1
|
Eom GD, Chu KB, Mao J, Yoon KW, Kang HJ, Moon EK, Kim SS, Quan FS. Heterologous immunization targeting the CST1 antigen confers better protection than ROP18 in mice. Nanomedicine (Lond) 2024; 19:2437-2446. [PMID: 39320318 PMCID: PMC11520538 DOI: 10.1080/17435889.2024.2403333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024] Open
Abstract
Aim: To evaluate the protective efficacy induced by heterologous immunization with recombinant baculoviruses or virus-like particles targeting the CST1 and ROP18 antigens of Toxoplasma gondii.Materials & methods: Recombinant baculovirus and virus-like particle vaccines expressing T. gondii CST1 or ROP18 antigens were developed to evaluate protective immunity in mice upon challenge infection with 450 Toxoplasma gondii (ME49).Results: Immunization with CST1 or ROP18 vaccines induced similar levels of T. gondii-specific IgG and IgA responses. Compared with ROP 18, CST1 vaccine showed better antibody-secreting cell response, germinal center B cell activation, and significantly reduced brain cyst burden and body weight loss.Conclusion: Our findings suggest that CST1 heterologous immunization elicited better protection than ROP18, providing important insight into improving the toxoplasmosis vaccine design strategy.
Collapse
Affiliation(s)
- Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ki Back Chu
- Department of Parasitology, Inje University College of Medicine, Busan, 47392, Republic of Korea
- Department of Infectious Disease & Malaria, Paik Institute of Clinical Research, Inje University, Busan, 47392, Republic of Korea
| | - Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hae-Ji Kang
- Department of Microbiology, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sung Soo Kim
- Medical Research Center for Bioreaction to Reactive Oxygen Species & Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species & Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
2
|
Imhof D, Hänggeli KPA, De Sousa MCF, Vigneswaran A, Hofmann L, Amdouni Y, Boubaker G, Müller J, Hemphill A. Working towards the development of vaccines and chemotherapeutics against neosporosis-With all of its ups and downs-Looking ahead. ADVANCES IN PARASITOLOGY 2024; 124:91-154. [PMID: 38754928 DOI: 10.1016/bs.apar.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Neospora caninum is an apicomplexan and obligatory intracellular parasite, which is the leading cause of reproductive failure in cattle and affects other farm and domestic animals, but also induces neuromuscular disease in dogs of all ages. In cattle, neosporosis is an important health problem, and has a considerable economic impact. To date there is no protective vaccine or chemotherapeutic treatment on the market. Immuno-prophylaxis has long been considered as the best control measure. Proteins involved in host cell interaction and invasion, as well as antigens mediating inflammatory responses have been the most frequently assessed vaccine targets. However, despite considerable efforts no effective vaccine has been introduced to the market to date. The development of effective compounds to limit the effects of vertical transmission of N. caninum tachyzoites has emerged as an alternative or addition to vaccination, provided suitable targets and safe and efficacious drugs can be identified. Additionally, the combination of both treatment strategies might be interesting to further increase protectivity against N. caninum infections and to decrease the duration of treatment and the risk of potential drug resistance. Well-established and standardized animal infection models are key factors for the evaluation of promising vaccine and compound candidates. The vast majority of experimental animal experiments concerning neosporosis have been performed in mice, although in recent years the numbers of experimental studies in cattle and sheep have increased. In this review, we discuss the recent findings concerning the progress in drug and vaccine development against N. caninum infections in mice and ruminants.
Collapse
Affiliation(s)
- Dennis Imhof
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Kai Pascal Alexander Hänggeli
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Maria Cristina Ferreira De Sousa
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Anitha Vigneswaran
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Larissa Hofmann
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Yosra Amdouni
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
3
|
Abdelbaky HH, Rahman MM, Shimoda N, Chen Y, Hasan T, Ushio N, Nishikawa Y. Neospora caninum surface antigen 1 is a major determinant of the pathogenesis of neosporosis in nonpregnant and pregnant mice. Front Microbiol 2024; 14:1334447. [PMID: 38260884 PMCID: PMC10800813 DOI: 10.3389/fmicb.2023.1334447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction NcSAG1 is one of most widely investigated antigens of Neospora caninum in various research fields. Such studies demonstrated the proficiency of NcSAG1 in the regulatory process of parasite adhesion and invasion of host cells. Accordingly, the contribution of NcSAG1 to the pathogenesis of neosporosis can undoubtedly be extrapolated, but direct evidence is lacking. Herein, we provide the first successful attempt at the gene disruption of NcSAG1 and novel data on the invasion and virulence potentials of N. caninum in vitro and in vivo. Methods The disruption of the NcSAG1 gene was applied using the CRISPR/Cas9 system and confirmed by PCR, western blot and indirect fluorescent antibody tests as NcSAG1 knockout parasites (NcSAG1KO). Then, we investigated the role of NcSAG1 in the growth kinetics of the parasite in vitro. Results and discussion The deletion of the NcSAG1 gene significantly decreased the infection rate and reduced the egress rate of the parasite. An in vivo study using nonpregnant female and male BALB/c mice revealed a significantly higher survival rate and lower body weight change in the group infected with the NcSAG1KO parasite than in the parental strain (Nc-1)-infected group. Regarding the vertical transmission model of BALB/c mice, the absence of the NcSAG1 gene significantly enhanced the survival of pups and greatly lowered the parasite burden in the brains of pups. In conclusion, our study suggested NcSAG1 as a key molecule in the pathogenesis of N. caninum.
Collapse
Affiliation(s)
- Hanan H. Abdelbaky
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
| | - Md. Masudur Rahman
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
- Department of Pathology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Naomi Shimoda
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
| | - Yu Chen
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
| | - Tanjila Hasan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh
| | - Nanako Ushio
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
| |
Collapse
|
4
|
Goffar MG, Deo VK, Kato T, Park EY. Dual display hemagglutinin 1 and 5 on the surface of enveloped virus-like particles in silkworm expression system. Protein Expr Purif 2022; 197:106106. [PMID: 35525404 DOI: 10.1016/j.pep.2022.106106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
Abstract
Rous sarcoma virus-like particles (RSV-LPs) displaying hemagglutinins of H1N1 (A/New Caledonia/20/99) (H1) and H5N1 (A/Vietnam/1194/2004) (H5) of the influenza A virus were produced. The H1 has its transmembrane domain, but the H5 was fused with the transmembrane domain of glycoprotein 64 (BmGP64) from Bombyx mori nucleopolyhedrovirus (BmNPV). H1 and RSV Gag protein were coexpressed in the hemolymph of silkworm larvae, copurified, and confirmed RSV-LP displaying H1 (VLP/H1). Similarly, the RSV-LP displaying H5 (VLP/H5) production was also achieved. Using fetuin agarose column chromatography, RSV Gag protein-coexpressed H1 and H5 in silkworms were copurified from the hemolymph. By immuno-TEM, H1 and H5 were observed on the surface of an RSV-LP, indicating the formation of bivalent RSV-LP displaying two HAs (VLP/BivHA) in the hemolymph of silkworm larvae. VLP/H1 induced the hemagglutination of red blood cells (RBCs) of chicken and rabbit but not sheep, while VLP/H5 induced the hemagglutination of RBCs of chicken and sheep but not rabbit. Additionally, VLP/BivHA allowed the hemagglutination of RBCs of all three animals. Silkworm larvae can produce RSV-LPs displaying two HAs and is a promising tool to produce the bivalent enveloped VLPs for the vaccine platform.
Collapse
Affiliation(s)
- Muzajjad Gozal Goffar
- Laboratory of Biotechnology, Faculty of Applied Biological Chemistry, Department of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Vipin Kumar Deo
- Organization for International Collaboration Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Tatsuya Kato
- Laboratory of Biotechnology, Faculty of Applied Biological Chemistry, Department of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Enoch Y Park
- Laboratory of Biotechnology, Faculty of Applied Biological Chemistry, Department of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
5
|
Yu G, Liang W, Yang Q, Wang J, Wang Y, Zhang T, Zhang X, Fan H, Zhao P, Cao L, Dong J. Immune Protective Evaluation Elicited by DNA Vaccination With Neospora caninum Dense Granules Proteins in Mice. Front Vet Sci 2021; 8:638067. [PMID: 33718474 PMCID: PMC7953147 DOI: 10.3389/fvets.2021.638067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Neospora caninum, an obligate intracellular protozoan, is the major cause for neosporosis and brings serious economic losses to cattle breeding industries worldwide. After invasion, dense granules proteins are abundantly secreted and being important components of parasitophorous vacuole and intravacuolar network where N. caninum survives and replicates. The aim of the present study was to evaluate the protective immunity induced by DNA vaccines with genes encoding dense granules proteins 1 (GRA1), GRA4, GRA9, GRA14, GRA17, and GRA23 against N. caninum tachyzoites in BALB/C mice. Eukaryotic expressing plasmids of pcNcGRAs were constructed and the mice were intramuscularly immunized with pcNcGRAs followed by challenging infection with lethal doses of N. caninum. Immune responses were evaluated through monitoring the levels of serum antibodies, measurement of lymphocyte proliferation, and secretion of cytokines. Immune protection assays were carried out through monitoring survival time, body weight, and parasite burden in the brains. Results showed that all the pcNcGRA DNA vaccines could trigger remarkably specific humoral and cellular responses, with higher levels of IgG and IgG2a antibodies as well as obviously increased secretion of Th1-type IFN-γ cytokines. The immune protective efficacy revealed that pcNcGRA4, pcNcGRA14, and pcNcGRA17 DNA vaccines could individually increase the survival rate to 50, 37.5, and 25% in comparison with 0% in the control group; prolong the survival time more than 20.88 ± 11.12, 18.88 ± 10.83, and 16.63 ± 10.66 days compared with the control group of 4 ± 1.31 days; and decrease parasite burden in the brains to 297.63 ± 83.77, 471.5 ± 110.74, and 592.13 ± 102.2 parasites/100 ng comparing with 1221.36 ± 269.59 parasites/100 ng in the control group. These findings indicated that NcGRA4, NcGRA14, and NcGRA17 are potential vaccine candidates; NcGRA4 displayed better performance in immune protective efficacy and could be further combined with other advantageous antigens applied to the development of safe and effective DNA vaccines against N. caninum.
Collapse
Affiliation(s)
- Guili Yu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Wei Liang
- Department of Laboratory Medicine, the Second People's Hospital of Lianyungang City, Lianyungang, China
| | - Qiankun Yang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Jinxin Wang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yu Wang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Tianmeng Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Xiao Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Hui Fan
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Panpan Zhao
- Department of Parasite, Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lili Cao
- Department of Parasite, Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, China.,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
6
|
Kato T, Machida Y, Takemura K, Xu J, Park EY. Preparation of divalent antigen-displaying enveloped virus-like particles using a single recombinant Bombyx mori nucleopolyhedrovirus bacmid in silkworms. J Biotechnol 2020; 323:92-97. [PMID: 32771428 DOI: 10.1016/j.jbiotec.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/27/2020] [Accepted: 08/05/2020] [Indexed: 10/23/2022]
Abstract
Silkworms have been used as a host for the production of recombinant proteins in a baculovirus expression system using Bombyx mori nucleopolyhedrovirus (BmNPV). To coexpress several recombinant proteins, a silkworm must be coinfected with several recombinant BmNPVs, which requires a difficult DNA manipulation procedure. In this study, we constructed recombinant BmNPVs containing three expression cassettes, Rous sarcoma virus (RSV) Gag protein, surface antigen 1 of Neospora caninum (NcSAG1) and SAG1-related sequence 2 of N. caninum (NcSRS2), by Gibson assembly and the Bac-to-Bac system, designated BmNPV/SAG-SRS-Gag and BmNPV/SAG-Gag-SRS. BmNPV/SAG-SRS-Gag was expressed in silkworms and characterized. NcSAG1 and NcSRS2 were purified with RSV Gag proteins using sucrose density gradient centrifugation and affinity chromatography. RSV Gag formed virus-like particles (RSV-LPs) at a diameter of 20-30 nm based on transmission electron microscopy (TEM). Immuno-TEM analysis showed that both NcSAG1 and NcSRS2 were displayed on the surface of the RSV-LPs. These results indicate that RSV-LPs displaying two different kinds of proteins were produced in the hemolymph of silkworm larvae by the single polycistronic strategy. This expression platform is efficient for generating multiantigen-displaying VLPs and facilitates the development of vaccines against infectious diseases.
Collapse
Affiliation(s)
- Tatsuya Kato
- Laboratory of Biotechnology, Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan; Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan; Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Yuki Machida
- Laboratory of Biotechnology, Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Kenshin Takemura
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan
| | - Jian Xu
- Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan; Institute of Biology and Information Science, Biomedical Synthetic Biology Research Center, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| | - Enoch Y Park
- Laboratory of Biotechnology, Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan; Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan; Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.
| |
Collapse
|
7
|
Xu J, Hiramatsu R, Suhaimi H, Kato T, Fujimoto A, Tokiwa T, Ike K, Park EY. Neospora caninum antigens displaying virus-like particles as a bivalent vaccine candidate against neosporosis. Vaccine 2019; 37:6426-6434. [PMID: 31515150 DOI: 10.1016/j.vaccine.2019.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/14/2019] [Accepted: 09/02/2019] [Indexed: 01/24/2023]
Abstract
Neospora caninum is a causative and transmissible agent of dog and bovine neosporosis. The resulting reproductive failures in infected cattle lead to significant economic losses worldwide. However, there is no satisfactory treatment or vaccine currently available to combat this pathogen. Thus, the development of appropriate vaccines to manage its infection and transmission is urgently needed. In this study, we expressed Rous sarcoma virus-like particles (RSV-LP) that displayed dual N. caninum antigens in silkworms. The antigen candidates are modified by adding a transmembrane domain of GP64 protein from Bombyx mori nucleopolyhedrovirus (BmNPV) to the C-terminus of surface antigen 1 (NcSAG1) and SAG1-related sequence 2 (NcSRS2). The NcSRS2 alone or the NcSAG1/NcSRS2 bivalent form displaying RSV-LPs were purified using sucrose density gradient centrifugation. These purified VLPs were then used for immunizations in gerbils, Meriones unguiculatus, to evaluate the anti-N. caninum effects in vivo. The results demonstrated that antigens displaying RSV-LPs in immunized gerbils produced the antigen-specific antibody, leading to a relatively lower parasite load after infections of N. caninum. To the best of our knowledge, this is the first study to present an RSV-LP vaccine displaying bivalent antigens from neosporosis. Taken together, our strategy suggests that silkworm-expressed virus-like particles (VLPs) are promising bivalent vaccine candidates against N. caninum infections.
Collapse
Affiliation(s)
- Jian Xu
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Rikito Hiramatsu
- Laboratory of Biotechnology, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Hamizah Suhaimi
- Laboratory of Biotechnology, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Tatsuya Kato
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Laboratory of Biotechnology, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Laboratory of Biotechnology, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Akari Fujimoto
- Laboratory of Veterinary Parasitology, Nippon Veterinary and Life University, Musashino, Tokyo 180-8602, Japan
| | - Toshihiro Tokiwa
- Laboratory of Veterinary Parasitology, Nippon Veterinary and Life University, Musashino, Tokyo 180-8602, Japan.
| | - Kazunori Ike
- Laboratory of Veterinary Parasitology, Nippon Veterinary and Life University, Musashino, Tokyo 180-8602, Japan.
| | - Enoch Y Park
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Laboratory of Biotechnology, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Laboratory of Biotechnology, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| |
Collapse
|
8
|
Suhaimi H, Hiramatsu R, Xu J, Kato T, Park EY. Secretory Nanoparticles of Neospora caninum Profilin-Fused with the Transmembrane Domain of GP64 from Silkworm Hemolymph. NANOMATERIALS 2019; 9:nano9040593. [PMID: 30974883 PMCID: PMC6523865 DOI: 10.3390/nano9040593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/01/2019] [Accepted: 04/06/2019] [Indexed: 12/12/2022]
Abstract
Neosporosis, which is caused by Neospora caninum, is a well-known disease in the veterinary field. Infections in pregnant cattle lead to abortion via transplacental (congenitally from mother to fetus) transmission. In this study, a N. caninum profilin (NcPROF), was expressed in silkworm larvae by recombinant Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid and was purified from the hemolymph. Three NcPROF constructs were investigated, native NcPROF fused with an N-terminal PA tag (PA-NcPROF), PA-NcPROF fused with the signal sequence of bombyxin from B. mori (bx-PA-NcPROF), and bx-PA-NcPROF with additional C-terminal transmembrane and cytoplasmic domains of GP64 from BmNPV (bx-PA-NcPROF-GP64TM). All recombinant proteins were observed extra- and intracellularly in cultured Bm5 cells and silkworm larvae. The bx-PA-NcPROF-GP64TM was partly abnormally secreted, even though it has the transmembrane domain, and only it was pelleted by ultracentrifugation, but PA-NcPROF and bx-PA-NcPROF were not. Additionally, bx-PA-NcPROF-GP64TM was successfully purified from silkworm hemolymph by anti-PA agarose beads while PA-NcPROF and bx-PA-NcPROF were not. The purified bx-PA-NcPROF-GP64TM protein bound to its receptor, mouse Toll-like receptor 11 (TLR-11), and formed unique nanoparticles. These results suggest that profilin fused with GP64TM was secreted as a nanoparticle with binding affinity to its receptor and this nanoparticle formation is advantageous for the development of vaccines to N. caninum.
Collapse
Affiliation(s)
- Hamizah Suhaimi
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Rikito Hiramatsu
- Laboratory of Biotechnology, Department of Applied Biological Chemistry, College of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan.
| | - Jian Xu
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan.
| | - Tatsuya Kato
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
- Laboratory of Biotechnology, Department of Applied Biological Chemistry, College of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan.
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan.
| | - Enoch Y Park
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
- Laboratory of Biotechnology, Department of Applied Biological Chemistry, College of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan.
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan.
| |
Collapse
|
9
|
Approaches for the vaccination and treatment of Neospora caninum infections in mice and ruminant models. Parasitology 2015; 143:245-59. [PMID: 26626124 DOI: 10.1017/s0031182015001596] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neospora caninum is a leading cause of abortion in cattle, and is thus an important veterinary health problem of high economic significance. Vaccination has been considered a viable strategy to prevent bovine neosporosis. Different approaches have been investigated, and to date the most promising results have been achieved with live-attenuated vaccines. Subunit vaccines have also been studied, and most of them represented components that are functionally involved in (i) the physical interaction between the parasite and its host cell during invasion or (ii) tachyzoite-to-bradyzoite stage conversion. Drugs have been considered as an option to limit the effects of vertical transmission of N. caninum. Promising results with a small panel of compounds in small laboratory animal models indicate the potential value of a chemotherapeutical approach for the prevention of neosporosis in ruminants. For both, vaccines and drugs, the key for success in preventing vertical transmission lies in the application of bioactive compounds that limit parasite proliferation and dissemination, without endangering the developing fetus not only during an exogenous acute infection but also during recrudescence of a chronic infection. In this review, the current status of vaccine and drug development is presented and novel strategies against neosporosis are discussed.
Collapse
|