1
|
Cong Z, Yin Q, Tian K, Mukoma NJ, Ouyang L, Hsiang T, Zhang L, Jiang L, Liu X. Genome Mining of Fungal Unique Trichodiene Synthase-like Sesquiterpene Synthases. J Fungi (Basel) 2024; 10:350. [PMID: 38786705 PMCID: PMC11122449 DOI: 10.3390/jof10050350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Sesquiterpenoids served as an important source for natural product drug discovery. Although genome mining approaches have revealed numerous novel sesquiterpenoids and biosynthetic enzymes, the comprehensive landscape of fungal sesquiterpene synthases (STSs) remains elusive. In this study, 123 previously reported fungal STSs were subjected to phylogenetic analysis, resulting in the identification of a fungi-specific STS family known as trichodiene synthase-like sesquiterpene synthases (TDTSs). Subsequently, the application of hidden Markov models allowed the discovery of 517 TDTSs from our in-house fungi genome library of over 400 sequenced genomes, and these TDTSs were defined into 79 families based on a sequence similarity network. Based on the novelty of protein sequences and the completeness of their biosynthetic gene clusters, 23 TDTS genes were selected for heterologous expression in Aspergillus oryzae. In total, 10 TDTSs were active and collectively produced 12 mono- and sesquiterpenes, resulting in the identification of the first chamipinene synthase, as well as the first fungi-derived cedrene, sabinene, and camphene synthases. Additionally, with the guidance of functionally characterized TDTSs, we found that TDTSs in Family 1 could produce bridged-cyclic sesquiterpenes, while those in Family 2 could synthesize spiro- and bridged-cyclic sesquiterpenes. Our research presents a new avenue for the genome mining of fungal sesquiterpenoids.
Collapse
Affiliation(s)
- Zhanren Cong
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China (N.J.M.)
| | - Qiang Yin
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China (N.J.M.)
| | - Kunhong Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China (N.J.M.)
| | - Njeru Joe Mukoma
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China (N.J.M.)
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China (N.J.M.)
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China (N.J.M.)
| | - Lan Jiang
- Department of Cardiothoracic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing 210093, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China (N.J.M.)
| |
Collapse
|
2
|
Wang S, Chen R, Yuan L, Zhang C, Liang D, Qiao J. Molecular and Functional Analyses of Characterized Sesquiterpene Synthases in Mushroom-Forming Fungi. J Fungi (Basel) 2023; 9:1017. [PMID: 37888273 PMCID: PMC10608071 DOI: 10.3390/jof9101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
Sesquiterpenes are a type of abundant natural product with widespread applications in several industries. They are biosynthesized by sesquiterpene synthases (STSs). As valuable and abundant biological resources, mushroom-forming fungi are rich in new sesquiterpenes and STSs, which remain largely unexploited. In the present study, we collected information on 172 STSs from mushroom-forming fungi with experimentally characterized products from the literature and sorted them to develop a dataset. Furthermore, we analyzed and discussed the phylogenetic tree, catalytic products, and conserved motifs of STSs. Phylogenetic analysis revealed that the STSs were clustered into four clades. Furthermore, their cyclization reaction mechanism was divided into four corresponding categories. This database was used to predict 12 putative STS genes from the edible fungi Flammulina velutipes. Finally, three FvSTSs were selected to experimentally characterize their functions. FvSTS03 predominantly produced Δ-cadinol and FvSTS08 synthesized β-barbatene as the main product; these findings were consistent with those of the functional prediction analysis. A product titer of 78.8 mg/L β-barbatene was achieved in Saccharomyces cerevisiae via metabolic engineering. Our study findings will help screen or design STSs from fungi with specific product profiles as functional elements for applications in synthetic biology.
Collapse
Affiliation(s)
- Shengli Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (S.W.); (R.C.); (L.Y.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| | - Ruiqi Chen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (S.W.); (R.C.); (L.Y.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| | - Lin Yuan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (S.W.); (R.C.); (L.Y.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| | - Chenyang Zhang
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China;
| | - Dongmei Liang
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (S.W.); (R.C.); (L.Y.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| |
Collapse
|
3
|
Al-Salihi SAA, Alberti F. Genomic Based Analysis of the Biocontrol Species Trichoderma harzianum: A Model Resource of Structurally Diverse Pharmaceuticals and Biopesticides. J Fungi (Basel) 2023; 9:895. [PMID: 37755004 PMCID: PMC10532697 DOI: 10.3390/jof9090895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 09/28/2023] Open
Abstract
Fungi represents a rich repository of taxonomically restricted, yet chemically diverse, secondary metabolites that are synthesised via specific metabolic pathways. An enzyme's specificity and biosynthetic gene clustering are the bottleneck of secondary metabolite evolution. Trichoderma harzianum M10 v1.0 produces many pharmaceutically important molecules; however, their specific biosynthetic pathways remain uncharacterised. Our genomic-based analysis of this species reveals the biosynthetic diversity of its specialised secondary metabolites, where over 50 BGCs were predicted, most of which were listed as polyketide-like compounds associated clusters. Gene annotation of the biosynthetic candidate genes predicted the production of many medically/industrially important compounds including enterobactin, gramicidin, lovastatin, HC-toxin, tyrocidine, equisetin, erythronolide, strobilurin, asperfuranone, cirtinine, protoilludene, germacrene, and epi-isozizaene. Revealing the biogenetic background of these natural molecules is a step forward towards the expansion of their chemical diversification via engineering their biosynthetic genes heterologously, and the identification of their role in the interaction between this fungus and its biotic/abiotic conditions as well as its role as bio-fungicide.
Collapse
Affiliation(s)
| | - Fabrizio Alberti
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
4
|
T R, Sharma D, Lin F, Choong YK, Lim C, Jobichen C, Zhang C. Structural Understanding of Fungal Terpene Synthases for the Formation of Linear or Cyclic Terpene Products. ACS Catal 2023; 13:4949-4959. [PMID: 37066048 PMCID: PMC10088877 DOI: 10.1021/acscatal.2c05598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/31/2023] [Indexed: 03/29/2023]
Abstract
Terpene synthases (TPSs), known gatekeepers of terpenoid diversity, are the main targets for enzyme engineering attempts. To this end, we have determined the crystal structure of Agrocybe pediades linalool synthase (Ap.LS), which has been recently reported to be 44-fold and 287-fold more efficient than bacterial and plant counterparts, respectively. Structure-based molecular modeling followed by in vivo as well as in vitro tests confirmed that the region of 60-69aa and Tyr299 (adjacent to the motif "WxxxxxRY") are essential for maintaining Ap.LS specificity toward a short-chain (C10) acyclic product. Ap.LS Y299 mutants (Y299A, Y299C, Y299G, Y299Q, and Y299S) yielded long-chain (C15) linear or cyclic products. Molecular modeling based on the Ap.LS crystal structure indicated that farnesyl pyrophosphate in the binding pocket of Ap.LS Y299A has less torsion strain energy compared to the wild-type Ap.LS, which can be partially attributed to the larger space in Ap.LS Y299A for better accommodation of the longer chain (C15). Linalool/nerolidol synthase Y298 and humulene synthase Y302 mutations also produced C15 cyclic products similar to Ap.LS Y299 mutants. Beyond the three enzymes, our analysis confirmed that most microbial TPSs have asparagine at the position and produce mainly cyclized products (δ-cadinene, 1,8-cineole, epi-cubebol, germacrene D, β-barbatene, etc.). In contrast, those producing linear products (linalool and nerolidol) typically have a bulky tyrosine. The structural and functional analysis of an exceptionally selective linalool synthase, Ap.LS, presented in this work provides insights into factors that govern chain length (C10 or C15), water incorporation, and cyclization (cyclic vs acyclic) of terpenoid biosynthesis.
Collapse
|
5
|
Wu J, Yang X, Duan Y, Wang P, Qi J, Gao JM, Liu C. Biosynthesis of Sesquiterpenes in Basidiomycetes: A Review. J Fungi (Basel) 2022; 8:913. [PMID: 36135638 PMCID: PMC9501842 DOI: 10.3390/jof8090913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
Sesquiterpenes are common small-molecule natural products with a wide range of promising applications and are biosynthesized by sesquiterpene synthase (STS). Basidiomycetes are valuable and important biological resources. To date, hundreds of related sesquiterpenoids have been discovered in basidiomycetes, and the biosynthetic pathways of some of these compounds have been elucidated. This review summarizes 122 STSs and 2 fusion enzymes STSs identified from 26 species of basidiomycetes over the past 20 years. The biological functions of enzymes and compound structures are described, and related research is discussed.
Collapse
Affiliation(s)
- Jiajun Wu
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiaoran Yang
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yingce Duan
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Pengchao Wang
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jianzhao Qi
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
6
|
Moo-Koh FA, Cristóbal-Alejo J, Andrés MF, Martín J, Reyes F, Tun-Suárez JM, Gamboa-Angulo M. In Vitro Assessment of Organic and Residual Fractions of Nematicidal Culture Filtrates from Thirteen Tropical Trichoderma Strains and Metabolic Profiles of Most-Active. J Fungi (Basel) 2022; 8:jof8010082. [PMID: 35050022 PMCID: PMC8779102 DOI: 10.3390/jof8010082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/17/2021] [Accepted: 01/12/2022] [Indexed: 11/19/2022] Open
Abstract
The nematicidal properties of Trichoderma species have potential for developing safer biocontrol agents. In the present study, 13 native Trichoderma strains from T. citrinoviride, T. ghanense (2 strains), T. harzianum (4), T. koningiopsis, T. simmonsii, and T. virens (4) with nematicidal activity were selected and cultured in potato dextrose broth to obtain a culture filtrate (CF) for each. Each CF was partitioned with ethyl acetate to obtain organic (EA) and residual filtrate (RF) fractions, which were then tested on second-stage juveniles (J2s) of the nematodes Meloidogyne javanica and M. incognita in a microdilution assay. The most lethal strains were T. harzianum Th43-14, T. koningiopsis Th41-11, T. ghanense Th02-04, and T. virens Th32-09, which caused 51–100% mortality (%M) of J2s of both nematodes, mainly due to their RF fractions. Liquid chromatography–diode array detector-electrospray-high resolution mass spectrometry analysis of the most-active fractions revealed sesquiterpene and polyketide-like metabolites produced by the four active strains. These native Trichoderma strains have a high potential to develop safer natural products for the biocontrol of Meloidogyne species.
Collapse
Affiliation(s)
- Felicia Amalia Moo-Koh
- Centro de Investigación Científica de Yucatán, A. C. Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida 97205, Mexico;
- Tecnológico Nacional de México, Campus Conkal, Avenida Tecnológico s/n, Conkal 97345, Mexico;
| | - Jairo Cristóbal-Alejo
- Tecnológico Nacional de México, Campus Conkal, Avenida Tecnológico s/n, Conkal 97345, Mexico;
- Correspondence: (J.C.-A.); (M.G.-A.); Tel.: +52-99-9942-8330 (M.G.-A.)
| | - María Fé Andrés
- Instituto de Ciencias Agrarias, CSIC, Serrano 115-dpdo, 28006 Madrid, Spain;
| | - Jesús Martín
- Fundación MEDINA, 18016 Granada, Spain; (J.M.); (F.R.)
| | | | - Jose María Tun-Suárez
- Tecnológico Nacional de México, Campus Conkal, Avenida Tecnológico s/n, Conkal 97345, Mexico;
| | - Marcela Gamboa-Angulo
- Centro de Investigación Científica de Yucatán, A. C. Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida 97205, Mexico;
- Correspondence: (J.C.-A.); (M.G.-A.); Tel.: +52-99-9942-8330 (M.G.-A.)
| |
Collapse
|
7
|
Al-Salihi SAA, Bull ID, Al-Salhi R, Gates PJ, Salih KSM, Bailey AM, Foster GD. Further Biochemical Profiling of Hypholoma fasciculare Metabolome Reveals Its Chemogenetic Diversity. Front Bioeng Biotechnol 2021; 9:567384. [PMID: 34109161 PMCID: PMC8181146 DOI: 10.3389/fbioe.2021.567384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 04/01/2021] [Indexed: 11/30/2022] Open
Abstract
Natural products with novel chemistry are urgently needed to battle the continued increase in microbial drug resistance. Mushroom-forming fungi are underutilized as a source of novel antibiotics in the literature due to their challenging culture preparation and genetic intractability. However, modern fungal molecular and synthetic biology tools have renewed interest in exploring mushroom fungi for novel therapeutic agents. The aims of this study were to investigate the secondary metabolites of nine basidiomycetes, screen their biological and chemical properties, and then investigate the genetic pathways associated with their production. Of the nine fungi selected, Hypholoma fasciculare was revealed to be a highly active antagonistic species, with antimicrobial activity against three different microorganisms: Bacillus subtilis, Escherichia coli, and Saccharomyces cerevisiae. Genomic comparisons and chromatographic studies were employed to characterize more than 15 biosynthetic gene clusters and resulted in the identification of 3,5-dichloromethoxy benzoic acid as a potential antibacterial compound. The biosynthetic gene cluster for this product is also predicted. This study reinforces the potential of mushroom-forming fungi as an underexplored reservoir of bioactive natural products. Access to genomic data, and chemical-based frameworks, will assist the development and application of novel molecules with applications in both the pharmaceutical and agrochemical industries.
Collapse
Affiliation(s)
| | - Ian D. Bull
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Raghad Al-Salhi
- Chemistry Department, University of Mustansiriyah, Baghdad, Iraq
| | - Paul J. Gates
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | | | - Andy M. Bailey
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Gary D. Foster
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|