1
|
Krsek A, Baticic L, Sotosek V, Braut T. The Role of Biomarkers in HPV-Positive Head and Neck Squamous Cell Carcinoma: Towards Precision Medicine. Diagnostics (Basel) 2024; 14:1448. [PMID: 39001338 PMCID: PMC11241541 DOI: 10.3390/diagnostics14131448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Head and neck cancer (HNC) represents a significant global health challenge, with squamous cell carcinomas (SCCs) accounting for approximately 90% of all HNC cases. These malignancies, collectively referred to as head and neck squamous cell carcinoma (HNSCC), originate from the mucosal epithelium lining the larynx, pharynx, and oral cavity. The primary risk factors associated with HNSCC in economically disadvantaged nations have been chronic alcohol consumption and tobacco use. However, in more affluent countries, the landscape of HNSCC has shifted with the identification of human papillomavirus (HPV) infection, particularly HPV-16, as a major risk factor, especially among nonsmokers. Understanding the evolving risk factors and the distinct biological behaviors of HPV-positive and HPV-negative HNSCC is critical for developing targeted treatment strategies and improving patient outcomes in this complex and diverse group of cancers. Accurate diagnosis of HPV-positive HNSCC is essential for developing a comprehensive model that integrates the molecular characteristics, immune microenvironment, and clinical outcomes. The aim of this comprehensive review was to summarize the current knowledge and advances in the identification of DNA, RNA, and protein biomarkers in bodily fluids and tissues that have introduced new possibilities for minimally or non-invasive cancer diagnosis, monitoring, and assessment of therapeutic responses.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Vlatka Sotosek
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, 51000 Rijeka, Croatia;
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Tamara Braut
- Department of Otorhinolaryngology and Head and Neck Surgery, Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia;
| |
Collapse
|
2
|
Mladenović M, Jarić S, Mundžić M, Pavlović A, Bobrinetskiy I, Knežević NŽ. Biosensors for Cancer Biomarkers Based on Mesoporous Silica Nanoparticles. BIOSENSORS 2024; 14:326. [PMID: 39056602 PMCID: PMC11274377 DOI: 10.3390/bios14070326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Mesoporous silica nanoparticles (MSNs) exhibit highly beneficial characteristics for devising efficient biosensors for different analytes. Their unique properties, such as capabilities for stable covalent binding to recognition groups (e.g., antibodies or aptamers) and sensing surfaces, open a plethora of opportunities for biosensor construction. In addition, their structured porosity offers capabilities for entrapping signaling molecules (dyes or electroactive species), which could be released efficiently in response to a desired analyte for effective optical or electrochemical detection. This work offers an overview of recent research studies (in the last five years) that contain MSNs in their optical and electrochemical sensing platforms for the detection of cancer biomarkers, classified by cancer type. In addition, this study provides an overview of cancer biomarkers, as well as electrochemical and optical detection methods in general.
Collapse
Affiliation(s)
| | | | | | | | | | - Nikola Ž. Knežević
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (M.M.); (S.J.); (M.M.); (A.P.)
| |
Collapse
|
3
|
Sethuraman S, Ramalingam K, Ramani P, M K. Nanomaterial Biosensors in Salivary Diagnosis of Oral Cancer: A Scoping Review. Cureus 2024; 16:e59779. [PMID: 38846178 PMCID: PMC11154158 DOI: 10.7759/cureus.59779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 06/09/2024] Open
Abstract
Oral cancer is among the highest in the Indian subcontinent. Advanced stages of oral cancer are associated with severe morbidity and higher mortality. Salivary diagnosis is novel and non-invasive. It could be employed on patients even with restricted mouth opening. Hence, an attempt was made to retrieve relevant data regarding this clinically relevant topic. This article has reviewed metal oxide nanoparticles as a biosensor (BS) in salivary diagnosis for oral cancer. Gold, copper oxide, and carbon nanotubes (CNTs) were used in BS applications. A search from the PUBMED database collection (2004 to 2024) was performed to identify the nanoparticle biomarkers and salivary diagnosis in oral cancer. It revealed 30 articles. All the relevant data was extracted and tabulated in this review. We have discussed the relevance of these BS in salivary diagnosis with their corresponding clinical parameters and sensitivity. We hope that this review summarizes the available literature on this topic and incites dedicated research in prompt and early diagnosis of oral cancer, which directly influences the quality of life outcomes in such patients.
Collapse
Affiliation(s)
- Sathya Sethuraman
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Karthikeyan Ramalingam
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Pratibha Ramani
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Kalaiyarasan M
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
4
|
Verma S, Khanna V, Kumar S, Kumar S. The Art of Building Living Tissues: Exploring the Frontiers of Biofabrication with 3D Bioprinting. ACS OMEGA 2023; 8:47322-47339. [PMID: 38144142 PMCID: PMC10734012 DOI: 10.1021/acsomega.3c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/11/2023] [Indexed: 12/26/2023]
Abstract
The scope of three-dimensional printing is expanding rapidly, with innovative approaches resulting in the evolution of state-of-the-art 3D bioprinting (3DbioP) techniques for solving issues in bioengineering and biopharmaceutical research. The methods and tools in 3DbioP emphasize the extrusion process, bioink formulation, and stability of the bioprinted scaffold. Thus, 3DbioP technology augments 3DP in the biological world by providing technical support to regenerative therapy, drug delivery, bioengineering of prosthetics, and drug kinetics research. Besides the above, drug delivery and dosage control have been achieved using 3D bioprinted microcarriers and capsules. Developing a stable, biocompatible, and versatile bioink is a primary requisite in biofabrication. The 3DbioP research is breaking the technical barriers at a breakneck speed. Numerous techniques and biomaterial advancements have helped to overcome current 3DbioP issues related to printability, stability, and bioink formulation. Therefore, this Review aims to provide an insight into the technical challenges of bioprinting, novel biomaterials for bioink formulation, and recently developed 3D bioprinting methods driving future applications in biofabrication research.
Collapse
Affiliation(s)
- Saurabh Verma
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Vikram Khanna
- Department
of Oral Medicine and Radiology, King George’s
Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Smita Kumar
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Sumit Kumar
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| |
Collapse
|
5
|
Shanmugam DK, Anitha SC, Najimudeen RA, Saravanan M, Arockiaraj J, Belete MA. Conspectus on nanodiagnostics as an incipient platform for detection of oral potentially malignant disorders and oral squamous cell carcinoma. Int J Surg 2023; 109:542-544. [PMID: 36906784 PMCID: PMC10389231 DOI: 10.1097/js9.0000000000000021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 03/13/2023]
Affiliation(s)
| | | | | | - Muthupandian Saravanan
- AMR and Nanomedicine Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Melaku A. Belete
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| |
Collapse
|
6
|
Chakraborty D, Ghosh D, Kumar S, Jenkins D, Chandrasekaran N, Mukherjee A. Nano-diagnostics as an emerging platform for oral cancer detection: Current and emerging trends. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1830. [PMID: 35811418 DOI: 10.1002/wnan.1830] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/05/2022] [Accepted: 06/15/2022] [Indexed: 01/31/2023]
Abstract
Globally, oral cancer kills an estimated 150,000 individuals per year, with 300,000 new cases being diagnosed annually. The high incidence rate of oral cancer among the South-Asian and American populations is majorly due to overuse of tobacco, alcohol, and poor dental hygiene. Additionally, socio-economic issues and lack of general awareness delay the primary screening of the disease. The availability of early screening techniques for oral cancer can help in carving out a niche for accurate disease prognosis and also its prevention. However, conventional diagnostic approaches and therapeutics are still far from optimal. Thus, enhancing the analytical performance of diagnostic platforms in terms of specificity and precision can help in understanding the disease progression paradigm. Fabrication of efficient nanoprobes that are sensitive, noninvasive, cost-effective, and less labor-intensive can reduce the global cancer burden. Recent advances in optical, electrochemical, and spectroscopy-based nano biosensors that employ noble and superparamagnetic nanoparticles, have been proven to be extremely efficient. Further, these sensitive nanoprobes can also be employed for predicting disease relapse after chemotherapy, when the majority of the biomarker load is eliminated. Herein, we provide the readers with a brief summary of conventional and new-age oral cancer detection techniques. A comprehensive understanding of the inherent challenges associated with conventional oral cancer detection techniques is discussed. We also elaborate on how nanoparticles have shown tremendous promise and effectiveness in radically transforming the approach toward oral cancer detection. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > In Vitro Nanoparticle-Based Sensing.
Collapse
Affiliation(s)
- Debolina Chakraborty
- School of Advanced Sciences, Vellore Institute of Technology, Vellore, India.,Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | - Debayan Ghosh
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | - Sanjit Kumar
- Centre for Bioseparation Technology, Vellore Institute of Technology, Vellore, India
| | - David Jenkins
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science & Engineering, University of Plymouth, Devon, UK
| | | | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
7
|
Developing a Biosensor-Based Immunoassay to Detect HPV E6 Oncoprotein in the Saliva Rinse Fluid of Oral Cancer Patients. J Pers Med 2022; 12:jpm12040594. [PMID: 35455710 PMCID: PMC9027100 DOI: 10.3390/jpm12040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Transmission of Human papillomavirus (HPVs) is faithfully associated with carcinogenesis of oral cavity and oropharyngeal cancers. Therefore, clinical researchers may need to generate customized antibodies for the upcoming ELISA-based analysis to discover rare but valuable biomarkers. The aim of study was to develop and generate a biosensor-based immunoassay for early screening HPV-related oral cancer via saliva rinse fluid analysis. A peptide fragment of high-risk HPV subtype 16/18 protein, E6 protein (HP-1 protein sequence 48–66), was designed and synthesized, followed by the generation of polyclonal antibodies (anti-HP1 IgY) in our university-based laboratories. The titer and specificity of antibodies were determined by enzyme-linked immunosorbent assay (ELISA), and the Surface Plasmon Resonance (SPR) biosensor-based method was developed. Kinetic analyses by SPR confirmed that this designed peptide showed a high affinity with its generated polyclonal antibodies. Saliva fluid samples of thirty oral cancer patients and 13 healthy subjects were analyzed. SPR indicated that 26.8% of oral cancer patients had higher resonance unit (ΔRU) values than normal subjects. In conclusion, we developed a biosensor-based immunoassay to detect HPV E6 oncoprotein in the saliva rinse fluid for early screening and discrimination of HPV-related oral cancer patients.
Collapse
|