1
|
Byambaragchaa M, Park SH, Kim SG, Shin MG, Kim SK, Park MH, Kang MH, Min KS. Stable Production of a Recombinant Single-Chain Eel Follicle-Stimulating Hormone Analog in CHO DG44 Cells. Int J Mol Sci 2024; 25:7282. [PMID: 39000389 PMCID: PMC11242883 DOI: 10.3390/ijms25137282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
This study aimed to produce single-chain recombinant Anguillid eel follicle-stimulating hormone (rec-eel FSH) analogs with high activity in Cricetulus griseus ovary DG44 (CHO DG44) cells. We recently reported that an O-linked glycosylated carboxyl-terminal peptide (CTP) of the equine chorionic gonadotropin (eCG) β-subunit contributes to high activity and time-dependent secretion in mammalian cells. We constructed a mutant (FSH-M), in which a linker including the eCG β-subunit CTP region (amino acids 115-149) was inserted between the β-subunit and α-subunit of wild-type single-chain eel FSH (FSH-wt). Plasmids containing eel FSH-wt and eel FSH-M were transfected into CHO DG44 cells, and single cells expressing each protein were isolated from 10 and 7 clones. Secretion increased gradually during the cultivation period and peaked at 4000-5000 ng/mL on day 9. The molecular weight of eel FSH-wt was 34-40 kDa, whereas that of eel FSH-M increased substantially, with two bands at 39-46 kDa. Treatment with PNGase F to remove the N glycosylation sites decreased the molecular weight remarkably to approximately 8 kDa. The EC50 value and maximal responsiveness of eel FSH-M were approximately 1.23- and 1.06-fold higher than those of eel FSH-wt, indicating that the mutant showed slightly higher biological activity. Phosphorylated extracellular-regulated kinase (pERK1/2) activation exhibited a sharp peak at 5 min, followed by a rapid decline. These findings indicate that the new rec-eel FSH molecule with the eCG β-subunit CTP linker shows potent activity and could be produced in massive quantities using the stable CHO DG44 cell system.
Collapse
Affiliation(s)
- Munkhzaya Byambaragchaa
- Carbon-Neutral Resources Research Center, Hankyong National University, Anseong 17579, Republic of Korea;
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
| | - Sei Hyen Park
- Graduate School of Animal Biosciences, Hankyong National University, Anseong 17579, Republic of Korea; (S.H.P.); (S.-G.K.)
| | - Sang-Gwon Kim
- Graduate School of Animal Biosciences, Hankyong National University, Anseong 17579, Republic of Korea; (S.H.P.); (S.-G.K.)
| | - Min Gyu Shin
- Aquaculture Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (M.G.S.); (S.-K.K.)
| | - Shin-Kwon Kim
- Aquaculture Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (M.G.S.); (S.-K.K.)
| | | | - Myung-Hwa Kang
- Department of Food Science and Nutrition, Hoseo University, Asan 31499, Republic of Korea;
| | - Kwan-Sik Min
- Carbon-Neutral Resources Research Center, Hankyong National University, Anseong 17579, Republic of Korea;
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
- Division of Animal BioScience, School of Animal Life Convergence Sciences, Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
| |
Collapse
|
2
|
Byambaragchaa M, Park SH, Kim SG, Shin MG, Kim SK, Hur SP, Park MH, Kang MH, Min KS. Stable Production of a Tethered Recombinant Eel Luteinizing Hormone Analog with High Potency in CHO DG44 Cells. Curr Issues Mol Biol 2024; 46:6085-6099. [PMID: 38921034 PMCID: PMC11202772 DOI: 10.3390/cimb46060363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
We produced a recombinant eel luteinizing hormone (rec-eel LH) analog with high potency in Chinese hamster ovary DG44 (CHO DG44) cells. The tethered eel LH mutant (LH-M), which had a linker comprising the equine chorionic gonadotropin (eLH/CG) β-subunit carboxyl-terminal peptide (CTP) region (amino acids 115 to 149), was inserted between the β-subunit and α-subunit of wild-type tethered eel LH (LH-wt). Monoclonal cells transfected with the tethered eel LH-wt and eel LH-M plasmids were isolated from five to nine clones of CHO DG44 cells, respectively. The secreted quantities abruptly increased on day 3, with peak levels of 5000-7500 ng/mL on day 9. The molecular weight of tethered rec-eel LH-wt was 32-36 kDa, while that of tethered rec-eel LH-M increased to approximately 38-44 kDa, indicating the detection of two bands. Treatment with the peptide N-glycanase F decreased the molecular weight by approximately 8 kDa. The oligosaccharides at the eCG β-subunit O-linked glycosylation sites were appropriately modified post-translation. The EC50 value and maximal responsiveness of eel LH-M increased by approximately 2.90- and 1.29-fold, respectively, indicating that the mutant exhibited more potent biological activity than eel LH-wt. Phosphorylated extracellular regulated kinase (pERK1/2) activation resulted in a sharp peak 5 min after agonist treatment, with a rapid decrease thereafter. These results indicate that the new tethered rec-eel LH analog had more potent activity in cAMP response than the tethered eel LH-wt in vitro. Taken together, this new eel LH analog can be produced in large quantities using a stable CHO DG44 cell system.
Collapse
Affiliation(s)
- Munkhzaya Byambaragchaa
- Carbon-Neutral Resources Research Center, Hankyong National University, Anseong 17579, Republic of Korea; (M.B.); (M.-H.P.)
| | - Sei Hyen Park
- Graduate School of Animal Biosciences, Hankyong National University, Anseong 17579, Republic of Korea;
| | - Sang-Gwon Kim
- Graduate School of Animal Biosciences, Hankyong National University, Anseong 17579, Republic of Korea;
| | - Min Gyu Shin
- Aquaculture Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea (M.G.S.); (S.-K.K.)
| | - Shin-Kwon Kim
- Aquaculture Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea (M.G.S.); (S.-K.K.)
| | - Sung-Pyo Hur
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea;
| | - Myung-Hum Park
- Carbon-Neutral Resources Research Center, Hankyong National University, Anseong 17579, Republic of Korea; (M.B.); (M.-H.P.)
- Graduate School of Animal Biosciences, Hankyong National University, Anseong 17579, Republic of Korea;
| | - Myung-Hwa Kang
- Department of Food Science and Nutrition, Hoseo University, Asan 31499, Republic of Korea;
| | - Kwan-Sik Min
- Carbon-Neutral Resources Research Center, Hankyong National University, Anseong 17579, Republic of Korea; (M.B.); (M.-H.P.)
- Graduate School of Animal Biosciences, Hankyong National University, Anseong 17579, Republic of Korea;
- Division of Animal BioScience, School of Animal Life Convergence Sciences, Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
| |
Collapse
|
3
|
Bahrami S, Amiri-Yekta A, Daneshipour A, Jazayeri SH, Mozdziak PE, Sanati MH, Gourabi H. Designing A Transgenic Chicken: Applying New Approaches toward A Promising Bioreactor. CELL JOURNAL 2019; 22:133-139. [PMID: 31721526 PMCID: PMC6874784 DOI: 10.22074/cellj.2020.6738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/15/2019] [Indexed: 12/26/2022]
Abstract
Specific developmental characteristics of the chicken make it an attractive model for the generation of transgenic organisms. Chicken possess a strong potential for recombinant protein production and can be used as a powerful bioreactor to produce pharmaceutical and nutritional proteins. Several transgenic chickens have been generated during the last two decades via viral and non-viral transfection. Culturing chicken primordial germ cells (PGCs) and their ability for germline transmission ushered in a new stage in this regard. With the advent of CRISPR/Cas9 system, a new phase of studies for manipulating genomes has begun. It is feasible to integrate a desired gene in a predetermined position of the genome using CRISPR/Cas9 system. In this review, we discuss the new approaches and technologies that can be applied to generate a transgenic chicken with regards to recombinant protein productions.
Collapse
Affiliation(s)
- Salahadin Bahrami
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Amir Amiri-Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Abbas Daneshipour
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Seyedeh Hoda Jazayeri
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Mohammad Hossein Sanati
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.Electronic Address: .,Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran. Electronic Address:
| |
Collapse
|
4
|
Jazayeri SH, Amiri-Yekta A, Bahrami S, Gourabi H, Sanati MH, Khorramizadeh MR. Vector and Cell Line Engineering Technologies Toward Recombinant Protein Expression in Mammalian Cell Lines. Appl Biochem Biotechnol 2018; 185:986-1003. [PMID: 29396733 DOI: 10.1007/s12010-017-2689-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/29/2017] [Indexed: 11/26/2022]
Abstract
The rapid growth of global biopharmaceutical market in the recent years has been a good indication of its significance in biotechnology industry. During a long period of time in recombinant protein production from 1980s, optimizations in both upstream and downstream processes were launched. In this regard, one of the most promising strategies is expression vector engineering technology based on incorporation of DNA opening elements found in the chromatin border regions of vectors as well as targeting gene integration. Along with these approaches, cell line engineering has revealed convenient outcomes in isolating high-producing clones. According to the fact that more than 50% of the approved therapeutic proteins is being manufactured in mammalian cell lines, in this review, we focus on several approaches and developments in vector and cell line engineering technologies in mammalian cell culture.
Collapse
Affiliation(s)
- Seyedeh Hoda Jazayeri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, P.O. Box: 14155-6343, Tehran, Iran
| | - Amir Amiri-Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, P.O. Box: 14155-6343, Tehran, Iran
| | - Salahadin Bahrami
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, P.O. Box: 14155-6343, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, P.O. Box: 14155-6343, Tehran, Iran
| | - Mohammad Hossein Sanati
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, P.O. Box: 14155-6343, Tehran, Iran.
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, P.O. Box: 1411413137, Tehran, Iran.
| |
Collapse
|