1
|
Fantini J, Azzaz F, Di Scala C, Aulas A, Chahinian H, Yahi N. Conformationally adaptive therapeutic peptides for diseases caused by intrinsically disordered proteins (IDPs). New paradigm for drug discovery: Target the target, not the arrow. Pharmacol Ther 2025:108797. [PMID: 39828029 DOI: 10.1016/j.pharmthera.2025.108797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/28/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
The traditional model of protein structure determined by the amino acid sequence is today seriously challenged by the fact that approximately half of the human proteome is made up of proteins that do not have a stable 3D structure, either partially or in totality. These proteins, called intrinsically disordered proteins (IDPs), are involved in numerous physiological functions and are associated with severe pathologies, e.g. Alzheimer, Parkinson, Creutzfeldt-Jakob, amyotrophic lateral sclerosis (ALS), and type 2 diabetes. Targeting these proteins is challenging for two reasons: i) we need to preserve their physiological functions, and ii) drug design by molecular docking is not possible due to the lack of reliable starting conditions. Faced with this challenge, the solutions proposed by artificial intelligence (AI) such as AlphaFold are clearly unsuitable. Instead, we suggest an innovative approach consisting of mimicking, in short synthetic peptides, the conformational flexibility of IDPs. These peptides, which we call adaptive peptides, are derived from the domains of IDPs that become structured after interacting with a ligand. Adaptive peptides are designed with the aim of selectively antagonizing the harmful effects of IDPs, without targeting them directly but through selected ligands, without affecting their physiological properties. This"target the target, not the arrow" strategy is promised to open a new route to drug discovery for currently undruggable proteins.
Collapse
Affiliation(s)
- Jacques Fantini
- Aix-Marseille University, INSERM UA 16, Faculty of Medicine, 13015 Marseille, France.
| | - Fodil Azzaz
- Aix-Marseille University, INSERM UA 16, Faculty of Medicine, 13015 Marseille, France
| | - Coralie Di Scala
- Neuroscience Center-HiLIFE, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Anaïs Aulas
- Neuroscience Center-HiLIFE, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Henri Chahinian
- Aix-Marseille University, INSERM UA 16, Faculty of Medicine, 13015 Marseille, France
| | - Nouara Yahi
- Aix-Marseille University, INSERM UA 16, Faculty of Medicine, 13015 Marseille, France
| |
Collapse
|
2
|
Liu Z, Ye Q, Jiang Y. Transcriptomic analysis: the protection of over-expression thioredoxin reductase 1 in Parkinson's disease. Chin Neurosurg J 2023; 9:9. [PMID: 37013627 PMCID: PMC10069118 DOI: 10.1186/s41016-023-00319-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/20/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease. The pathologic characteristic feature is the loss of dopaminergic neurons in the substantia nigra (SN). However, the biochemical mechanisms are unclear. A large number of studies have shown that oxidative damage is the primary cause of PD. Hence, antioxidants could become a suitable option to treat PD. The thioredoxin (Trx) system represents a useful, potentially disease-relevant oxidation-reduction system. Thioredoxin reductase 1 (TR1) is a significant component of the Trx system. METHODS The overexpression lentivirus (LV) or LV-TR1 in the TR1-A53T model of PD by the stereotactic brain, and successful overexpression of LV or LV-TR1 in the MPP+-induced cellular model by LV or LV-TR1 transfection. RESULTS We confirmed that interleukin-7 mRNA levels increased in MPP+ compared to that in the control and MPP+-TR1 groups using quantitative polymerase chain reaction. The γ-H2AX level was increased in the Tg-A53T group compared to that in the TR1-A53T group by western blotting. The expression of Na+-K+-ATP was decreased in the MPP+ group compared to that in the control and MPP+-TR1 groups by high content screening. Tg-A53T(the C57BL/6 mice transferred with mutant human a-syn); TR1-A53T(A53T mice which were injected TR1-LV 2 µl in SNc on two sides with minipump).The mice were fed for 10 months. control (the N2a cells cultivated with DMEM); MPP+(the N2a cells dealt with MPP+(1 mM) 48 h), MPP+-LV (the N2a cells over-expressed LV for 24 h then dealt with MPP+(1 mM) 48 h). MPP+-TR1(the N2a cell over-expressed TR1-LV for 24 h then dealt with MPP+(1 mM) 48 h). From the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, we confirmed that the overexpression of TR1 in SN pars compacta cells decreased oxidative stress, apoptosis, DNA damage, and inflammatory response and increased NADPH, Na+-K+-ATP, and immune response in this PD model. CONCLUSIONS Our study shows that overexpressed TR1 can be developed as a neuroprotective agent for PD. Therefore, our findings demonstrate a new targeted protein for the treatment of PD.
Collapse
Affiliation(s)
- Zihua Liu
- Department of Blood Transfusion Service, the Second Affiliated Hospital of Lanzhou University, Lanzhou, 730030, Gansu Province, China.
| | - Qiang Ye
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ying Jiang
- Intensive Care Center of Gynecology and Obstetrics, Gansu Provincial Maternity and Childcare Hospital, Lanzhou, 730050, Gansu, China
| |
Collapse
|
3
|
Reducing neuroinflammation via therapeutic compounds and lifestyle to prevent or delay progression of Parkinson's disease. Ageing Res Rev 2022; 78:101618. [PMID: 35395416 DOI: 10.1016/j.arr.2022.101618] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/08/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is the second most common age-associated neurodegenerative disorder and is characterised by progressive loss of dopamine neurons in the substantia nigra. Peripheral immune cell infiltration and activation of microglia and astrocytes are observed in PD, a process called neuroinflammation. Neuroinflammation is a fundamental response to protect the brain but, when chronic, it triggers neuronal damage. In the last decade, central and peripheral inflammation were suggested to occur at the prodromal stage of PD, sustained throughout disease progression, and may play a significant role in the pathology. Understanding the pathological mechanisms of PD has been a high priority in research, primarily to find effective treatments once symptoms are present. Evidence indicates that early life exposure to neuroinflammation as a consequence of life events, environmental or behaviour factors such as exposure to infections, pollution or a high fat diet increase the risk of developing PD. Many studies show healthy habits and products that decrease neuroinflammation also reduce the risk of PD. Here, we aim to stimulate discussion about the role of neuroinflammation in PD onset and progression. We highlight that reducing neuroinflammation throughout the lifespan is critical for preventing idiopathic PD, and present epidemiological studies that detail risk and protective factors. It is possible that introducing lifestyle changes that reduce neuroinflammation at the time of PD diagnosis may slow symptom progression. Finally, we discuss compounds and therapeutics to treat the neuroinflammation associated with PD.
Collapse
|
4
|
Abd Rashed A, Abd Rahman AZ, Rathi DNG. Essential Oils as a Potential Neuroprotective Remedy for Age-Related Neurodegenerative Diseases: A Review. Molecules 2021; 26:1107. [PMID: 33669787 PMCID: PMC7922935 DOI: 10.3390/molecules26041107] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the improvements in life expectancy, neurodegenerative conditions have arguably become the most dreaded maladies of older people. The neuroprotective and anti-ageing potentials of essential oils (EOs) are widely evaluated around the globe. The objective of this review is to analyse the effectiveness of EOs as neuroprotective remedies among the four common age-related neurodegenerative diseases. The literature was extracted from three databases (PubMed, Web of Science and Google Scholar) between the years of 2010 to 2020 using the medical subject heading (MeSH) terms "essential oil", crossed with "Alzheimer's disease (AD)", "Huntington's disease (HD)", "Parkinson's disease (PD)" or "amyotrophic lateral sclerosis (ALS)". Eighty three percent (83%) of the studies were focused on AD, while another 12% focused on PD. No classifiable study was recorded on HD or ALS. EO from Salvia officinalis has been recorded as one of the most effective acetylcholinesterase and butyrylcholinesterase inhibitors. However, only Cinnamomum sp. has been assessed for its effectiveness in both AD and PD. Our review provided useful evidence on EOs as potential neuroprotective remedies for age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Aswir Abd Rashed
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia;
| | - Ahmad Zuhairi Abd Rahman
- Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia;
| | - Devi Nair Gunasegavan Rathi
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia;
| |
Collapse
|
5
|
Hor SL, Teoh SL, Lim WL. Plant Polyphenols as Neuroprotective Agents in Parkinson's Disease Targeting Oxidative Stress. Curr Drug Targets 2021; 21:458-476. [PMID: 31625473 DOI: 10.2174/1389450120666191017120505] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is the second most prevalent progressive neurodegenerative disorder characterized by the degeneration of dopaminergic neurons in the human midbrain. Various ongoing research studies are competing to understand the pathology of PD and elucidate the mechanisms underlying neurodegeneration. Current pharmacological treatments primarily focused on improving dopamine metabolism in PD patients, despite the side effects of long-term usage. In recent years, it is recognized that oxidative stress-mediated pathways lead to neurodegeneration in the brain, which is associated with the pathophysiology of PD. The importance of oxidative stress is often less emphasized when developing potential therapeutic approaches. Natural plant antioxidants have been shown to mediate the oxidative stress-induced effects in PD, which has gained considerable attention in both in vitro and in vivo studies. Yet, clinical trials on natural polyphenol compounds are limited, restricting the potential use of these compounds as an alternative treatment for PD. Therefore, this review provides an understanding of the oxidative stress-induced effects in PD by elucidating the underlying events contributing to oxidative stress and explore the potential use of polyphenols in improving the oxidative status in PD. Preclinical findings have supported the potential of polyphenols in providing neuroprotection against oxidative stress-induced toxicity in PD. However, limiting factors, such as safety and bioavailability of polyphenols, warrant further investigations so as to make them the potential target for clinical applications in the treatment and management of PD.
Collapse
Affiliation(s)
- Suet Lee Hor
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Selangor, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, 56000 Kuala Lumpur, Malaysia
| | - Wei Ling Lim
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Selangor, Malaysia
| |
Collapse
|
6
|
Liu Z, Ye Q, Wang F, Guo Y, Cui R, Wang J, Wang D. Overexpression of thioredoxin reductase 1 can reduce DNA damage, mitochondrial autophagy and endoplasmic reticulum stress in Parkinson's disease. Exp Brain Res 2020; 239:475-490. [PMID: 33230666 DOI: 10.1007/s00221-020-05979-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). Several factors, including neuroinflammation, neuronal excitotoxicity, genetic mutations and incorrect protein folding are involved in PD pathophysiology. However, the precise mechanism that contributes to the decreased number of dopaminergic neurons is unknown. A growing body of research suggests that oxidative stress is a major factor in PD. Therefore, antioxidant therapy is an important approach for treating PD. The thioredoxin system is an important antioxidant system, and thioredoxin reductase 1 (TR1) is a major member of the thioredoxin system. The present study demonstrates that oxidative stress is increased and that the expression of TR1 is decreased in the SNc of A53T mice; TR1 has emerged as an important antioxidant agent in dopaminergic neurons. Therefore, we over-expressed TR1 in the MPP+-induced cellular model and in the A53T transgenic mouse model of PD. We confirmed that the overexpression of TR1 in neuronal cells decreased DNA damage and malondialdehyde (MDA) and ROS generation, increased T-SOD and GSH production, and decreased the ER stress, and autophagy in the PD model. In summary, our findings demonstrate that the overexpression of TR1 could be effective as a novel neuroprotective strategy for PD. This research suggests a novel direction in the treatment of PD.
Collapse
Affiliation(s)
- Zihua Liu
- Department of Zoology and Biomedical Science, School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, Gansu, China
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Blood Transfusion Service, The Second Affiliated Hospital of Lanzhou University, Lanzhou, 730030, Gansu Province, China
| | - Qiang Ye
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Fang Wang
- Gynecology With Integrated Traditional Chinese and Western Medicine of Gansu Provincial Maternity and Child Care Hospital, Lanzhou, 730050, Gansu, China
| | - Yanan Guo
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Rong Cui
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jianlin Wang
- Department of Zoology and Biomedical Science, School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Degui Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
7
|
Liu Z, Ye Q, Wang F, Guo Y, Cui R, Wang J, Wang D. Protective effect of thioredoxin reductase 1 in Parkinson's disease. Neurosci Lett 2020; 741:135457. [PMID: 33171211 DOI: 10.1016/j.neulet.2020.135457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 11/18/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). Many factors can explain the mechanism. However, the precise mechanism that contributes to the decreased number of dopaminergic neurons is unknown. Our study shows that oxidative stress is increased in models of PD compared with WT mice; Thioredoxin reductase 1(TR1) has emerged as an important antioxidant agent in dopaminergic neurons. In summary, our findings demonstrate that the overexpression of TR1 could be developed into a novel neuroprotective strategy for PD and that the reduction of the expression of GSK-3β and NF-κB could also be promising therapeutic strategies for PD. This research suggests a new direction in the treatment of PD.
Collapse
Affiliation(s)
- Zihua Liu
- Department of Zoology and Biomedical Science, School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Qiang Ye
- Department of Anatomy and Histology, Lanzhou University, School of Basic Medical Sciences, Lanzhou, China
| | - Fang Wang
- Gynecology with Integrated Traditional Chinese and Western Medicine of gansu Provincial Maternity and Child Care Hospital, Lanzhou, 730050, Gansu, China
| | - Yanan Guo
- Department of Anatomy and Histology, Lanzhou University, School of Basic Medical Sciences, Lanzhou, China
| | - Rong Cui
- Department of Anatomy and Histology, Lanzhou University, School of Basic Medical Sciences, Lanzhou, China
| | - Jianlin Wang
- Department of Zoology and Biomedical Science, School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Degui Wang
- Department of Anatomy and Histology, Lanzhou University, School of Basic Medical Sciences, Lanzhou, China.
| |
Collapse
|
8
|
Feng ST, Wang ZZ, Yuan YH, Sun HM, Chen NH, Zhang Y. Mangiferin: A multipotent natural product preventing neurodegeneration in Alzheimer's and Parkinson's disease models. Pharmacol Res 2019; 146:104336. [PMID: 31271846 DOI: 10.1016/j.phrs.2019.104336] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are recognized as the universal neurodegenerative diseases, with the involvement of misfolded proteins pathology, leading to oxidative stress, glial cells activation, neuroinflammation, mitochondrial dysfunction, and cellular apoptosis. Several discoveries indicate that accumulation of pathogenic proteins, i.e. amyloid β (Aβ), the microtubule-binding protein tau, and α-synuclein, are parallel with oxidative stress, neuroinflammation, and mitochondrial dysfunction. Whether the causative factors are misfolded proteins or these pathophysiological changes, leading to neurodegeneration still remain ambiguous. Importantly, directing pharmacological researches towards the prevention of AD and PD seem a promising approach to detect these complicating mechanisms, and provide new insight into therapy for AD and PD patients. Mangiferin (MGF, 2-C-β-D-glucopyranosyl-1, 3, 6, 7-tetrahydroxyxanthone), well-known as a natural product, is detached from multiple plants, including Mangifera indica L. With the structure of C-glycosyl and phenolic moiety, MGF possesses multipotent properties starting from anti-oxidant effects, to the alleviation of mitochondrial dysfunction, neuroinflammation, and cellular apoptosis. In particular, MGF can cross the blood-brain barrier to exert neuronal protection. Different researches implicate that MGF is able to protect the central nervous system from oxidative stress, mitochondrial dysfunction, neuroinflammation, and apoptosis under in vitro and in vivo models. Additional facts support that MGF plays a role in improving the declined memory and cognition of rat models. Taken together, the neuroprotective capacity of MGF may stand out as an agent candidate for AD and PD therapy.
Collapse
Affiliation(s)
- Si-Tong Feng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hong-Mei Sun
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
9
|
Nikolova G, Karamalakova Y, Gadjeva V. Reducing oxidative toxicity of L-dopa in combination with two different antioxidants: an essential oil isolated from Rosa Damascena Mill., and vitamin C. Toxicol Rep 2019; 6:267-271. [PMID: 30984563 PMCID: PMC6444129 DOI: 10.1016/j.toxrep.2019.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 03/14/2019] [Accepted: 03/21/2019] [Indexed: 02/08/2023] Open
Abstract
To avoid L-dopa side effects it’s administration is delayed. Natural antioxidants have wide range of medicinal properties. The natural antioxidants might inhibit oxidation and toxin formation. The L-dopa use with antioxidants, may be a necessary approach in modern PD therapy.
Parkinson disease (PD) is a multifactorial disease that takes a leading place among contemporary frequent diseases of the central nervous system (CNS) with not well-established mechanism. One of the most popular and effective therapy for patients with PD is Levodopa (L-dopa), but clinical effect of the drug diminished by motor complications resulting from prolonged treatment. Due to the L-dopa neurotoxic effect in the disease treatment, the L-dopa administration is delayed as long as possible in order to avoid side effects. In addition, combining L-dopa therapy with antioxidants, may decrease side-effects and provide symptomatic relief. The aim of the current research was to explore the possibility to reduce the oxidative stress (OS) induced by the L-dopa after its combining with two different antioxidants an essential oil isolated from Rosa damascena Mill., and vitamin C through experimental model of healthy mice. For this purpose, some oxidative stress indicators were evaluated - the lipid and protein oxidation end products – such as lipid peroxidation products measured as malondialdehyde (MDA) levels, protein carbonyl content (PCC), and advanced glycation end products (AGEs) in blood plasma of the experimental mice. For this purpose, was studied blood isolated from healthy mice after i.p. treatment with L-dopa (100 mg/kg). The groups with combining therapy were pre-treated first with Ascorbic acid (400 mg/kg), Rose oil (400 mg/kg). Statistically significant increased MDA levels, PCC and AGEs were found in the blood L-dopa treated mice compared to the controls, while the same parameters were significantly decreased in group pre-treated with antioxidants compared to the same controls. As a conclusion, the studied antioxidants can protect organisms from induced L-dopa oxidative toxicity and may play a key role in end products protection.
Collapse
Affiliation(s)
- Galina Nikolova
- Department of chemistry and biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Yanka Karamalakova
- Department of chemistry and biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Veselina Gadjeva
- Department of chemistry and biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| |
Collapse
|
10
|
In vitro neurotoxicity of salsolinol is attenuated by the presynaptic protein α-synuclein. Biochim Biophys Acta Gen Subj 2018; 1862:2835-2845. [DOI: 10.1016/j.bbagen.2018.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 01/08/2023]
|
11
|
Anselmi L, Bove C, Coleman FH, Le K, Subramanian MP, Venkiteswaran K, Subramanian T, Travagli RA. Ingestion of subthreshold doses of environmental toxins induces ascending Parkinsonism in the rat. NPJ Parkinsons Dis 2018; 4:30. [PMID: 30302391 PMCID: PMC6160447 DOI: 10.1038/s41531-018-0066-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/20/2018] [Accepted: 08/28/2018] [Indexed: 01/08/2023] Open
Abstract
Increasing evidence suggests that environmental neurotoxicants or misfolded α-synuclein generated by such neurotoxicants are transported from the gastrointestinal tract to the central nervous system via the vagus nerve, triggering degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and causing Parkinson's disease (PD). We tested the hypothesis that gastric co-administration of subthreshold doses of lectins and paraquat can recreate the pathology and behavioral manifestations of PD in rats. A solution containing paraquat + lectin was administered daily for 7 days via gastric gavage, followed by testing for Parkinsonian behavior and gastric dysmotility. At the end of the experiment, brainstem and midbrain tissues were analyzed for the presence of misfolded α-synuclein and neuronal loss in the SNpc and in the dorsal motor nucleus of the vagus (DMV). Misfolded α-synuclein was found in DMV and SNpc neurons. A significant decrease in tyrosine hydroxylase positive dopaminergic neurons was noted in the SNpc, conversely there was no apparent loss of cholinergic neurons of the DMV. Nigrovagally-evoked gastric motility was impaired in treated rats prior to the onset of parkinsonism, the motor deficits of which were improved by l-dopa treatment. Vagotomy prevented the development of parkinsonian symptoms and constrained the appearance of misfolded α-synuclein to myenteric neurons. These data demonstrate that co-administration of subthreshold doses of paraquat and lectin induces progressive, l-dopa-responsive parkinsonism that is preceded by gastric dysmotility. This novel preclinical model of environmentally triggered PD provides functional support for Braak's staging hypothesis of idiopathic PD.
Collapse
Affiliation(s)
- L. Anselmi
- Department of Neural and Behavioral Sciences, Penn State—College of Medicine, Hershey, PA USA
| | - C. Bove
- Department of Neural and Behavioral Sciences, Penn State—College of Medicine, Hershey, PA USA
| | - F. H. Coleman
- Department of Neural and Behavioral Sciences, Penn State—College of Medicine, Hershey, PA USA
| | - K. Le
- Department of Neurology, Penn State—College of Medicine, Hershey, PA USA
| | - M. P. Subramanian
- Department of Neural and Behavioral Sciences, Penn State—College of Medicine, Hershey, PA USA
| | - K. Venkiteswaran
- Department of Neural and Behavioral Sciences, Penn State—College of Medicine, Hershey, PA USA
- Department of Neurology, Penn State—College of Medicine, Hershey, PA USA
| | - T. Subramanian
- Department of Neural and Behavioral Sciences, Penn State—College of Medicine, Hershey, PA USA
- Department of Neurology, Penn State—College of Medicine, Hershey, PA USA
| | - R. A. Travagli
- Department of Neural and Behavioral Sciences, Penn State—College of Medicine, Hershey, PA USA
| |
Collapse
|
12
|
Cellular and Molecular Aspects of the β-N-Methylamino-l-alanine (BMAA) Mode of Action within the Neurodegenerative Pathway: Facts and Controversy. Toxins (Basel) 2017; 10:toxins10010006. [PMID: 29271898 PMCID: PMC5793093 DOI: 10.3390/toxins10010006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/12/2022] Open
Abstract
The implication of the cyanotoxin β-N-methylamino-l-alanine (BMAA) in long-lasting neurodegenerative disorders is still a matter of controversy. It has been alleged that chronic ingestion of BMAA through the food chain could be a causative agent of amyotrophic lateral sclerosis (ALS) and several related pathologies including Parkinson syndrome. Both in vitro and in vivo studies of the BMAA mode of action have focused on different molecular targets, demonstrating its toxicity to neuronal cells, especially motoneurons, and linking it to human neurodegenerative diseases. Historically, the hypothesis of BMAA-induced excitotoxicity following the stimulation of glutamate receptors has been established. However, in this paradigm, most studies have shown acute, rather than chronic effects of BMAA. More recently, the interaction of this toxin with neuromelanin, a pigment present in the nervous system, has opened a new research perspective. The issues raised by this toxin are related to its kinetics of action, and its possible incorporation into cellular proteins. It appears that BMAA neurotoxic activity involves different targets through several mechanisms known to favour the development of neurodegenerative processes.
Collapse
|
13
|
DJ-1, a Parkinson's disease related protein, aggregates under denaturing conditions and co-aggregates with α-synuclein through hydrophobic interaction. Biochim Biophys Acta Gen Subj 2017; 1861:1759-1769. [DOI: 10.1016/j.bbagen.2017.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 12/29/2022]
|
14
|
Antioxidative and neuroprotective activities of peanut sprout extracts against oxidative stress in SK-N-SH cells. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2016.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
15
|
Essential Oils May Lead α-Synuclein towards Toxic Fibrils Formation. PARKINSONS DISEASE 2016; 2016:6219249. [PMID: 27313947 PMCID: PMC4894988 DOI: 10.1155/2016/6219249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/10/2016] [Accepted: 03/27/2016] [Indexed: 11/17/2022]
Abstract
α-Synuclein (α-Syn) fibrillation links with Parkinson's disease (PD) and several related syndromes. It is believed that exposure to the factors which promote fibrillation may induce and progress such neurodegenerative diseases (NDs). Herein, the effects of some wildly used essential oils including Myrtus communis (M. communis) on α-Syn fibrillation were examined. M. communis particularly increased α-Syn fibrillation in a concentration dependent manner. Given that applications of M. communis are very extensive in Asian societies, especially Zoroastrians, this study was extended towards its role on α-Syn fibrillation/cytotoxicity. By using a unilamellar vesicle, it was shown that the aggregated species with tendency to perturb membrane were increased in the presence of M. communis. In this regard, the cytotoxicity of α-Syn on SH-SH5Y cells was also increased significantly. Inappropriately, the effects of fibrillation inhibitors, baicalein and cuminaldehyde, were modulated in the presence of M. communis. However, major components of M. communis did not induce fibrillation and also the effect of M. communis was limited on other fibrinogenic proteins. Assuming that essential oils have the ability to pass through the blood brain barrier (BBB) along with the popular attention on aromatherapy for the incurable ND, these findings suggest an implementation of fibrillation tests for essential oils.
Collapse
|
16
|
Ilie IM, den Otter WK, Briels WJ. A coarse grained protein model with internal degrees of freedom. Application to α-synuclein aggregation. J Chem Phys 2016; 144:085103. [DOI: 10.1063/1.4942115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Ioana M. Ilie
- Computational Chemical Physics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Wouter K. den Otter
- Computational Chemical Physics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Multi Scale Mechanics, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Wim J. Briels
- Computational Chemical Physics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Forschungszentrum Jülich, ICS, D-52425 Jülich, Germany
| |
Collapse
|
17
|
Calderón-Garcidueñas L, Leray E, Heydarpour P, Torres-Jardón R, Reis J. Air pollution, a rising environmental risk factor for cognition, neuroinflammation and neurodegeneration: The clinical impact on children and beyond. Rev Neurol (Paris) 2015; 172:69-80. [PMID: 26718591 DOI: 10.1016/j.neurol.2015.10.008] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 10/27/2015] [Accepted: 10/27/2015] [Indexed: 12/12/2022]
Abstract
Air pollution (indoors and outdoors) is a major issue in public health as epidemiological studies have highlighted its numerous detrimental health consequences (notably, respiratory and cardiovascular pathological conditions). Over the past 15 years, air pollution has also been considered a potent environmental risk factor for neurological diseases and neuropathology. This review examines the impact of air pollution on children's brain development and the clinical, cognitive, brain structural and metabolic consequences. Long-term potential consequences for adults' brains and the effects on multiple sclerosis (MS) are also discussed. One challenge is to assess the effects of lifetime exposures to outdoor and indoor environmental pollutants, including occupational exposures: how much, for how long and what type. Diffuse neuroinflammation, damage to the neurovascular unit, and the production of autoantibodies to neural and tight-junction proteins are worrisome findings in children chronically exposed to concentrations above the current standards for ozone and fine particulate matter (PM2.5), and may constitute significant risk factors for the development of Alzheimer's disease later in life. Finally, data supporting the role of air pollution as a risk factor for MS are reviewed, focusing on the effects of PM10 and nitrogen oxides.
Collapse
Affiliation(s)
- L Calderón-Garcidueñas
- The University of Montana, Missoula, MT, 59812, USA; Universidad del Valle de México, Mexico City 04850, Mexico
| | - E Leray
- EHESP Sorbonne Paris Cité, Rennes, France
| | - P Heydarpour
- MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - R Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - J Reis
- Service de Neurologie, Centre Hospitalier Universitaire, Hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg, France.
| |
Collapse
|
18
|
Calderón-Garcidueñas L, Kulesza RJ, Doty RL, D'Angiulli A, Torres-Jardón R. Megacities air pollution problems: Mexico City Metropolitan Area critical issues on the central nervous system pediatric impact. ENVIRONMENTAL RESEARCH 2015; 137:157-69. [PMID: 25543546 DOI: 10.1016/j.envres.2014.12.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 05/02/2023]
Abstract
The chronic health effects associated with sustained exposures to high concentrations of air pollutants are an important issue for millions of megacity residents and millions more living in smaller urban and rural areas. Particulate matter (PM) and ozone (O3) concentrations close or above their respective air quality standards during the last 20 years affect 24 million people living in the Mexico City Metropolitan Area (MCMA). Herein we discuss PM and O3 trends in MCMA and their possible association with the observed central nervous system (CNS) effects in clinically healthy children. We argue that prenatal and postnatal sustained exposures to a natural environmental exposure chamber contribute to detrimental neural responses. The emerging picture for MCMA children shows systemic inflammation, immunodysregulation at both systemic and brain levels, oxidative stress, neuroinflammation, small blood vessel pathology, and an intrathecal inflammatory process, along with the early neuropathological hallmarks for Alzheimer and Parkinson's diseases. Exposed brains are briskly responding to their harmful environment and setting the bases for structural and volumetric changes, cognitive, olfactory, auditory and vestibular deficits and long term neurodegenerative consequences. We need to improve our understanding of the PM pediatric short and long term CNS impact through multidisciplinary research. Public health benefit can be achieved by integrating interventions that reduce fine PM levels and pediatric exposures and establishing preventative screening programs targeting pediatric populations that are most at risk. We fully expect that the health of 24 million residents is important and blocking pediatric air pollution research and hiding critical information that ought to be available to our population, health, education and social workers is not in the best interest of our children.
Collapse
Affiliation(s)
| | - Randy J Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Richard L Doty
- Smell and Taste Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Amedeo D'Angiulli
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
19
|
Protein Misfolding in Lipid-Mimetic Environments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:33-66. [PMID: 26149925 DOI: 10.1007/978-3-319-17344-3_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Among various cellular factors contributing to protein misfolding and subsequent aggregation, membranes occupy a special position due to the two-way relations between the aggregating proteins and cell membranes. On one hand, the unstable, toxic pre-fibrillar aggregates may interact with cell membranes, impairing their functions, altering ion distribution across the membranes, and possibly forming non-specific membrane pores. On the other hand, membranes, too, can modify structures of many proteins and affect the misfolding and aggregation of amyloidogenic proteins. The effects of membranes on protein structure and aggregation can be described in terms of the "membrane field" that takes into account both the negative electrostatic potential of the membrane surface and the local decrease in the dielectric constant. Water-alcohol (or other organic solvent) mixtures at moderately low pH are used as model systems to study the joint action of the local decrease of pH and dielectric constant near the membrane surface on the structure and aggregation of proteins. This chapter describes general mechanisms of structural changes of proteins in such model environments and provides examples of various proteins aggregating in the "membrane field" or in lipid-mimetic environments.
Collapse
|
20
|
Maturana MGV, Pinheiro AS, de Souza TLF, Follmer C. Unveiling the role of the pesticides paraquat and rotenone on α-synuclein fibrillation in vitro. Neurotoxicology 2014; 46:35-43. [PMID: 25447323 DOI: 10.1016/j.neuro.2014.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/05/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022]
Abstract
Epidemiological data have suggested that exposure to environmental toxins might be associated with the etiology of Parkinson's disease (PD). In this context, certain agrochemicals are able to induce Parkinsonism in different animal models via the inhibition of mitochondrial complex I, which leads to an increase in both oxidative stress and the death of nigrostriatal neurons. Additionally, in vitro experiments have indicated that pesticides are capable of accelerating the fibrillation of the presynaptic protein α-synuclein (aS) by binding directly to the protein. However, the molecular details of these interactions are poorly understood. In the present work we demonstrate that paraquat and rotenone, two agrochemicals that lead to a Parkinsonian phenotype in vivo, bind to aS via solvent effects rather than through specific interactions. In fact, these compounds produced no significant effects on aS fibrillation under physiological concentrations of NaCl. NMR data suggest that paraquat interacts with the C-terminal domain of the disordered aS monomer. This interaction was markedly reduced in the presence of NaCl, presumably due to the disruption of electrostatic interactions between the protein and paraquat. Interestingly, the effects produced by short-term incubation of paraquat with aS on the protein conformation resembled those produced by incubating the protein with NaCl alone. Taken together, our data indicate that the effects of these agrochemicals on PD cannot be explained via direct interactions with aS, reinforcing the idea that the role of these compounds in PD is limited to the inhibition of mitochondrial complex I and/or the up-regulation of aS.
Collapse
Affiliation(s)
| | - Anderson Sá Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | | | - Cristian Follmer
- Department of Physical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil.
| |
Collapse
|
21
|
RETRACTED ARTICLE: A variety of pesticides trigger in vitro α-synuclein accumulation, a key event in Parkinson’s disease. Arch Toxicol 2014. [DOI: 10.1007/s00204-014-1388-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Reddy KD, DeForte S, Uversky VN. Digested disorder: Quarterly intrinsic disorder digest (July-August-September, 2013). INTRINSICALLY DISORDERED PROTEINS 2014; 2:e27833. [PMID: 28232877 PMCID: PMC5314876 DOI: 10.4161/idp.27833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 01/13/2014] [Indexed: 12/26/2022]
Abstract
The current literature on intrinsically disordered proteins grows fast. To keep interested readers up to speed with this literature, we continue a "Digested Disorder" project and represent a new issue of reader's digest of the research papers and reviews on intrinsically disordered proteins. The only 2 criteria for inclusion in this digest are the publication date (a paper should be published within the covered time frame) and topic (a paper should be dedicated to any aspect of protein intrinsic disorder). The current digest issue covers papers published during the third quarter of 2013; i.e., during the period of June, July, and September of 2013. Similar to previous issues, the papers are grouped hierarchically by topics they cover, and for each of the included paper a short description is given on its major findings.
Collapse
Affiliation(s)
- Krishna D Reddy
- Department of Molecular Medicine; Morsani College of Medicine; University of South Florida; Tampa, FL USA
| | - Shelly DeForte
- Department of Molecular Medicine; Morsani College of Medicine; University of South Florida; Tampa, FL USA
| | - Vladimir N Uversky
- Department of Molecular Medicine; Morsani College of Medicine; University of South Florida; Tampa, FL USA; USF Health Byrd Alzheimer's Research Institute; Morsani College of Medicine; University of South Florida; Tampa, FL USA; Department of Biological Sciences; Faculty of Science; King Abdulaziz University; Jeddah, Saudi Arabia; Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino, Moscow Region, Russia
| |
Collapse
|
23
|
Silva BA, Einarsdóttir Ó, Fink AL, Uversky VN. Biophysical Characterization of α-Synuclein and Rotenone Interaction. Biomolecules 2013; 3:703-32. [PMID: 24970188 PMCID: PMC4030960 DOI: 10.3390/biom3030703] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 11/29/2022] Open
Abstract
Previous studies revealed that pesticides interact with α-synuclein and accelerate the rate of fibrillation. These results are consistent with the prevailing hypothesis that the direct interaction of α-synuclein with pesticides is one of many suspected factors leading to α-synuclein fibrillation and ultimately to Parkinson's disease. In this study, the biophysical properties and fibrillation kinetics of α-synuclein in the presence of rotenone were investigated and, more specifically, the effects of rotenone on the early-stage misfolded forms of α-synuclein were considered. The thioflavine T (ThT) fluorescence assay studies provide evidence that early-phase misfolded α-synuclein forms are affected by rotenone and that the fibrillation process is accelerated. Further characterization by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) shows that rotenone increases the amount of ordered secondary structure in this intrinsically disordered protein. Morphological characterization by transmission electron microscopy (TEM) and atomic force microscopy (AFM) provide visualization of the differences in the aggregated α-synuclein species developing during the early kinetics of the fibrillation process in the absence and presence of rotenone. We believe that these data provide useful information for a better understanding of the molecular basis of rotenone-induced misfolding and aggregation of α-synuclein.
Collapse
Affiliation(s)
- Blanca A. Silva
- Department of Chemistry and Biochemistry, University of California, 156 High Street, Santa Cruz, CA 95064, USA; E-Mails: (B.A.S.); (Ó.E.)
| | - Ólöf Einarsdóttir
- Department of Chemistry and Biochemistry, University of California, 156 High Street, Santa Cruz, CA 95064, USA; E-Mails: (B.A.S.); (Ó.E.)
| | - Anthony L. Fink
- Department of Chemistry and Biochemistry, University of California, 156 High Street, Santa Cruz, CA 95064, USA; E-Mails: (B.A.S.); (Ó.E.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida; 12901 Bruce B. Downs Blvd., MDC 7, Tampa, FL 33612, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino 142292, Moscow Region, Russia
| |
Collapse
|
24
|
Subramaniam SR, Chesselet MF. Mitochondrial dysfunction and oxidative stress in Parkinson's disease. Prog Neurobiol 2013; 106-107:17-32. [PMID: 23643800 PMCID: PMC3742021 DOI: 10.1016/j.pneurobio.2013.04.004] [Citation(s) in RCA: 563] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/13/2013] [Accepted: 04/22/2013] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is a movement disorder that is characterized by the progressive degeneration of dopaminergic neurons in substantia nigra pars compacta resulting in dopamine deficiency in the striatum. Although majority of the PD cases are sporadic several genetic mutations have also been linked to the disease thus providing new opportunities to study the pathology of the illness. Studies in humans and various animal models of PD reveal that mitochondrial dysfunction might be a defect that occurs early in PD pathogenesis and appears to be a widespread feature in both sporadic and monogenic forms of PD. The general mitochondrial abnormalities linked with the disease include mitochondrial electron transport chain impairment, alterations in mitochondrial morphology and dynamics, mitochondrial DNA mutations and anomaly in calcium homeostasis. Mitochondria are vital organelles with multiple functions and their dysfunction can lead to a decline in energy production, generation of reactive oxygen species and induction of stress-induced apoptosis. In this review, we give an outline of mitochondrial functions that are affected in the pathogenesis of sporadic and familial PD, and hence provide insights that might be valuable for focused future research to exploit possible mitochondrial targets for neuroprotective interventions in PD.
Collapse
Affiliation(s)
- Sudhakar Raja Subramaniam
- Department of Neurology, David Geffen School of Medicine, UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | | |
Collapse
|
25
|
Calderón-Garcidueñas L, Franco-Lira M, Mora-Tiscareño A, Medina-Cortina H, Torres-Jardón R, Kavanaugh M. Early Alzheimer's and Parkinson's disease pathology in urban children: Friend versus Foe responses--it is time to face the evidence. BIOMED RESEARCH INTERNATIONAL 2013; 2013:161687. [PMID: 23509683 PMCID: PMC3581281 DOI: 10.1155/2013/161687] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/01/2013] [Accepted: 01/01/2013] [Indexed: 01/28/2023]
Abstract
Chronic exposure to particulate matter air pollution is known to cause inflammation leading to respiratory- and cardiovascular-related sickness and death. Mexico City Metropolitan Area children exhibit an early brain imbalance in genes involved in oxidative stress, inflammation, and innate and adaptive immune responses. Early dysregulated neuroinflammation, brain microvascular damage, production of potent vasoconstrictors, and perturbations in the integrity of the neurovascular unit likely contribute to progressive neurodegenerative processes. The accumulation of misfolded proteins coincides with the anatomical distribution observed in the early stages of both Alzheimer's and Parkinson's diseases. We contend misfolding of hyperphosphorylated tau (HPπ), alpha-synuclein, and beta-amyloid could represent a compensatory early protective response to the sustained systemic and brain inflammation. However, we favor the view that the chronic systemic and brain dysregulated inflammation and the diffuse vascular damage contribute to the establishment of neurodegenerative processes with childhood clinical manifestations. Friend turns Foe early; therefore, implementation of neuroprotective measures to ameliorate or stop the inflammatory and neurodegenerative processes is warranted in exposed children. Epidemiological, cognitive, structural, and functional neuroimaging and mechanistic studies into the association between air pollution exposures and the development of neuroinflammation and neurodegeneration in children are of pressing importance for public health.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- Center for Structural and Functional Neurosciences, The University of Montana, 32 Campus Drive, Skaggs Building 287, Missoula, MT 59812, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Targeting the Chameleon: a Focused Look at α-Synuclein and Its Roles in Neurodegeneration. Mol Neurobiol 2012; 47:446-59. [DOI: 10.1007/s12035-012-8334-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 08/13/2012] [Indexed: 12/17/2022]
|