1
|
Duan C, Abola Y, Zhao J, Wang Y. Small Nucleolar RNAs in Head and Neck Squamous Cell Carcinomas. J Dent Res 2025; 104:5-16. [PMID: 39449142 DOI: 10.1177/00220345241279369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs), a distinct class of noncoding RNAs, encompass highly diverse structures and have a range of 60 to 300 nucleotides in length. About 90% of human snoRNAs are intronic and embedded within introns of their host gene transcripts. Most snoRNAs enriched in specific tissue correlate in abundance with their parental host genes. Advancements in high-throughput sequencing have facilitated the discovery of dysregulated snoRNA expression in numerous human malignancies including head and neck squamous cell carcinoma (HNSCC). Hundreds of differentially expressed snoRNAs have been identified in HNSCC tissues. Among 1,524 snoRNA genes in a 567 HNSCC cohort, 113 snoRNAs were found to be survival related. As for snoRNA's roles in HNSCC, based on the available evidence, dysregulated snoRNAs are closely associated with the carcinogenesis and development of HNSCC. Upregulated snoRNAs have been shown to augment the expression of other oncogenes or activate the Wnt/β-catenin signaling pathway, thereby promoting tumor cell viability, glycolysis, migration, and the epithelial-mesenchymal transition while inhibiting apoptosis in vitro. In vivo animal studies have further elucidated the functional roles of snoRNAs. Knockdown of host genes of these snoRNAs suppressed the Wnt/β-catenin signaling pathway and restrained tumor proliferation and aggressiveness in mice. The putative mechanisms underlying these observations are associated with the biological functions of snoRNAs, primarily involving microRNA-like functions through the generation of microRNA-like fragments and regulation of alternative splicing to yield diverse transcripts. While most of the snoRNAs are upregulated in HNSCC, 4 downregulated snoRNAs have been identified and annotated. SNORA36B (implicated in the regulation of DNA templates) and U3 (chr17, influencing cell proliferation) may serve as protective factors associated with prolonged overall survival. This review describes the viable structures of snoRNAs, endeavors to refine snoRNA sequencing technology, and summarizes snoRNAs' expression profile as well as their role in HNSCC progression for potential diagnostic and therapeutic strategies for HNSCC management.
Collapse
Affiliation(s)
- C Duan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Abola
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Kimura TDC, Scarini JF, Gonçalves MWA, Ferreira IV, Egal ESA, Altemani A, Mariano FV. Interplay between miRNA expression and glucose metabolism in oral squamous cell carcinoma. Arch Oral Biol 2024; 171:106162. [PMID: 39700740 DOI: 10.1016/j.archoralbio.2024.106162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
OBJECTIVE Given the urgent need for improved diagnostic and therapeutic strategies in oral squamous cell carcinoma (OSCC), this review aims to explore the intricate interplay between OSCC and alterations in glucose metabolism, with a particular focus on the pivotal role of microRNAs (miRNAs) in this context. MATERIAL AND METHODS Data were extracted from a vast literature survey by using PubMed, Embase, and Web of Science search engines with relevant keywords. RESULTS In OSCC, miRNAs exert regulatory control over the expression of genes involved in glucose metabolism pathways. Dysregulation of specific miRNAs has been implicated in the modulation of key glycolytic enzymes and glucose transporters, intracellular signaling cascades, and interaction with transcription factors, all of which collectively affect glucose uptake and glycolysis, contributing significantly to the observed metabolic alterations in OSCC cells. CONCLUSION A comprehensive understanding of these intricate molecular interactions holds significant promise for the development of targeted therapeutic interventions and refined diagnostic approaches to treat OSCC patients.
Collapse
Affiliation(s)
- Talita de Carvalho Kimura
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - João Figueira Scarini
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Moisés Willian Aparecido Gonçalves
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Iara Vieira Ferreira
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Erika Said Abu Egal
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| | - Albina Altemani
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernanda Viviane Mariano
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
3
|
Dey S, Biswas B, Manoj Appadan A, Shah J, Pal JK, Basu S, Sur S. Non-Coding RNAs in Oral Cancer: Emerging Roles and Clinical Applications. Cancers (Basel) 2023; 15:3752. [PMID: 37568568 PMCID: PMC10417002 DOI: 10.3390/cancers15153752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 08/13/2023] Open
Abstract
Oral cancer (OC) is among the most prevalent cancers in the world. Certain geographical areas are disproportionately affected by OC cases due to the regional differences in dietary habits, tobacco and alcohol consumption. However, conventional therapeutic methods do not yield satisfying treatment outcomes. Thus, there is an urgent need to understand the disease process and to develop diagnostic and therapeutic strategies for OC. In this review, we discuss the role of various types of ncRNAs in OC, and their promising clinical implications as prognostic or diagnostic markers and therapeutic targets. MicroRNA (miRNA), long ncRNA (lncRNA), circular RNA (circRNA), PIWI-interacting RNA (piRNA), and small nucleolar RNA (snoRNA) are the major ncRNA types whose involvement in OC are emerging. Dysregulated expression of ncRNAs, particularly miRNAs, lncRNAs, and circRNAs, are linked with the initiation, progression, as well as therapy resistance of OC via modulation in a series of cellular pathways through epigenetic, transcriptional, post-transcriptional, and translational modifications. Differential expressions of miRNAs and lncRNAs in blood, saliva or extracellular vesicles have indicated potential diagnostic and prognostic importance. In this review, we have summarized all the promising aspects of ncRNAs in the management of OC.
Collapse
Affiliation(s)
| | | | | | | | | | - Soumya Basu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth (DPU), Pimpri 411033, India; (S.D.)
| | - Subhayan Sur
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth (DPU), Pimpri 411033, India; (S.D.)
| |
Collapse
|
4
|
Xiao H, Feng X, Liu M, Gong H, Zhou X. SnoRNA and lncSNHG: Advances of nucleolar small RNA host gene transcripts in anti-tumor immunity. Front Immunol 2023; 14:1143980. [PMID: 37006268 PMCID: PMC10050728 DOI: 10.3389/fimmu.2023.1143980] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
The small nucleolar RNA host genes (SNHGs) are a group of genes that can be transcript into long non-coding RNA SNHG (lncSNHG) and further processed into small nucleolar RNAs (snoRNAs). Although lncSNHGs and snoRNAs are well established to play pivotal roles in tumorigenesis, how lncSNHGs and snoRNAs regulate the immune cell behavior and function to mediate anti-tumor immunity remains further illustrated. Certain immune cell types carry out distinct roles to participate in each step of tumorigenesis. It is particularly important to understand how lncSNHGs and snoRNAs regulate the immune cell function to manipulate anti-tumor immunity. Here, we discuss the expression, mechanism of action, and potential clinical relevance of lncSNHGs and snoRNAs in regulating different types of immune cells that are closely related to anti-tumor immunity. By uncovering the changes and roles of lncSNHGs and snoRNAs in different immune cells, we aim to provide a better understanding of how the transcripts of SNHGs participate in tumorigenesis from an immune perspective.
Collapse
Affiliation(s)
- Hao Xiao
- Department of Clinical Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xin Feng
- Department of Clinical Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Mengjun Liu
- Department of Clinical Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hanwen Gong
- Department of Clinical Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiao Zhou
- Department of Clinical Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- *Correspondence: Xiao Zhou,
| |
Collapse
|
5
|
Luo BH, Huang JQ, Huang CY, Tian P, Chen AZ, Wu WH, Ma XM, Yuan YX, Yu L. Screening of Lymphoma Radiotherapy-Resistant Genes with CRISPR Activation Library. Pharmgenomics Pers Med 2023; 16:67-80. [PMID: 36743888 PMCID: PMC9897072 DOI: 10.2147/pgpm.s386085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/05/2022] [Indexed: 02/03/2023] Open
Abstract
Objective The objective of this study was to screen lymphoma radiotherapy-resistant genes using CRISPR activation (CRISPRa). Methods The Human CRISPRa library virus was packaged and then transfected into lymphoma cells to construct an activation library cell line, which was irradiated at the minimum lethal radiation dose to screen radiotherapy-resistant cells. Radiotherapy-resistant cell single-guide RNA (sgRNA) was first amplified by quantitative polymerase chain reaction (qPCR) in the coding region and then subject to next-generation sequencing (NGS) and bioinformatics analysis to screen radiotherapy-resistant genes. Certain radiotherapy-resistant genes were then selected to construct activated cell lines transfected with a single gene so as to further verify the relationship between gene expression and radiotherapy resistance. Results A total of 16 radiotherapy-resistant genes, namely, C20orf203, MTFR1, TAF1L, MYADM, NIPSNAP1, ZUP1, RASL11A, PSMB2, PSMA6, OR8H3, TMSB4Y, CD300LF, EEF1A1, ATP6AP1L, TRAF3IP2, and SNRNP35, were screened based on the NGS results and bioinformatics analysis of the radiotherapy-resistant cells. Activated cell lines transfected with a single gene were constructed using 10 radiotherapy-resistant genes. The qPCR findings showed that, when compared with the control group, the experimental group had significantly up-regulated mRNA expression of MTFR1, NIPSNAP1, ZUP1, PSMB2, PSMA6, EEF1A1, TMSB4Y and TAF1L (p < 0.05). No significant difference in the mRNA expression of AKT3 or TRAF3IP2 (p > 0.05) was found between the two groups (p > 0.05). Conclusion The 16 genes screened are potential lymphoma radiotherapy-resistant genes. It was initially determined that the high expression of 8 genes was associated with lymphoma radiotherapy resistance, and these genes could serve as the potential biomarkers for predicting lymphoma radiotherapy resistance or as new targets for therapy.
Collapse
Affiliation(s)
- Bi-Hua Luo
- Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, Fujian, People’s Republic of China
| | - Jian-Qing Huang
- Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, Fujian, People’s Republic of China
| | - Chun-Yu Huang
- Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, Fujian, People’s Republic of China
| | - Pan Tian
- Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, Fujian, People’s Republic of China
| | - Ai-Zhen Chen
- Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, Fujian, People’s Republic of China
| | - Wei-Hao Wu
- Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, Fujian, People’s Republic of China
| | - Xiao-Mei Ma
- Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, Fujian, People’s Republic of China
| | - Yue-Xing Yuan
- Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, Fujian, People’s Republic of China
| | - Lian Yu
- Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, Fujian, People’s Republic of China,Correspondence: Lian Yu, Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, No. 105 of Jiuyibei Road, Xinluo District, Fujian, 364000, People’s Republic of China, Tel +86 13859572936, Email
| |
Collapse
|
6
|
Yang X, Liu L, Shen X, Shi L, Liu W. Dysregulation and implications of lncRNAs and miRNAs in oral tongue squamous cell carcinoma: In reply with emphasis on the role of ceRNAs. Oral Oncol 2023; 136:106277. [PMID: 36508884 DOI: 10.1016/j.oraloncology.2022.106277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Increasing evidence indicates that long noncoding RNAs (lncRNAs) as competing endogenous RNAs (ceRNAs) competitively sequestering microRNAs (miRNAs) participate in biological processes of oral tongue squamous cell carcinoma (TSCC). In this Letter, the ceRNA regulatory networks consisting of lncRNA/miRNA/mRNA axes in TSCC were summarized. Dysregulated profiles containing 33 lncRNAs and 31 miRNAs were identified by cancer-associated phenotypes verification. Almost all the lncRNAs could exert the oncogenic roles to sponge miRNAs and regulate targeting mRNA expression, thereby modulating cell proliferation, cell cycle, apoptosis, invasion, migration, metastasis, epithelial-mesenchymal transition, as well as chemoresistance. Significantly, the implications of functional ceRNAs deactivated in tumor cells contribute to the exploitation of novel diagnostic and therapeutic strategies for TSCC.
Collapse
Affiliation(s)
- Xi Yang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Fengcheng Hospital of Fengxian District, Shanghai Ninth People's Hospital Fengcheng Branch Hospital, Shanghai, China; Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Lijun Liu
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China; Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, e Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuemin Shen
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China; Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, e Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linjun Shi
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China; Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, e Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| |
Collapse
|
7
|
Yuan L, Wang D, Zhou Z. LINC00452 overexpression reverses oxLDL-induced injury of human umbilical vein endothelial cells (HUVECs) via regulating miR-194-5p/IGF1R axis. Front Cardiovasc Med 2022; 9:975640. [PMID: 36158838 PMCID: PMC9500390 DOI: 10.3389/fcvm.2022.975640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
It has been reported that atherosclerosis (AS) is the basis of the development of coronary artery disease (CAD). In addition, a previous study demonstrated that long non-coding RNA LINC00452 was notably downregulated in the whole blood of patients with CAD. However, the role of LINC00452 in the progression of AS remains unclear. Therefore, to mimic AS in vitro, HUVECs were treated with 100 μg/ml oxLDL for 24 h. Reverse transcription-quantitative PCR was performed to detect the expression levels of LINC00452 and IGF1R in HUVECs. Additionally, the cell angiogenetic ability was assessed by tube formation assay, while dual-luciferase reporter assay was carried out to explore the association among LINC00452, miR-194-5p, and IGF1R. The results showed that LINC00452 was downregulated in oxLDL-treated HUVECs. In addition, HUVEC treatment with oxLDL significantly inhibited cell viability, proliferation, and angiogenesis. However, the above effects were all reversed by LINC00452 overexpression. Furthermore, LINC00452 overexpression in HUVECs remarkably inhibited oxLDL-induced cell apoptosis and endothelial to mesenchymal transition. In addition, LINC00452 overexpression could markedly reverse oxLDL-induced inhibition of angiogenesis in HUVEC. The results of dual-luciferase reporter assay indicated that LINC00452 could bind with miR-194-5p. In addition, IGF1R was identified as a downstream target of miR-194-5p. And LINC00452 was able to regulate the miR-194-5p/IGF1R axis in HUVECs. Moreover, LINC00452 overexpression obviously reversed oxLDL-mediated growth inhibition of HUVEC via regulating the miR-194-5p/IGF1R axis. Overall, the current study demonstrated that LINC00452 overexpression reversed oxLDL-induced growth inhibition of HUVECs via regulating the miR-194-5p/IGF1R axis, thus providing a potential beneficial targets for AS.
Collapse
Affiliation(s)
- Liang Yuan
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dajie Wang
- Department of Cardiology, Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People's Hospital), Yancheng, China
- *Correspondence: Dajie Wang
| | - Zhaofeng Zhou
- Department of Cardiology, Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People's Hospital), Yancheng, China
- Zhaofeng Zhou
| |
Collapse
|