides a Simple and Effective Alternative to the Genomic Profiling of Grape. PLoS One 2016; 11:e0163335. [PMID: 27643687 PMCID: PMC5028034 DOI: 10.1371/journal.pone.0163335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/07/2016] [Indexed: 11/19/2022] Open
Abstract
The TBP (Tubulin-Based-Polymorphism) method, based on a nuclear ILP (Intron-Length-Polymorphism) molecular marker, has been used for genotyping 37 accessions of the genus Vitis inclusive of different species, rootstocks, wild and cultivated subspecies. A distinct DNA barcode made up by a different number of amplicons, was attributed to each of the different accessions. TBP data were compared with those obtained, with the use of an internationally validated set of six SSR markers. Genetic relationships among the different accessions, dendrogram distributions, correlation values and polymorphic index values (PICs) were definitively comparable when not in favor of TBP. Such an experimental consistency is based upon a genomic organization of the multiple members of the β-tubulin gene family, the targets of TBP-mediated amplification, that is conserved in Vitis as in any other plant species. The TBP amplicons can actually be used as a useful source of sequence polymorphisms for generating primer pairs capable of identifying specific cultivars in a simple assay. An example for the identification of the ‘Sangiovese’ cv. is reported. More generally, these data are discussed in terms of the actual advantages that the introduction of the TBP method in the field of grape characterization and genotyping can provide.
Collapse
Affiliation(s)
- Floriana Gavazzi
- Institute of Agricultural Biology and Biotechnology - National Research Council, Milan, Italy
| | - Luca Braglia
- Institute of Agricultural Biology and Biotechnology - National Research Council, Milan, Italy
| | - Francesco Mastromauro
- Institute of Agricultural Biology and Biotechnology - National Research Council, Milan, Italy
| | - Silvia Gianì
- Institute of Agricultural Biology and Biotechnology - National Research Council, Milan, Italy
| | - Laura Morello
- Institute of Agricultural Biology and Biotechnology - National Research Council, Milan, Italy
| | - Diego Breviario
- Institute of Agricultural Biology and Biotechnology - National Research Council, Milan, Italy
- * E-mail:
| |
Collapse
|
13
|
Tanhuanpää P, Erkkilä M, Kalendar R, Schulman AH, Manninen O. Assessment of genetic diversity in Nordic timothy ( Phleum pratense L .). Hereditas 2016; 153:5. [PMID: 28096767 PMCID: PMC5226114 DOI: 10.1186/s41065-016-0009-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/19/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Timothy (Phleum pratense L.), a cool-season hexaploid perennial, is the most important forage grass species in Nordic countries. Earlier analyses of genetic diversity in a collection of 96 genebank accessions of timothy with SSR markers demonstrated high levels of diversity but could not resolve population structure. Therefore, we examined a subset of 51 accessions with REMAP markers, which are based on retrotransposons, and compared the diversity results with those obtained with SSR markers. RESULTS Using four primer combinations, 533 REMAP markers were analyzed, compared with 464 polymorphic alleles in the 13 SSR loci previously. The average marker index, which describes information obtained per experiment (per primer combination or locus) was over six times higher with REMAPs. Most of the variation found was within accessions, with somewhat less, 89 %, for REMAPs, than for SSR, with 93 %. CONCLUSIONS SSRs revealed differences in the level of diversity slightly better than REMAPs but neither marker type could reveal any clear clustering of accessions based on countries, vegetation zones, or different cultivar types. In our study, reliable evaluation of SSR allele dosages was not possible, so each allele had to be handled as a dominant marker. SSR and REMAP, which report from different mechanisms of generating genetic diversity and from different genomic regions, together indicate a lack of population structure. Taken together, this likely reflects the outcrossing and hexaploid nature of timothy rather than failures of either marker system.
Collapse
Affiliation(s)
- Pirjo Tanhuanpää
- Green Technology, Natural Resources Institute Finland (Luke), Myllytie 1, FI-31600 Jokioinen, Finland
| | - Maria Erkkilä
- Internal Expert Services, Natural Resources Institute Finland (Luke), Humppilantie 14, FI-31600 Jokioinen, Finland
| | - Ruslan Kalendar
- Internal Expert Services, Natural Resources Institute Finland (Luke), Humppilantie 14, FI-31600 Jokioinen, Finland
| | - Alan Howard Schulman
- Green Technology, Natural Resources Institute Finland (Luke), Myllytie 1, FI-31600 Jokioinen, Finland ; Luke/BI Plant Genome Dynamics Laboratory, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, P.O. Box 56, Viikinkaari 1, FI-00014 Helsinki, Finland
| | - Outi Manninen
- Boreal Plant Breeding Ltd, Myllytie 10, FI-31600 Jokioinen, Finland
| |
Collapse
|