1
|
Messaoudi S, Allam A, Stoufflet J, Paillard T, Fouquet C, Doulazmi M, Le Ven A, Trembleau A, Caillé I. FMRP regulates tangential neuronal migration via MAP1B. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.530447. [PMID: 36945472 PMCID: PMC10028813 DOI: 10.1101/2023.03.06.530447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The Fragile X Syndrome (FXS) represents the most prevalent form of inherited intellectual disability and is the first monogenic cause of Autism Spectrum Disorder. FXS results from the absence of the RNA-binding protein FMRP (Fragile X Messenger Ribonucleoprotein). Neuronal migration is an essential step of brain development allowing displacement of neurons from their germinal niches to their final integration site. The precise role of FMRP in neuronal migration remains largely unexplored. Using live imaging of postnatal Rostral Migratory Stream (RMS) neurons in Fmr1-null mice, we observed that the absence of FMRP leads to delayed neuronal migration and altered trajectory, associated with defects of centrosomal movement. RNA-interference-induced knockdown of Fmr1 shows that these migratory defects are cell-autonomous. Notably, the primary FMRP mRNA target implicated in these migratory defects is MAP1B (Microtubule-Associated Protein 1B). Knocking-down MAP1B expression effectively rescued most of the observed migratory defects. Finally, we elucidate the molecular mechanisms at play by demonstrating that the absence of FMRP induces defects in the cage of microtubules surrounding the nucleus of migrating neurons, which is rescued by MAP1B knockdown. Our findings reveal a novel neurodevelopmental role for FMRP in collaboration with MAP1B, jointly orchestrating neuronal migration by influencing the microtubular cytoskeleton.
Collapse
|
2
|
Aisa MC, Cappuccini B, Favilli A, Datti A, Nardicchi V, Coata G, Gerli S. Biochemical and Anthropometric Parameters for the Early Recognition of the Intrauterine Growth Restriction and Preterm Neonates at Risk of Impaired Neurodevelopment. Int J Mol Sci 2023; 24:11549. [PMID: 37511307 PMCID: PMC10380875 DOI: 10.3390/ijms241411549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND S100B and Tau are implicated with both brain growth and injury. Their urinary levels in 30-to-40-day-old full-term, preterm, IUGR, and preterm-IUGR subjects were measured to investigate their possible relationship with future delayed neurodevelopment. METHODS Values were related to the neuro-behavioral outcome at two years of age, as well as to brain volumes and urinary NGF assessed at the same postnatal time point. RESULTS Using the Griffiths III test, cognitive and motor performances were determined to establish subgroups characterized by either normal or impaired neuro-behavior. The latter included preterm, IUGR, and preterm-IUGR individuals who exhibited significantly higher and lower S100B and Tau levels, respectively, along with markedly reduced cerebral volumes and urinary NGF, as previously demonstrated. Contrary to NGF, however, Tau and S100B displayed a weak correlation with brain volumes. CONCLUSIONS Delayed cognitive and motor performances observed in two-year-old preterm and IUGR-born individuals were also found to be associated with anomalous urinary levels of S100B and Tau, assessed at 30-40 days of the postnatal period, and their changes did not correlate with brain growth. Thus, our data suggests that, in addition to cerebral volumes and NGF, urinary S100B and Tau can also be considered as valuable parameters for the early detection of future neurodevelopmental abnormalities.
Collapse
Affiliation(s)
- Maria Cristina Aisa
- Department of Surgical and Biomedical Sciences, Section of Obstetrics and Gynecology, University of Perugia, 06129 Perugia, Italy
- GeBiSa, Research Foundation, 06129 Perugia, Italy
- Centre of Perinatal and Reproductive Medicine, University of Perugia, 06129 Perugia, Italy
| | | | - Alessandro Favilli
- Department of Surgical and Biomedical Sciences, Section of Obstetrics and Gynecology, University of Perugia, 06129 Perugia, Italy
- GeBiSa, Research Foundation, 06129 Perugia, Italy
- Centre of Perinatal and Reproductive Medicine, University of Perugia, 06129 Perugia, Italy
| | - Alessandro Datti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | | | - Giuliana Coata
- Department of Surgical and Biomedical Sciences, Section of Obstetrics and Gynecology, University of Perugia, 06129 Perugia, Italy
- Centre of Perinatal and Reproductive Medicine, University of Perugia, 06129 Perugia, Italy
| | - Sandro Gerli
- Department of Surgical and Biomedical Sciences, Section of Obstetrics and Gynecology, University of Perugia, 06129 Perugia, Italy
- GeBiSa, Research Foundation, 06129 Perugia, Italy
- Centre of Perinatal and Reproductive Medicine, University of Perugia, 06129 Perugia, Italy
| |
Collapse
|
3
|
Coronin 2B Regulates Neuronal Migration via Rac1-Dependent Multipolar-Bipolar Transition. J Neurosci 2023; 43:211-220. [PMID: 36639906 PMCID: PMC9838710 DOI: 10.1523/jneurosci.1087-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/24/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022] Open
Abstract
In the developing cortex, excitatory neurons migrate along the radial fibers to their final destinations and build up synaptic connection with each other to form functional circuitry. The shaping of neuronal morphologies by actin cytoskeleton dynamics is crucial for neuronal migration. However, it is largely unknown how the distribution and assembly of the F-actin cytoskeleton are coordinated. In the present study, we found that an actin regulatory protein, coronin 2B, is indispensable for the transition from a multipolar to bipolar morphology during neuronal migration in ICR mice of either sex. Loss of coronin 2B led to heterotopic accumulation of migrating neurons in the intermediate zone along with reduced dendritic complexity and aberrant neuronal activity in the cortical plate. This was accompanied by increased seizure susceptibility, suggesting the malfunction of cortical development in coronin 2B-deficient brains. Coronin 2B knockdown disrupted the distribution of the F-actin cytoskeleton at the leading processes, while the migration defect in coronin 2B-deficient neurons was partially rescued by overexpression of Rac1 and its downstream actin-severing protein, cofilin. Our results collectively reveal the physiological function of coronin 2B during neuronal migration whereby it maintains the proper distribution of activated Rac1 and the F-actin cytoskeleton.SIGNIFICANCE STATEMENT Deficits in neuronal migration during cortical development result in various neurodevelopmental disorders (e.g., focal cortical dysplasia, periventricular heterotopia, epilepsy, etc.). Most signaling pathways that control neuronal migration process converge to regulate actin cytoskeleton dynamics. Therefore, it is important to understand how actin dynamics is coordinated in the critical processes of neuronal migration. Herein, we report that coronin 2B is a key protein that regulates neuronal migration through its ability to control the distribution of the actin cytoskeleton and its regulatory signaling protein Rac1 during the multipolar-bipolar transition in the intermediate zone, providing insights into the molecular machinery that drives the migration process of newborn neurons.
Collapse
|
4
|
Brain Organization and Human Diseases. Cells 2022; 11:cells11101642. [PMID: 35626679 PMCID: PMC9139716 DOI: 10.3390/cells11101642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
The cortex is a highly organized structure that develops from the caudal regions of the segmented neural tube. Its spatial organization sets the stage for future functional arealization. Here, we suggest using a developmental perspective to describe and understand the etiology of common cortical malformations and their manifestation in the human brain.
Collapse
|
5
|
Modeling human neuronal migration deficits in 3D. Curr Opin Neurobiol 2020; 66:30-36. [PMID: 33069990 DOI: 10.1016/j.conb.2020.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/23/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
During the past few decades, we have witnessed an impressive gain in the knowledge regarding the basic mechanisms underlying human neuronal migration disorders by the usage of mouse models. Nevertheless, despite the remarkable conservation both in the genetic encoded information and the developmental processes, there are still numerous important differences between human and mouse. This may explain the vast excitement following the realization that technological breakthroughs enabled generating tissue-like human-based organoids for modeling human neuronal migration diseases. This review will provide a short introduction on human and mouse neuronal migration processes, and highlight human brain organoid models of neuronal migration diseases.
Collapse
|
6
|
Advances in defining signaling networks for the establishment of neuronal polarity. Curr Opin Cell Biol 2020; 63:76-87. [DOI: 10.1016/j.ceb.2019.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 12/18/2022]
|
7
|
Takano T, Funahashi Y, Kaibuchi K. Neuronal Polarity: Positive and Negative Feedback Signals. Front Cell Dev Biol 2019; 7:69. [PMID: 31069225 PMCID: PMC6491837 DOI: 10.3389/fcell.2019.00069] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/09/2019] [Indexed: 12/21/2022] Open
Abstract
Establishment and maintenance of neuronal polarity are critical for neuronal development and function. One of the fundamental questions in neurodevelopment is how neurons generate only one axon and several dendrites from multiple minor neurites. Over the past few decades, molecular and cell biological approaches have unveiled a large number of signaling networks regulating neuronal polarity in cultured hippocampal neurons and the developing cortex. Emerging evidence reveals that positive and negative feedback signals play a crucial role in axon and dendrite specification. Positive feedback signals are continuously activated in one of minor neurites and result in axon specification and elongation, whereas negative feedback signals are propagated from a nascent axon terminal to all minor neurites and inhibit the formation of multiple axon, thereby leading to dendrite specification, and maintaining neuronal polarity. This current insight provides a holistic picture of the signaling mechanisms underlying neuronal polarization during neuronal development. Here, our review highlights recent advancements in this fascinating field, with a focus on the positive, and negative feedback signals as key regulatory mechanisms underlying neuronal polarization.
Collapse
Affiliation(s)
- Tetsuya Takano
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Cell Biology, Duke University Medical School, Durham, NC, United States
| | - Yasuhiro Funahashi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
8
|
Mondal P, Das G, Khan J, Pradhan K, Ghosh S. Crafting of Neuroprotective Octapeptide from Taxol-Binding Pocket of β-Tubulin. ACS Chem Neurosci 2018; 9:615-625. [PMID: 29155559 DOI: 10.1021/acschemneuro.7b00457] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Microtubules play a crucial role in maintaining the shape and function of neurons. During progression of Alzheimer's disease (AD), severe destabilization of microtubules occurs, which leads to the permanent disruption of signal transduction processes and memory loss. Thus, microtubule stabilization is one of the key requirements for the treatment of AD. Taxol, a microtubule stabilizing anticancer drug, has been considered as a potential anti-AD drug but was never tested in AD patients, likely because of its' toxic nature and poor brain exposure. However, other microtubule-targeting agents such as epothilone D (BMS-241027) and TPI-287 (abeotaxane) and NAP peptide (davunetide) have entered in AD clinical programs. Therefore, the taxol binding pocket of tubulin could be a potential site for designing of mild and noncytotoxic microtubule stabilizing molecules. Here, we adopted an innovative strategy for the development of a peptide based microtubule stabilizer, considering the taxol binding pocket of β-tubulin, by using alanine scanning mutagenesis technique. This approach lead us to a potential octapeptide, which strongly binds to the taxol pocket of β-tubulin, serves as an excellent microtubule stabilizer, increases the expression of acetylated tubulin, and acts as an Aβ aggregation inhibitor and neuroprotective agent. Further, results revealed that this peptide is nontoxic against both PC12 derived neurons and primary cortical neurons. We believe that our strategy and discovery of peptide-based microtubule stabilizer will open the door for the development of potential anti-AD therapeutics in near future.
Collapse
Affiliation(s)
- Prasenjit Mondal
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Gaurav Das
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Juhee Khan
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Krishnangsu Pradhan
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
| | - Surajit Ghosh
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
9
|
Belvindrah R, Natarajan K, Shabajee P, Bruel-Jungerman E, Bernard J, Goutierre M, Moutkine I, Jaglin XH, Savariradjane M, Irinopoulou T, Poncer JC, Janke C, Francis F. Mutation of the α-tubulin Tuba1a leads to straighter microtubules and perturbs neuronal migration. J Cell Biol 2017; 216:2443-2461. [PMID: 28687665 PMCID: PMC5551700 DOI: 10.1083/jcb.201607074] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 05/05/2017] [Accepted: 06/01/2017] [Indexed: 12/24/2022] Open
Abstract
Mutation of α-tubulin isotypes is associated with cortical malformations. Belvindrah et al. show that Tuba1 mutation leads to impaired neuronal saltatory migration in vivo as a result of functional and structural microtubule defects. Comparative analyses of Tuba1a and Tuba8 in tubulin heterodimer structure and microtubule polymerization reveal an essential, noncompensated role for Tuba1a in the neuronal rostral migratory system. Brain development involves extensive migration of neurons. Microtubules (MTs) are key cellular effectors of neuronal displacement that are assembled from α/β-tubulin heterodimers. Mutation of the α-tubulin isotype TUBA1A is associated with cortical malformations in humans. In this study, we provide detailed in vivo and in vitro analyses of Tuba1a mutants. In mice carrying a Tuba1a missense mutation (S140G), neurons accumulate, and glial cells are dispersed along the rostral migratory stream in postnatal and adult brains. Live imaging of Tuba1a-mutant neurons revealed slowed migration and increased neuronal branching, which correlated with directionality alterations and perturbed nucleus–centrosome (N–C) coupling. Tuba1a mutation led to increased straightness of newly polymerized MTs, and structural modeling data suggest a conformational change in the α/β-tubulin heterodimer. We show that Tuba8, another α-tubulin isotype previously associated with cortical malformations, has altered function compared with Tuba1a. Our work shows that Tuba1a plays an essential, noncompensated role in neuronal saltatory migration in vivo and highlights the importance of MT flexibility in N–C coupling and neuronal-branching regulation during neuronal migration.
Collapse
Affiliation(s)
- Richard Belvindrah
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Kathiresan Natarajan
- Institut Curie, Paris Sciences et Lettres Research Université (PSL), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), UMR 3348, Orsay, France
| | - Preety Shabajee
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Elodie Bruel-Jungerman
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Jennifer Bernard
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Marie Goutierre
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Imane Moutkine
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Xavier H Jaglin
- Department of Neuroscience and Physiology, Smilow Neuroscience Program, Neuroscience Institute, New York University, New York, NY
| | - Mythili Savariradjane
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Theano Irinopoulou
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Jean-Christophe Poncer
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Carsten Janke
- Institut Curie, Paris Sciences et Lettres Research Université (PSL), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), UMR 3348, Orsay, France
| | - Fiona Francis
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France .,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
10
|
Discovery of long-range inhibitory signaling to ensure single axon formation. Nat Commun 2017; 8:33. [PMID: 28652571 PMCID: PMC5484694 DOI: 10.1038/s41467-017-00044-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 04/27/2017] [Indexed: 01/12/2023] Open
Abstract
A long-standing question in neurodevelopment is how neurons develop a single axon and multiple dendrites from common immature neurites. Long-range inhibitory signaling from the growing axon is hypothesized to prevent outgrowth of other immature neurites and to differentiate them into dendrites, but the existence and nature of this inhibitory signaling remains unknown. Here, we demonstrate that axonal growth triggered by neurotrophin-3 remotely inhibits neurite outgrowth through long-range Ca2+ waves, which are delivered from the growing axon to the cell body. These Ca2+ waves increase RhoA activity in the cell body through calcium/calmodulin-dependent protein kinase I. Optogenetic control of Rho-kinase combined with computational modeling reveals that active Rho-kinase diffuses to growing other immature neurites and inhibits their outgrowth. Mechanistically, calmodulin-dependent protein kinase I phosphorylates a RhoA-specific GEF, GEF-H1, whose phosphorylation enhances its GEF activity. Thus, our results reveal that long-range inhibitory signaling mediated by Ca2+ wave is responsible for neuronal polarization. Emerging evidence suggests that gut microbiota influences immune function in the brain and may play a role in neurological diseases. Here, the authors offer in vivo evidence from a Drosophila model that supports a role for gut microbiota in modulating the progression of Alzheimer’s disease.
Collapse
|
11
|
Hamada N, Negishi Y, Mizuno M, Miya F, Hattori A, Okamoto N, Kato M, Tsunoda T, Yamasaki M, Kanemura Y, Kosaki K, Tabata H, Saitoh S, Nagata KI. Role of a heterotrimeric G-protein, Gi2, in the corticogenesis: possible involvement in periventricular nodular heterotopia and intellectual disability. J Neurochem 2016; 140:82-95. [PMID: 27787898 DOI: 10.1111/jnc.13878] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/16/2016] [Accepted: 10/21/2016] [Indexed: 01/15/2023]
Abstract
We analyzed the role of a heterotrimeric G-protein, Gi2, in the development of the cerebral cortex. Acute knockdown of the α-subunit (Gαi2) with in utero electroporation caused delayed radial migration of excitatory neurons during corticogenesis, perhaps because of impaired morphology. The migration phenotype was rescued by an RNAi-resistant version of Gαi2. On the other hand, silencing of Gαi2 did not affect axon elongation, dendritic arbor formation or neurogenesis at ventricular zone in vivo. When behavior analyses were conducted with acute Gαi2-knockdown mice, they showed defects in social interaction, novelty recognition and active avoidance learning as well as increased anxiety. Subsequently, using whole-exome sequencing analysis, we identified a de novo heterozygous missense mutation (c.680C>T; p.Ala227Val) in the GNAI2 gene encoding Gαi2 in an individual with periventricular nodular heterotopia and intellectual disability. Collectively, the phenotypes in the knockdown experiments suggest a role of Gαi2 in the brain development, and impairment of its function might cause defects in neuronal functions which lead to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nanako Hamada
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yutaka Negishi
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Makoto Mizuno
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Fuyuki Miya
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ayako Hattori
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Tatsuhiko Tsunoda
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mami Yamasaki
- Department of Neurosurgery, Takatsuki General Hospital, Osaka, Japan
| | - Yonehiro Kanemura
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Osaka, Japan.,Department of Neurosurgery, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Osaka, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan.,Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
12
|
Fukuda T, Nagashima S, Abe T, Kiyonari H, Inatome R, Yanagi S. Rescue of CAMDI deletion-induced delayed radial migration and psychiatric behaviors by HDAC6 inhibitor. EMBO Rep 2016; 17:1785-1798. [PMID: 27737934 DOI: 10.15252/embr.201642416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/06/2016] [Accepted: 09/12/2016] [Indexed: 12/28/2022] Open
Abstract
The DISC1-interacting protein CAMDI has been suggested to promote radial migration through centrosome regulation. However, its physiological relevance is unclear. Here, we report the generation and characterization of CAMDI-deficient mice. CAMDI-deficient mice exhibit delayed radial migration with aberrant neural circuit formation and psychiatric behaviors including hyperactivity, repetitive behavior, and social abnormality typically observed in autism spectrum disorder patients. Analyses of direct targets of CAMDI identify HDAC6 whose α-tubulin deacetylase activity is inhibited by CAMDI at the centrosome. CAMDI deficiency increases HDAC6 activity, leading to unstable centrosomes with reduced γ-tubulin and acetylated α-tubulin levels. Most importantly, psychiatric behaviors as well as delayed migration are significantly rescued by treatment with Tubastatin A, a specific inhibitor of HDAC6. Our findings indicate that HDAC6 hyperactivation by CAMDI deletion causes psychiatric behaviors, at least in part, through delayed radial migration due to impaired centrosomes.
Collapse
Affiliation(s)
- Toshifumi Fukuda
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Shun Nagashima
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Chuou-ku, Kobe, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Chuou-ku, Kobe, Japan
| | - Ryoko Inatome
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
13
|
Inaguma Y, Matsumoto A, Noda M, Tabata H, Maeda A, Goto M, Usui D, Jimbo EF, Kikkawa K, Ohtsuki M, Momoi MY, Osaka H, Yamagata T, Nagata KI. Role of Class III phosphoinositide 3-kinase in the brain development: possible involvement in specific learning disorders. J Neurochem 2016; 139:245-255. [PMID: 27607605 DOI: 10.1111/jnc.13832] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/19/2016] [Accepted: 08/17/2016] [Indexed: 01/04/2023]
Abstract
Class III phosphoinositide 3-kinase (PIK3C3 or mammalian vacuolar protein sorting 34 homolog, Vps34) regulates vesicular trafficking, autophagy, and nutrient sensing. Recently, we reported that PIK3C3 is expressed in mouse cerebral cortex throughout the developmental process, especially at early embryonic stage. We thus examined the role of PIK3C3 in the development of the mouse cerebral cortex. Acute silencing of PIK3C3 with in utero electroporation method caused positional defects of excitatory neurons during corticogenesis. Time-lapse imaging revealed that the abnormal positioning was at least partially because of the reduced migration velocity. When PIK3C3 was silenced in cortical neurons in one hemisphere, axon extension to the contralateral hemisphere was also delayed. These aberrant phenotypes were rescued by RNAi-resistant PIK3C3. Notably, knockdown of PIK3C3 did not affect the cell cycle of neuronal progenitors and stem cells at the ventricular zone. Taken together, PIK3C3 was thought to play a crucial role in corticogenesis through the regulation of excitatory neuron migration and axon extension. Meanwhile, when we performed comparative genomic hybridization on a patient with specific learning disorders, a 107 Kb-deletion was identified on 18q12.3 (nt. 39554147-39661206) that encompasses exons 5-23 of PIK3C3. Notably, the above aberrant migration and axon growth phenotypes were not rescued by the disease-related truncation mutant (172 amino acids) lacking the C-terminal kinase domain. Thus, functional defects of PIK3C3 might impair corticogenesis and relate to the pathophysiology of specific learning disorders and other neurodevelopmental disorders. Acute knockdown of Class III phosphoinositide 3-kinase (PIK3C3) evokes migration defects of excitatory neurons during corticogenesis. PIK3C3-knockdown also disrupts axon outgrowth, but not progenitor proliferation in vivo. Involvement of PIK3C3 in neurodevelopmental disorders might be an interesting future subject since a deletion mutation in PIK3C3 was detected in a patient with specific learning disorders (SLD).
Collapse
Affiliation(s)
- Yutaka Inaguma
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Ayumi Matsumoto
- Department of Pediatrics, Jichi medical university, Tochigi, Japan
| | - Mariko Noda
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | | | - Masahide Goto
- Department of Pediatrics, Jichi medical university, Tochigi, Japan
| | | | - Eriko F Jimbo
- Department of Pediatrics, Jichi medical university, Tochigi, Japan
| | - Kiyoshi Kikkawa
- Department of Pediatrics, Kochi Health Science Center, Kochi, Japan
| | - Mamitaro Ohtsuki
- Department of Dermatology, Jichi Medical University, Tochigi, Japan
| | - Mariko Y Momoi
- Department of Pediatrics, Jichi medical university, Tochigi, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi medical university, Tochigi, Japan
| | | | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan. .,Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
14
|
Hamada N, Ito H, Nishijo T, Iwamoto I, Morishita R, Tabata H, Momiyama T, Nagata KI. Essential role of the nuclear isoform of RBFOX1, a candidate gene for autism spectrum disorders, in the brain development. Sci Rep 2016; 6:30805. [PMID: 27481563 PMCID: PMC4969621 DOI: 10.1038/srep30805] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/07/2016] [Indexed: 01/10/2023] Open
Abstract
Gene abnormalities in RBFOX1, encoding an mRNA-splicing factor, have been shown to cause autism spectrum disorder and other neurodevelopmental disorders. Since pathophysiological significance of the dominant nuclear isoform in neurons, RBFOX1-isoform1 (iso1), remains to be elucidated, we performed comprehensive analyses of Rbfox1-iso1 during mouse corticogenesis. Knockdown of Rbfox1-iso1 by in utero electroporation caused abnormal neuronal positioning during corticogenesis, which was attributed to impaired migration. The defects were found to occur during radial migration and terminal translocation, perhaps due to impaired nucleokinesis. Axon extension and dendritic arborization were also suppressed in vivo in Rbfox1-iso1-deficient cortical neurons. In addition, electrophysiology experiments revealed significant defects in the membrane and synaptic properties of the deficient neurons. Aberrant morphology was further confirmed by in vitro analyses; Rbfox1-iso1-konckdown in hippocampal neurons resulted in the reduction of primary axon length, total length of dendrites, spine density and mature spine number. Taken together, this study shows that Rbfox1-iso1 plays an important role in neuronal migration and synapse network formation during corticogenesis. Defects in these critical processes may induce structural and functional defects in cortical neurons, and consequently contribute to the pathophysiology of neurodevelopmental disorders with RBFOX1 abnormalities.
Collapse
Affiliation(s)
- Nanako Hamada
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Takuma Nishijo
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, Japan
| | - Ikuko Iwamoto
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Rika Morishita
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Toshihiko Momiyama
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan.,Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
15
|
Kraemer N, Ravindran E, Zaqout S, Neubert G, Schindler D, Ninnemann O, Gräf R, Seiler AEM, Kaindl AM. Loss of CDK5RAP2 affects neural but not non-neural mESC differentiation into cardiomyocytes. Cell Cycle 2016; 14:2044-57. [PMID: 25942099 DOI: 10.1080/15384101.2015.1044169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Biallelic mutations in the gene encoding centrosomal CDK5RAP2 lead to autosomal recessive primary microcephaly (MCPH), a disorder characterized by pronounced reduction in volume of otherwise architectonical normal brains and intellectual deficit. The current model for the microcephaly phenotype in MCPH invokes a premature shift from symmetric to asymmetric neural progenitor-cell divisions with a subsequent depletion of the progenitor pool. The isolated neural phenotype, despite the ubiquitous expression of CDK5RAP2, and reports of progressive microcephaly in individual MCPH cases prompted us to investigate neural and non-neural differentiation of Cdk5rap2-depleted and control murine embryonic stem cells (mESC). We demonstrate an accumulating proliferation defect of neurally differentiating Cdk5rap2-depleted mESC and cell death of proliferative and early postmitotic cells. A similar effect does not occur in non-neural differentiation into beating cardiomyocytes, which is in line with the lack of non-central nervous system features in MCPH patients. Our data suggest that MCPH is not only caused by premature differentiation of progenitors, but also by reduced propagation and survival of neural progenitors.
Collapse
Key Words
- CDK5RAP2
- Cdk5rap2, Cyclin-dependent kinase-5 regulatory subunit-associated protein 2
- DAPI, 4′,6-diamidino-2-phenylindole
- DMEM, Dulbecco's modified Eagle's medium
- FBS, fetal bovine serum
- MCPH
- MCPH, autosomal recessive primary microcephaly
- NPCs, neuroepithelial progenitor cells
- mESC, murine embryonic stem cells
- mLIF, murine leukemia inhibitory factor
- mental retardation
- neural differentiation
- primary microcephaly
- qPCR, quantitative real-time PCR.
- stem cell
Collapse
Affiliation(s)
- Nadine Kraemer
- a Institute of Cell Biology and Neurobiology; Charité - Universitätsmedizin Berlin; Campus Mitte ; Berlin , Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Radial Glial Cell-Neuron Interaction Directs Axon Formation at the Opposite Side of the Neuron from the Contact Site. J Neurosci 2016; 35:14517-32. [PMID: 26511243 DOI: 10.1523/jneurosci.1266-15.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
How extracellular cues direct axon-dendrite polarization in mouse developing neurons is not fully understood. Here, we report that the radial glial cell (RGC)-cortical neuron interaction directs axon formation at the opposite side of the neuron from the contact site. N-cadherin accumulates at the contact site between the RGC and cortical neuron. Inhibition of the N-cadherin-mediated adhesion decreases this oriented axon formation in vitro, and disrupts the axon-dendrite polarization in vivo. Furthermore, the RGC-neuron interaction induces the polarized distribution of active RhoA at the contacting neurite and active Rac1 at the opposite neurite. Inhibition of Rho-Rho-kinase signaling in a neuron impairs the oriented axon formation in vitro, and prevents axon-dendrite polarization in vivo. Collectively, these results suggest that the N-cadherin-mediated radial glia-neuron interaction determines the contacting neurite as the leading process for radial glia-guided neuronal migration and directs axon formation to the opposite side acting through the Rho family GTPases.
Collapse
|
17
|
Leo L, Yu W, Baas PW. Using siRNA to study microtubule-related proteins in cultured neurons. Methods Cell Biol 2016; 131:163-76. [DOI: 10.1016/bs.mcb.2015.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Namba T, Funahashi Y, Nakamuta S, Xu C, Takano T, Kaibuchi K. Extracellular and Intracellular Signaling for Neuronal Polarity. Physiol Rev 2015; 95:995-1024. [PMID: 26133936 DOI: 10.1152/physrev.00025.2014] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neurons are one of the highly polarized cells in the body. One of the fundamental issues in neuroscience is how neurons establish their polarity; therefore, this issue fascinates many scientists. Cultured neurons are useful tools for analyzing the mechanisms of neuronal polarization, and indeed, most of the molecules important in their polarization were identified using culture systems. However, we now know that the process of neuronal polarization in vivo differs in some respects from that in cultured neurons. One of the major differences is their surrounding microenvironment; neurons in vivo can be influenced by extrinsic factors from the microenvironment. Therefore, a major question remains: How are neurons polarized in vivo? Here, we begin by reviewing the process of neuronal polarization in culture conditions and in vivo. We also survey the molecular mechanisms underlying neuronal polarization. Finally, we introduce the theoretical basis of neuronal polarization and the possible involvement of neuronal polarity in disease and traumatic brain injury.
Collapse
Affiliation(s)
- Takashi Namba
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Funahashi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Nakamuta
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chundi Xu
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Takano
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
19
|
El Fatimy R, Miozzo F, Le Mouël A, Abane R, Schwendimann L, Sabéran-Djoneidi D, de Thonel A, Massaoudi I, Paslaru L, Hashimoto-Torii K, Christians E, Rakic P, Gressens P, Mezger V. Heat shock factor 2 is a stress-responsive mediator of neuronal migration defects in models of fetal alcohol syndrome. EMBO Mol Med 2015; 6:1043-61. [PMID: 25027850 PMCID: PMC4154132 DOI: 10.15252/emmm.201303311] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is a frequent cause of mental retardation. However, the molecular mechanisms underlying brain development defects induced by maternal alcohol consumption during pregnancy are unclear. We used normal and Hsf2-deficient mice and cell systems to uncover a pivotal role for heat shock factor 2 (HSF2) in radial neuronal migration defects in the cortex, a hallmark of fetal alcohol exposure. Upon fetal alcohol exposure, HSF2 is essential for the triggering of HSF1 activation, which is accompanied by distinctive post-translational modifications, and HSF2 steers the formation of atypical alcohol-specific HSF1-HSF2 heterocomplexes. This perturbs the in vivo binding of HSF2 to heat shock elements (HSEs) in genes that control neuronal migration in normal conditions, such as p35 or the MAPs (microtubule-associated proteins, such as Dclk1 and Dcx), and alters their expression. In the absence of HSF2, migration defects as well as alterations in gene expression are reduced. Thus, HSF2, as a sensor for alcohol stress in the fetal brain, acts as a mediator of the neuronal migration defects associated with FASD.
Collapse
Affiliation(s)
- Rachid El Fatimy
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France ED 387 iViv UPMC Univ Paris 06, Paris, France Univ Paris Diderot, Paris Cedex 13, France
| | - Federico Miozzo
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France ED 387 iViv UPMC Univ Paris 06, Paris, France Univ Paris Diderot, Paris Cedex 13, France
| | - Anne Le Mouël
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France
| | - Ryma Abane
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France ED 387 iViv UPMC Univ Paris 06, Paris, France Univ Paris Diderot, Paris Cedex 13, France
| | - Leslie Schwendimann
- INSERM U1141, Hôpital Robert Debré, Paris, France Faculté de Médecine Denis Diderot, Univ Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Délara Sabéran-Djoneidi
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France
| | - Aurélie de Thonel
- INSERM UMR 866, Dijon, France Faculty of Medicine and Pharmacy, Univ Burgundy, Dijon, France
| | - Illiasse Massaoudi
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France
| | - Liliana Paslaru
- Carol Davila University of Medicine and Pharmacy Fundeni Hospital, Bucharest, Romania
| | - Kazue Hashimoto-Torii
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Elisabeth Christians
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, CNRS, Villefranche-sur-mer, France Sorbonne Universités UPMC Univ Paris 06, Villefranche-sur-mer, France
| | - Pasko Rakic
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Pierre Gressens
- INSERM U1141, Hôpital Robert Debré, Paris, France Faculté de Médecine Denis Diderot, Univ Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Valérie Mezger
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France
| |
Collapse
|
20
|
Mizuno M, Matsumoto A, Hamada N, Ito H, Miyauchi A, Jimbo EF, Momoi MY, Tabata H, Yamagata T, Nagata KI. Role of an adaptor protein Lin-7B in brain development: possible involvement in autism spectrum disorders. J Neurochem 2014; 132:61-9. [PMID: 25196215 DOI: 10.1111/jnc.12943] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 09/01/2014] [Accepted: 09/03/2014] [Indexed: 02/05/2023]
Abstract
Using comparative genomic hybridization analysis for an autism spectrum disorder (ASD) patient, a 73-Kb duplication at 19q13.33 (nt. 49 562 755-49 635 956) including LIN7B and 5 other genes was detected. We then identified a novel frameshift mutation in LIN7B in another ASD patient. Since LIN7B encodes a scaffold protein essential for neuronal function, we analyzed the role of Lin-7B in the development of cerebral cortex. Acute knockdown of Lin-7B with in utero electroporation caused a delay in neuronal migration during corticogenesis. When Lin-7B was knocked down in cortical neurons in one hemisphere, their axons failed to extend efficiently into the contralateral hemisphere after leaving the corpus callosum. Meanwhile, enhanced expression of Lin-7B had no effects on both cortical neuron migration and axon growth. Notably, silencing of Lin-7B did not affect the proliferation of neuronal progenitors and stem cells. Taken together, Lin-7B was found to play a pivotal role in corticogenesis through the regulation of excitatory neuron migration and interhemispheric axon growth, while further analyses are required to directly link functional defects of Lin-7B to ASD pathophysiology. Lin-7 plays a pivotal role as a scaffold protein in synaptic development and plasticity. Based on genetic analyses we identified mutations in LIN-7B gene in some ASD (autism-spectrum disorder) patients. Functional defects in Lin-7B caused abnormal neuronal migration and interhemispheric axon growth during mouse brain development. Thus, functional deficiency in Lin-7B could be implicated in clinical phenotypes in some ASD patients through bringing about abnormal cortical architecture.
Collapse
Affiliation(s)
- Makoto Mizuno
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Neuronal polarization in vivo: Growing in a complex environment. Curr Opin Neurobiol 2014; 27:215-23. [DOI: 10.1016/j.conb.2014.04.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/10/2014] [Accepted: 04/10/2014] [Indexed: 01/06/2023]
|
22
|
Rossini L, Medici V, Tassi L, Cardinale F, Tringali G, Bramerio M, Villani F, Spreafico R, Garbelli R. Layer-specific gene expression in epileptogenic type II focal cortical dysplasia: normal-looking neurons reveal the presence of a hidden laminar organization. Acta Neuropathol Commun 2014; 2:45. [PMID: 24735483 PMCID: PMC4023625 DOI: 10.1186/2051-5960-2-45] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Type II focal cortical dysplasias (FCDs) are malformations of cortical development characterised by the disorganisation of the normal neocortical structure and the presence of dysmorphic neurons (DNs) and balloon cells (BCs). The pathogenesis of FCDs has not yet been clearly established, although a number of histopathological patterns and molecular findings suggest that they may be due to abnormal neuronal and glial proliferation and migration processes.In order to gain further insights into cortical layering disruption and investigate the origin of DNs and BCs, we used in situ RNA hybridisation of human surgical specimens with a neuropathologically definite diagnosis of Type IIa/b FCD and a panel of layer-specific genes (LSGs) whose expression covers all cortical layers. We also used anti-phospho-S6 ribosomal protein antibody to investigate mTOR pathway hyperactivation. RESULTS LSGs were expressed in both normal and abnormal cells (BCs and DNs) but their distribution was different. Normal-looking neurons, which were visibly reduced in the core of the lesion, were apparently located in the appropriate cortical laminae thus indicating a partial laminar organisation. On the contrary, DNs and BCs, labelled with anti-phospho-S6 ribosomal protein antibody, were spread throughout the cortex without any apparent rule and showed a highly variable LSG expression pattern. Moreover, LSGs did not reveal any differences between Type IIa and IIb FCD. CONCLUSION These findings suggest the existence of hidden cortical lamination involving normal-looking neurons, which retain their ability to migrate correctly in the cortex, unlike DNs which, in addition to their morphological abnormalities and mTOR hyperactivation, show an altered migratory pattern.Taken together these data suggest that an external or environmental hit affecting selected precursor cells during the very early stages of cortical development may disrupt normal cortical development.
Collapse
Affiliation(s)
- Laura Rossini
- Clinical Epileptology and Experimental Neurophysiology Unit, Istituto Neurologico “C. Besta”, Via Amadeo 42, 20133 Milano, Italy
| | - Valentina Medici
- Clinical Epileptology and Experimental Neurophysiology Unit, Istituto Neurologico “C. Besta”, Via Amadeo 42, 20133 Milano, Italy
| | - Laura Tassi
- C. Munari Epilepsy Surgery Centre, Niguarda Hospital, Milan, Italy
| | | | - Giovanni Tringali
- Department of Neurosurgery, Fondazione IRCCS, Istituto Neurologico “C. Besta”, Milan, Italy
| | | | - Flavio Villani
- Clinical Epileptology and Experimental Neurophysiology Unit, Istituto Neurologico “C. Besta”, Via Amadeo 42, 20133 Milano, Italy
| | - Roberto Spreafico
- Clinical Epileptology and Experimental Neurophysiology Unit, Istituto Neurologico “C. Besta”, Via Amadeo 42, 20133 Milano, Italy
| | - Rita Garbelli
- Clinical Epileptology and Experimental Neurophysiology Unit, Istituto Neurologico “C. Besta”, Via Amadeo 42, 20133 Milano, Italy
| |
Collapse
|
23
|
Zuccaro E, Bergami M, Vignoli B, Bony G, Pierchala BA, Santi S, Cancedda L, Canossa M. Polarized expression of p75(NTR) specifies axons during development and adult neurogenesis. Cell Rep 2014; 7:138-52. [PMID: 24685135 DOI: 10.1016/j.celrep.2014.02.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 02/10/2014] [Accepted: 02/20/2014] [Indexed: 01/07/2023] Open
Abstract
VIDEO ABSTRACT Newly generated neurons initiate polarizing signals that specify a single axon and multiple dendrites, a process critical for patterning neuronal circuits in vivo. Here, we report that the pan-neurotrophin receptor p75(NTR) is a polarity regulator that localizes asymmetrically in differentiating neurons in response to neurotrophins and is required for specification of the future axon. In cultured hippocampal neurons, local exposure to neurotrophins causes early accumulation of p75(NTR) into one undifferentiated neurite to specify axon fate. Moreover, knockout or knockdown of p75(NTR) results in failure to initiate an axon in newborn neurons upon cell-cycle exit in vitro and in the developing cortex, as well as during adult hippocampal neurogenesis in vivo. Hence, p75(NTR) governs neuronal polarity, determining pattern and assembly of neuronal circuits in adult hippocampus and cortical development.
Collapse
Affiliation(s)
- Emanuela Zuccaro
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology (IIT), via Morego 30, I-16163 Genoa, Italy
| | - Matteo Bergami
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology (IIT), via Morego 30, I-16163 Genoa, Italy; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Beatrice Vignoli
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology (IIT), via Morego 30, I-16163 Genoa, Italy
| | - Guillaume Bony
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology (IIT), via Morego 30, I-16163 Genoa, Italy
| | - Brian A Pierchala
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Spartaco Santi
- National Research Council (CNR), Institute of Molecular Genetics (IGM)-Bologna, Laboratory of Muscoloskeletal Cell Biology, IOR, via di Barbiano1/10, I-40136 Bologna, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology (IIT), via Morego 30, I-16163 Genoa, Italy.
| | - Marco Canossa
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology (IIT), via Morego 30, I-16163 Genoa, Italy; European Brain Research Institute (EBRI) "Rita Levi-Montalcini," via del Fosso di Fiorano 64/65, I-00143 Rome, Italy.
| |
Collapse
|
24
|
Matsumoto A, Mizuno M, Hamada N, Nozaki Y, Jimbo EF, Momoi MY, Nagata KI, Yamagata T. LIN7A depletion disrupts cerebral cortex development, contributing to intellectual disability in 12q21-deletion syndrome. PLoS One 2014; 9:e92695. [PMID: 24658322 PMCID: PMC3962435 DOI: 10.1371/journal.pone.0092695] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/24/2014] [Indexed: 12/04/2022] Open
Abstract
Interstitial deletion of 12q21 has been reported in four cases, which share several common clinical features, including intellectual disability (ID), low-set ears, and minor cardiac abnormalities. Comparative genomic hybridization (CGH) analysis using the Agilent Human Genome CGH 180K array was performed with the genomic DNA from a two-year-old Japanese boy with these symptoms, as well as hypoplasia of the corpus callosum. Consequently, a 14 Mb deletion at 12q21.2-q21.33 (nt. 77 203 574–91 264 613 bp), which includes 72 genes, was detected. Of these, we focused on LIN7A, which encodes a scaffold protein that is important for synaptic function, as a possible responsible gene for ID, and we analyzed its role in cerebral cortex development. Western blotting analyses revealed that Lin-7A is expressed on embryonic day (E) 13.5, and gradually increases in the mouse brain during the embryonic stage. Biochemical fractionation resulted in the enrichment of Lin-7A in the presynaptic fraction. Suppression of Lin-7A expression by RNAi, using in utero electroporation on E14.5, delayed neuronal migration on postnatal day (P) 2, and Lin-7A-deficient neurons remained in the lower zone of the cortical plate and the intermediate zone. In addition, when Lin-7A was silenced in cortical neurons in one hemisphere, axonal growth in the contralateral hemisphere was delayed; development of these neurons was disrupted such that one half did not extend into the contralateral hemisphere after leaving the corpus callosum. Taken together, LIN7A is a candidate gene responsible for 12q21-deletion syndrome, and abnormal neuronal migration and interhemispheric axon development may contribute to ID and corpus callosum hypoplasia, respectively.
Collapse
Affiliation(s)
- Ayumi Matsumoto
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Makoto Mizuno
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Nanako Hamada
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Yasuyuki Nozaki
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Eriko F. Jimbo
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Mariko Y. Momoi
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Koh-ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Takanori Yamagata
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
- * E-mail:
| |
Collapse
|
25
|
Inaguma Y, Hamada N, Tabata H, Iwamoto I, Mizuno M, Nishimura YV, Ito H, Morishita R, Suzuki M, Ohno K, Kumagai T, Nagata KI. SIL1, a causative cochaperone gene of Marinesco-Söjgren syndrome, plays an essential role in establishing the architecture of the developing cerebral cortex. EMBO Mol Med 2014; 6:414-29. [PMID: 24473200 PMCID: PMC3958314 DOI: 10.1002/emmm.201303069] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Marinesco-Sjögren syndrome (MSS) is a rare autosomal recessively inherited disorder with mental retardation (MR). Recently, mutations in the SIL1 gene, encoding a co-chaperone which regulates the chaperone HSPA5, were identified as a major cause of MSS. We here examined the pathophysiological significance of SIL1 mutations in abnormal corticogenesis of MSS. SIL1-silencing caused neuronal migration delay during corticogenesis ex vivo. While RNAi-resistant SIL1 rescued the defects, three MSS-causing SIL1 mutants tested did not. These mutants had lower affinities to HSPA5 in vitro, and SIL1-HSPA5 interaction as well as HSPA5 function was found to be crucial for neuronal migration ex vivo. Furthermore time-lapse imaging revealed morphological disorganization associated with abnormal migration of SIL1-deficient neurons. These results suggest that the mutations prevent SIL1 from interacting with and regulating HSPA5, leading to abnormal neuronal morphology and migration. Consistent with this, when SIL1 was silenced in cortical neurons in one hemisphere, axonal growth in the contralateral hemisphere was delayed. Taken together, abnormal neuronal migration and interhemispheric axon development may contribute to MR in MSS.
Collapse
Affiliation(s)
- Yutaka Inaguma
- Department of Molecular Neurobiology, Institute for Developmental Research, Kasugai Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mark/Par-1 Marking the Polarity of Migrating Neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 800:97-111. [DOI: 10.1007/978-94-007-7687-6_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Gärtner A, Fornasiero EF, Valtorta F, Dotti CG. Distinct temporal hierarchies in membrane and cytoskeleton dynamics precede the morphological polarization of developing neurons. J Cell Sci 2014; 127:4409-19. [DOI: 10.1242/jcs.149815] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Final morphological polarization of neurons, with the development of a distinct axon and of several dendrites, is preceded by phases of non-polarized architecture. The earliest of these phases is that of the round neuron arising from the last mitosis. A second non polarized stage corresponds to the bipolar neuron, with two morphologically identical neurites. Both phases have their distinctive relevance in the establishment of neuronal polarity. During the round cell stage a decision is made as to where from the cell periphery a first neurite will form, thus creating the first sign of asymmetry. At the bipolar stage a decision is made as to which of the two neurites becomes the axon in neurons polarizing in vitro and the leading edge in neurons in situ. In this study we analysed cytoskeletal and membrane dynamics in cells at these two “pre-polarity” stages. By mean of time lapse imaging in dissociated hippocampal neurons and ex vivo cortical slices we show that both stages are characterized by polarized intracellular arrangements, however with distinct temporal hierarchies: polarized actin dynamics marks the site of first polarization in round cells, whereas polarized membrane dynamics precedes asymmetric growth in the bipolar stage.
Collapse
|
28
|
Abstract
Axon formation is one of the most important events in neuronal polarization and is regulated by signaling molecules involved in cytoskeletal rearrangement and protein transport. We previously found that Partition-defective 3 (Par3) is associated with KIF3A (kinesin-2) and is transported into the nascent axon in a KIF3A-dependent fashion. Par3 interacts with the Rac-specific guanine nucleotide-exchange factors (GEFs) Tiam1/2, which activate Rac1, and participates in axon formation in cultured hippocampal neurons. However, the regulatory mechanism of the Par3-KIF3A interaction is poorly understood, and the role of Par3 in neuronal polarization in vivo remains elusive. Here, we found that extracellular signal-regulated kinase 2 (ERK2) directly interacts with Par3, that ERK2 phosphorylates Par3 at Ser-1116, and that the phosphorylated Par3 accumulates at the axonal tips in a manner dependent upon ERK2 activity. The phosphorylation of Par3 by ERK2 inhibited the interaction of Par3 with KIF3A but not with the other Par3 partners, including Par6 and aPKC. The phosphomimic mutant of Par3 (Par3-S1116D) showed less binding activity with the KIF3s and slower transport in the axons. The knockdown of Par3 by RNA interference impaired neuronal polarization, which was rescued with RNAi-resistant Par3, but not with the phosphomimic Par3 mutant, in cultured rat hippocampal neurons and mouse cortical projection neurons in vivo. These results suggest that ERK2 phosphorylates Par3 and inhibits its binding with KIF3A, thereby controlling Par3 transport and neuronal polarity.
Collapse
|
29
|
Abstract
Shootin1 has been ascribed a role in regulating polarization of primary hippocampal neurons. To better understand the possible role of Shootin1 in the developing brain, we identified a member of the kinesin superfamily, KIF20B, as a novel Shootin1 interacting protein and a potential mediator of Shootin1 interaction with microtubules. KIF20B/Shootin1 binding was mapped to a 57 aa KIF20B sequence, which was used as a dominant-negative fragment. Direct interaction between that peptide (MBD) and Shootin1 was confirmed by surface plasmon resonance-based technology and the affinity was determined in the 10⁻⁷ m range. The proteins are expressed in the developing brain and formed a complex in vivo based on coimmunoprecipitation experiments and coimmunostaining in primary neurons. In primary hippocampal neurons Kif20b knockdown reduced Shootin1 mobilization to the developing axon, as evidenced by immunostaining and fluorescence recovery after photobleaching analysis, suggesting that Shootin1 is a novel KIF20B cargo. shRNA targeting of Shootin1 reduced PIP3 accumulation in the growth cone, as did Kif20b shRNA. In the developing mouse brain, Kif20b knockdown or expression of the KIF20B minimal binding domain inhibited neuronal migration, and in vivo migration assays suggested that Shootin1/Kif20b acts in the same genetic pathway. Time-lapse imaging of multipolar cells in the subventricular zone revealed that downregulating levels of either Shootin1 or Kif20b hindered the transition from multipolar to bipolar cells. Collectively, our data demonstrate the importance of the Shootin1/KIF20B interaction to the dynamic process of pyramidal neuronal polarization and migration.
Collapse
|
30
|
Abstract
Rho-GTPases have been found to be crucial for cytoskeleton remodelling and cell polarity, as well as key players in directed cell migration in various tissues and organs, therefore becoming good candidates for involvement in neuronal migration disorders. We recently found that genetic deletion of the small GTPase RhoA in the developing mouse cerebral cortex results in three distinct cortical malformations: a defect in the proliferation of progenitor cells during development that leads to a bigger cerebral cortex in the adult mouse, a change in the morphology of radial glial cells that results in the formation of a subcortical band heterotopia (SBH, also called Double Cortex) and an increase in the speed of migrating newborn neurons. The latter, together with the aberrant radial glial shape, is likely to be the cause of cobblestone lissencephaly, where neurons protrude beyond layer I at the pial surface of the brain.
Collapse
Affiliation(s)
- Silvia Cappello
- Helmholtz Center Munich, German Research Center for Environmental Health; Institute for Stem Cell Research, Neuherberg, Germany.
| |
Collapse
|
31
|
Abstract
Microtubules (MTs) are essential for neuronal morphogenesis in the developing brain. The MT cytoskeleton provides physical support to shape the fine structure of neuronal processes. MT-based motors play important roles in nucleokinesis, process formation and retraction. Regulation of MT stability downstream of extracellular cues is proposed to be critical for axonogenesis. Axons and dendrites exhibit different patterns of MT organization, underlying the divergent functions of these processes. Centrosomal positioning has drawn the attention of researchers because it is a major clue to understanding neuronal MT organization. In this review, we focus on how recent advances in live imaging have revealed the dynamics of MT organization and centrosome positioning during neural development.
Collapse
Affiliation(s)
- Akira Sakakibara
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | | | | | | |
Collapse
|
32
|
Vaškovičová K, Žárský V, Rösel D, Nikolič M, Buccione R, Cvrčková F, Brábek J. Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life. Biol Direct 2013; 8:8. [PMID: 23557484 PMCID: PMC3663805 DOI: 10.1186/1745-6150-8-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/21/2013] [Indexed: 02/08/2023] Open
Abstract
Invasive cell growth and migration is usually considered a specifically metazoan phenomenon. However, common features and mechanisms of cytoskeletal rearrangements, membrane trafficking and signalling processes contribute to cellular invasiveness in organisms as diverse as metazoans and plants – two eukaryotic realms genealogically connected only through the last common eukaryotic ancestor (LECA). By comparing current understanding of cell invasiveness in model cell types of both metazoan and plant origin (invadopodia of transformed metazoan cells, neurites, pollen tubes and root hairs), we document that invasive cell behavior in both lineages depends on similar mechanisms. While some superficially analogous processes may have arisen independently by convergent evolution (e.g. secretion of substrate- or tissue-macerating enzymes by both animal and plant cells), at the heart of cell invasion is an evolutionarily conserved machinery of cellular polarization and oriented cell mobilization, involving the actin cytoskeleton and the secretory pathway. Its central components - small GTPases (in particular RHO, but also ARF and Rab), their specialized effectors, actin and associated proteins, the exocyst complex essential for polarized secretion, or components of the phospholipid- and redox- based signalling circuits (inositol-phospholipid kinases/PIP2, NADPH oxidases) are aparently homologous among plants and metazoans, indicating that they were present already in LECA. Reviewer: This article was reviewed by Arcady Mushegian, Valerian Dolja and Purificacion Lopez-Garcia.
Collapse
Affiliation(s)
- Katarína Vaškovičová
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 43, Prague 2, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
33
|
Reiner O. LIS1 and DCX: Implications for Brain Development and Human Disease in Relation to Microtubules. SCIENTIFICA 2013; 2013:393975. [PMID: 24278775 PMCID: PMC3820303 DOI: 10.1155/2013/393975] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/07/2013] [Indexed: 05/29/2023]
Abstract
Proper lamination of the cerebral cortex requires the orchestrated motility of neurons from their place of birth to their final destination. Improper neuronal migration may result in a wide range of diseases, including brain malformations, such as lissencephaly, mental retardation, schizophrenia, and autism. Ours and other studies have implicated that microtubules and microtubule-associated proteins play an important role in the regulation of neuronal polarization and neuronal migration. Here, we will review normal processes of brain development and neuronal migration, describe neuronal migration diseases, and will focus on the microtubule-associated functions of LIS1 and DCX, which participate in the regulation of neuronal migration and are involved in the human developmental brain disease, lissencephaly.
Collapse
Affiliation(s)
- Orly Reiner
- Department of Molecular Genetics, The Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
34
|
Sakakibara A, Sato T, Ando R, Noguchi N, Masaoka M, Miyata T. Dynamics of centrosome translocation and microtubule organization in neocortical neurons during distinct modes of polarization. ACTA ACUST UNITED AC 2013; 24:1301-10. [PMID: 23307632 DOI: 10.1093/cercor/bhs411] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neuronal migration and process formation require cytoskeletal organization and remodeling. Recent studies suggest that centrosome translocation is involved in initial axon outgrowth, while the role of centrosomal positioning is not clear. Here, we examine relations between centrosomal positioning, axonogenesis, and microtubule (MT) polarization in multipolar and bipolar neocortical neurons. We monitored dynamic movements of centrosomes and MT plus ends in migratory neurons in embryonic mouse cerebral slices. In locomoting bipolar neurons, the centrosome oriented toward the pia-directed leading process. Bipolar neurons displayed dense MT plus end dynamics in leading processes, while trailing processes showed clear bidirectional MTs. In migrating multipolar neurons, new processes emerged irrespective of centrosome localization, followed by centrosome reorientations toward the dominant process. Anterograde movements of MT plus ends occurred in growing processes and retrograde movements were observed after retraction of the distal tip. In multipolar neurons, axon formed by tangential extension of a dominant process and the centrosome oriented toward the growing axon, while in locomoting neurons, an axon formed opposite to the direction of migration and the centrosome localized to the base of the leading process. Our data suggest that MT organization may alter centrosomal localization and that centrosomal positioning does not necessarily direct process formation.
Collapse
Affiliation(s)
- Akira Sakakibara
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | | | | | | | | | | |
Collapse
|
35
|
MARK2/Par-1 guides the directionality of neuroblasts migrating to the olfactory bulb. Mol Cell Neurosci 2012; 49:97-103. [DOI: 10.1016/j.mcn.2011.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/23/2011] [Accepted: 10/14/2011] [Indexed: 11/19/2022] Open
|
36
|
Sapir T, Frotscher M, Levy T, Mandelkow EM, Reiner O. Tau's role in the developing brain: implications for intellectual disability. Hum Mol Genet 2011; 21:1681-92. [PMID: 22194194 DOI: 10.1093/hmg/ddr603] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Microdeletions encompassing the MAPT (Tau) locus resulting in intellectual disability raised the hypothesis that Tau may regulate early functions in the developing brain. Our results indicate that neuronal migration was inhibited in mouse brains following Tau reduction. In addition, the leading edge of radially migrating neurons was aberrant in spite of normal morphology of radial glia. Furthermore, intracellular mitochondrial transport and morphology were affected. In early postnatal brains, a portion of Tau knocked down neurons reached the cortical plate. Nevertheless, they exhibited far less developed dendrites and a striking reduction in connectivity evident by the size of boutons. Our novel results strongly implicate MAPT as a dosage-sensitive gene in this locus involved in intellectual disability. Furthermore, our results are likely to impact our understanding of other diseases involving Tau.
Collapse
Affiliation(s)
- Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | |
Collapse
|
37
|
Watanabe K, Takebayashi H, Bepari AK, Esumi S, Yanagawa Y, Tamamaki N. Dpy19l1, a multi-transmembrane protein, regulates the radial migration of glutamatergic neurons in the developing cerebral cortex. Development 2011; 138:4979-90. [PMID: 22028030 PMCID: PMC3207862 DOI: 10.1242/dev.068155] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During corticogenesis, the regulation of neuronal migration is crucial for the functional organization of the neocortex. Glutamatergic neurons are major excitatory components of the mammalian neocortex. In order to elucidate the specific molecular mechanisms underlying their development, we used single-cell microarray analysis to screen for mouse genes that are highly expressed in developing glutamatergic neurons. We identified dpy-19-like 1 (Dpy19l1), a homolog of C. elegans dpy-19, which encodes a putative multi-transmembrane protein shown to regulate directed migration of Q neuroblasts in C. elegans. At embryonic stages Dpy19l1 is highly expressed in glutamatergic neurons in the mouse cerebral cortex, whereas in the subpallium, where GABAergic neurons are generated, expression was below detectable levels. Downregulation of Dpy19l1 mediated by shRNA resulted in defective radial migration of glutamatergic neurons in vivo, which was restored by the expression of shRNA-insensitive Dpy19l1. Many Dpy19l1-knockdown cells were aberrantly arrested in the intermediate zone and the deep layer and, additionally, some extended single long processes towards the pial surface. Furthermore, we observed defective radial migration of bipolar cells in Dpy19l1-knockdown brains. Despite these migration defects, these cells correctly expressed Cux1, which is a marker for upper layer neurons, suggesting that Dpy19l1 knockdown results in migration defects but does not affect cell type specification. These results indicate that Dpy19l1 is required for the proper radial migration of glutamatergic neurons, and suggest an evolutionarily conserved role for the Dpy19 family in neuronal migration.
Collapse
Affiliation(s)
- Keisuke Watanabe
- Department of Morphological Neural Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Nakamuta S, Funahashi Y, Namba T, Arimura N, Picciotto MR, Tokumitsu H, Soderling TR, Sakakibara A, Miyata T, Kamiguchi H, Kaibuchi K. Local Application of Neurotrophins Specifies Axons Through Inositol 1,4,5-Trisphosphate, Calcium, and Ca2+/Calmodulin-Dependent Protein Kinases. Sci Signal 2011; 4:ra76. [DOI: 10.1126/scisignal.2002011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
39
|
Abstract
A hallmark of neurons is their ability to polarize with dendrite and axon specification to allow the proper flow of information through the nervous system. Over the past decade, extensive research has been performed in an attempt to understand the molecular and cellular machinery mediating this neuronal polarization process. It has become evident that many of the critical regulators involved in establishing neuronal polarity are evolutionarily conserved proteins that had previously been implicated in controlling the polarization of other cell types. At the forefront of this research are the partition defective (Par) proteins. In this review,we will provide a commentary on the progress of work regarding the central importance of Parproteins in the establishment of neuronal polarity.
Collapse
Affiliation(s)
- Ryan Insolera
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | |
Collapse
|
40
|
CXCR4 and CXCR7 have distinct functions in regulating interneuron migration. Neuron 2011; 69:61-76. [PMID: 21220099 DOI: 10.1016/j.neuron.2010.12.005] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2010] [Indexed: 11/24/2022]
Abstract
CXCL12/CXCR4 signaling is critical for cortical interneuron migration and their final laminar distribution. No information is yet available on CXCR7, a newly defined CXCL12 receptor. Here we demonstrated that CXCR7 regulated interneuron migration autonomously, as well as nonautonomously through its expression in immature projection neurons. Migrating cortical interneurons coexpressed Cxcr4 and Cxcr7, and Cxcr7(-/-) and Cxcr4(-/-) mutants had similar defects in interneuron positioning. Ectopic CXCL12 expression and pharmacological blockade of CXCR4 in Cxcr7(-/-) mutants showed that both receptors were essential for responding to CXCL12 during interneuron migration. Furthermore, live imaging revealed that Cxcr4(-/-) and Cxcr7(-/-) mutants had opposite defects in interneuron motility and leading process morphology. In vivo inhibition of Gα(i/o) signaling in migrating interneurons phenocopied the interneuron lamination defects of Cxcr4(-/-) mutants. On the other hand, CXCL12 stimulation of CXCR7, but not CXCR4, promoted MAP kinase signaling. Thus, we suggest that CXCR4 and CXCR7 have distinct roles and signal transduction in regulating interneuron movement and laminar positioning.
Collapse
|
41
|
Saito T, Hanai S, Takashima S, Nakagawa E, Okazaki S, Inoue T, Miyata R, Hoshino K, Akashi T, Sasaki M, Goto YI, Hayashi M, Itoh M. Neocortical layer formation of human developing brains and lissencephalies: consideration of layer-specific marker expression. ACTA ACUST UNITED AC 2010; 21:588-96. [PMID: 20624841 DOI: 10.1093/cercor/bhq125] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To investigate layer-specific molecule expression in human developing neocortices, we performed immunohistochemistry of the layer-specific markers (TBR1, FOXP1, SATB2, OTX1, CUTL1, and CTIP2), using frontal neocortices of the dorsolateral precentral gyri of 16 normal controls, aged 19 gestational weeks to 1 year old, lissencephalies of 3 Miller-Dieker syndrome (MDS) cases, 2 X-linked lissencephaly with abnormal genitalia (XLAG) cases, and 4 Fukuyama-type congenital muscular dystrophy (FCMD) cases. In the fetal period, we observed SATB2+ cells in layers II-IV, CUTL1+ cells in layers II-V, FOXP1+ cells in layer V, OTX1+ cells in layers II or V, and CTIP2+ and TBR1+ cells in layers V and VI. SATB2+ and CUTL1+ cells appeared until 3 months of age, but the other markers disappeared after birth. Neocortices of MDS and XLAG infants revealed SATB2+, CUTL1+, FOXP1+, and TBR1+ cells diffusely located in the upper layers. In fetal FCMD neocortex, neurons labeled with the layer-specific markers located over the glia limitans. The present study provided new knowledge indicating that the expression pattern of these markers in the developing human neocortex was similar to those in mice. Various lissencephalies revealed abnormal layer formation by random migration.
Collapse
Affiliation(s)
- Takashi Saito
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Kodaira, 187-8502, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Distinct alpha- and beta-tubulin isotypes are required for the positioning, differentiation and survival of neurons: new support for the 'multi-tubulin' hypothesis. Biosci Rep 2010; 30:319-30. [PMID: 20406197 DOI: 10.1042/bsr20100025] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The many functions of the microtubule cytoskeleton are essential for shaping the development and maintaining the operation of the nervous system. With the recent discovery of congenital neurological disorders that result from mutations in genes that encode different alpha- and beta-tubulin isotypes (TUBA1A, TUBB2B, TUBA8 and TUBB3), scientists have a novel paradigm to assess how select perturbations in microtubule function affect a range of cellular processes in humans. Moreover, important phenotypic distinctions found among the syndromes suggest that different tubulin isotypes can be utilized for distinct cellular functions during nervous system development. In the present review, we discuss: (i) the spectrum of congenital nervous system diseases that result from mutations in tubulin and MAPs (microtubule-associated proteins); (ii) the known or putative roles of these proteins during nervous system development; (iii) how the findings collectively support the 'multi-tubulin' hypothesis, which postulates that different tubulin isotypes may be required for specialized microtubule functions.
Collapse
|
43
|
Molecular layers underlying cytoskeletal remodelling during cortical development. Trends Neurosci 2010; 33:38-47. [DOI: 10.1016/j.tins.2009.09.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 09/16/2009] [Accepted: 09/28/2009] [Indexed: 11/24/2022]
|