1
|
Karpov M, Strizhov N, Novikova L, Lobastova T, Khomutov S, Shutov A, Kazantsev A, Donova M. Pregnenolone and progesterone production from natural sterols using recombinant strain of Mycolicibacterium smegmatis mc 2 155 expressing mammalian steroidogenesis system. Microb Cell Fact 2024; 23:105. [PMID: 38594656 PMCID: PMC11005228 DOI: 10.1186/s12934-024-02385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Pregnenolone and progesterone are the life-important steroid hormones regulating essential vital functions in mammals, and widely used in different fields of medicine. Microbiological production of these compounds from sterols is based on the use of recombinant strains expressing the enzyme system cholesterol hydroxylase/C20-C22 lyase (CH/L) of mammalian steroidogenesis. However, the efficiency of the known recombinant strains is still low. New recombinant strains and combination approaches are now needed to produce these steroid hormones. RESULTS Based on Mycolicibacterium smegmatis, a recombinant strain was created that expresses the steroidogenesis system (CYP11A1, adrenodoxin reductase, adrenodoxin) of the bovine adrenal cortex. The recombinant strain transformed cholesterol and phytosterol to form progesterone among the metabolites. When 3-methoxymethyl ethers of sterols were applied as bioconversion substrates, the corresponding 3-ethers of pregnenolone and dehydroepiandrosterone (DHEA) were identified as major metabolites. Under optimized conditions, the recombinant strain produced 85.2 ± 4.7 mol % 3-methoxymethyl-pregnenolone within 48 h, while production of 3-substituted DHEA was not detected. After the 3-methoxymethyl function was deprotected by acid hydrolysis, crystalline pregnenolone was isolated in high purity (over 98%, w/w). The structures of steroids were confirmed using TLC, HPLC, MS and 1H- and 13C-NMR analyses. CONCLUSION The use of mycolicybacteria as a microbial platform for the expression of systems at the initial stage of mammalian steroidogenesis ensures the production of valuable steroid hormones-progesterone and pregnenolone from cholesterol. Selective production of pregnenolone from cholesterol is ensured by the use of 3-substituted cholesterol as a substrate and optimization of the conditions for its bioconversion. The results open the prospects for the generation of the new microbial biocatalysts capable of effectively producing value-added steroid hormones.
Collapse
Affiliation(s)
- Mikhail Karpov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Russia.
| | - Nicolai Strizhov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Russia
| | - Ludmila Novikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1/40, Moscow, 119234, Russia
| | - Tatyana Lobastova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Russia
| | - Sergey Khomutov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Russia
| | - Andrei Shutov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Russia
| | - Alexey Kazantsev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - Marina Donova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Russia.
| |
Collapse
|
2
|
Liu R, Pan Y, Wang N, Tang D, Urlacher VB, Li S. Comparative biochemical characterization of mammalian-derived CYP11A1s with cholesterol side-chain cleavage activities. J Steroid Biochem Mol Biol 2023; 229:106268. [PMID: 36764495 DOI: 10.1016/j.jsbmb.2023.106268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Steroid drugs, the second largest class of pharmaceuticals after antibiotics, have shown significant anti-inflammatory, anti-allergic, and endocrine-regulating effects. A group of cytochrome P450 enzymes, namely, CYP11A1 isoenzymes from different organisms are capable of converting cholesterol into pregnenolone, which is a pivotal reaction in both steroid metabolism and (bio)synthetic network of steroid products. However, the low activity of CYP11A1s greatly restricts the industrial application of these cholesterol side-chain cleavage enzymes. Herein, we investigate ten CYP11A1 enzymes of different origins and in vitro characterize two CYP11A1s with a relatively higher expression level from Capra hircus and Sus scrofa, together with the CYP11A1s from Homo sapiens and Bos taurus as references. Towards five selected sterol substrates with different side chain structures, S. scrofa CYP11A1 displays relatively higher activities. Through redox partners combination screening, we reveal the optimal redox partner pair of S. scrofa adrenodoxin and C. hircus adrenodoxin reductase. Moreover, the semi-rational mutagenesis for the active sites and substrate entrance channels of human and bovine CYP11A1s is performed based on comparative analysis of their crystal structures. The mutant mBtCYP11A1-Q377A derived from mature B. taurus CYP11A1 shows a 1.46 times higher activity than the wild type enzyme. These results not only demonstrate the tunability of the highly conserved CYP11A1 isoenzymes, but also lay a foundation for the following engineering efforts on these industrially relevant P450 enzymes.
Collapse
Affiliation(s)
- Ruxin Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Yunjun Pan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Ning Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China; College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Dandan Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Vlada B Urlacher
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China.
| |
Collapse
|
3
|
Zamalutdinova SV, Isaeva LV, Zamalutdinov AV, Faletrov YV, Rubtsov MA, Novikova LA. Analysis of Activity of Human Steroidogenic Acute Regulatory Protein (STARD1) Expressed in Escherichia coli Cells. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1015-1020. [PMID: 36180996 DOI: 10.1134/s0006297922090127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
One of the main obstacles to the successful use of Escherichia coli cells for steroid transformation in biotechnological processes is inefficient transport of steroid substrates into the cells. Here, we tested the possibility of using human cholesterol transfer protein STARD1 (steroidogenic acute regulatory protein) to increase the efficiency of steroid uptake by bacterial cells. Genetic constructs were obtained for the synthesis in E. coli BL21 (DE3) cells of a truncated version of STARD1 containing protein functional domain (residues 66-285) and STARD1 (66-285)-GFP fusion protein, both carrying bacterial periplasmic targeting sequence pelB at the N-terminus. Analysis of preparations of E. coli/pET22b/STARD1-GFP cells by fluorimetry and Western blotting confirmed that the used expression system ensured the synthesis of the heterologous protein. Using fluorescence spectroscopy, it was demonstrated that the presence of STARD1 in the cells increased the efficiency of assimilation of NBD-labeled cholesterol analogues by E. coli/pET22b/STARD1 cells 1.3-1.6 times (p < 0.05) compared to the wild-type cells, thus demonstrating that human STARD1 exhibits its functional activity in bacterial cells. This opens prospects for optimizing and using a fundamentally new approach to increase the efficiency of steroid uptake by cells - the inclusion of a specific carrier protein in the cell membrane, which can expand the arsenal of methods used to obtain strains of microorganisms for synthesis.
Collapse
Affiliation(s)
| | - Ludmila V Isaeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | - Yaroslav V Faletrov
- Research Institute for Physical Chemical Problems, Belarusian State University, Minsk, 220030, Belarus.
| | - Mikhail A Rubtsov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Ludmila A Novikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
4
|
Li G, An T, Li Y, Yue J, Huang R, Huang J, Liang J, Yao W, Huang L, Chen Y, Zhang R, Ji A, Duan L. Transcriptome Analysis and Identification of the Cholesterol Side Chain Cleavage Enzyme BbgCYP11A1 From Bufo bufo gargarizans. Front Genet 2022; 13:828877. [PMID: 35480310 PMCID: PMC9037069 DOI: 10.3389/fgene.2022.828877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/16/2022] [Indexed: 11/18/2022] Open
Abstract
Bufo bufo gargarizans Cantor are precious medicinal animals in traditional Chinese medicine (TCM). Bufadienolides as the major pharmacological components are generated from the venomous glands of B. bufo gargarizans. Bufadienolides are one type of cardiac aglycone with a six-member lactone ring and have properties of antitumor, cardiotonic, tonsillitis, and anti-inflammatory. The biosynthesis of bufadienolides is complex and unclear. This study explored the transcriptome of three different tissues (skin glands, venom glands, and muscles) of B. bufo gargarizans by high-throughput sequencing. According to the gene tissue–specific expression profile, 389 candidate genes were predicted possibly participating in the bufadienolides biosynthesis pathway. Then, BbgCYP11A1 was identified as a cholesterol side chain cleaving the enzyme in engineering yeast producing cholesterol. Furthermore, the catalytic activity of BbgCYP11A1 was studied with various redox partners. Interestingly, a plant NADPH-cytochrome P450 reductase (CPR) from Anemarrhena asphodeloides showed notably higher production than BbgAdx-2A-BbgAdR from B. bufo gargarizans. These results will provide certainly molecular research to reveal the bufadienolides biosynthesis pathway in B. bufo gargarizans.
Collapse
Affiliation(s)
- Guangli Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianyue An
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yanta, China
| | - Yu Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinyang Yue
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruoshi Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jincai Liang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Yao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liufang Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yidu Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rongrong Zhang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aijia Ji
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lixin Duan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Sun T, Li XD, Hong J, Liu C, Zhang XL, Zheng JP, Xu YJ, Ou ZY, Zheng JL, Yu DJ. Inhibitory Effect of Two Traditional Chinese Medicine Monomers, Berberine and Matrine, on the Quorum Sensing System of Antimicrobial-Resistant Escherichia coli. Front Microbiol 2019; 10:2584. [PMID: 31798551 PMCID: PMC6863804 DOI: 10.3389/fmicb.2019.02584] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/24/2019] [Indexed: 01/05/2023] Open
Abstract
The quorum sensing (QS) system controls bacterial biofilm formation, which is highly related to the virulence and resistance of pathogens. In the present study, the effect of two traditional Chinese medicine (TCM) monomers, berberine and matrine, on biofilm formation and QS-related gene expression of antimicrobial-resistant (AMR) Escherichia coli strains was investigated by laser scanning confocal microscopy (LSCM) observation and real-time PCR. The results indicated a roughly positive relationship between biofilm formation ability and antimicrobial resistance. LSCM observation showed that berberine and matrine inhibited biofilm formation of AMR E. coli strains at 1/2 minimal inhibitory concentration (MIC) (1/2 MIC berberine at OD630: 0.1020; 1/2 MIC matrine: OD630: 0.1045); furthermore, abnormal cell morphology such as rounded and elongated cells was also observed. This finding was consistent with the downregulation of QS-related genes: luxS, pfS, sdiA, hflX, motA, and fliA. At 1/2 MIC and 1/4 MIC concentrations of berberine, a significant downregulation of luxS, pfS, hflX, ftsQ, and ftsE was observed. The results indicate that berberine and matrine can inhibit biofilm formation by inhibiting the QS system and that berberine is more effective than matrine.
Collapse
Affiliation(s)
- Tong Sun
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao-Dong Li
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Juan Hong
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Can Liu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin-Luo Zhang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jin-Ping Zheng
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan-Jun Xu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zheng-Yang Ou
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing-Ling Zheng
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dao-Jin Yu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|