1
|
Yang P, Bao S, Xiao S, Feng J, Lu X. QCM sensor provides insight into the role of pivotal ions in cellular regulatory volume decrease. Anal Bioanal Chem 2023; 415:245-254. [PMID: 36399229 DOI: 10.1007/s00216-022-04415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/15/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022]
Abstract
All vertebrate cells generally self-regulate for sustaining homeostasis and cell functions. As a major regulatory mechanism, regulatory volume decrease (RVD) occurs in hypotonicity-induced cell swelling, and then shrinking by the efflux of intracellular osmolytes and water, in which the ions K+, Cl-, and Ca2+ play a key role in the RVD process. We observed that these pivotal ions could result in novel RVD behaviors under repeatedly hypotonic stimulation. However, there is a lack of valid means for assessing the effect of pivotal ions on RVD. In this work, we proposed an effective measurement process based on a quartz crystal microbalance (QCM) combined with cell function of RVD for revealing acute variations in cell volume regulation induced by the pivotal ions. A QCM sensor was implemented by adhering MCF-7 cells to a poly-l-lysine-modified gold chip and cyclic stimulation with hypotonic NaCl medium, in which a frequency shift (Δf) showed the superior feasibility of the technique in exhibiting RVD behaviors. With the increase in the number of cycles, the RVD values decreased progressively under three stimulation cycles with hypotonic NaCl alone. Compared with the first cycle, the RVD level in the second and third cycles declined by 60.7±1.7% and 82.1±1.6% (n=3), respectively; conversely, it recovered in NaCl-KCl solution, but was significantly enhanced by 52.2±0.8% in NaCl-CaCl2 solution. Moreover, the inhibition of chloride channels to block Cl- efflux also decreased the RVD level by 56.2±3.0%. The results indicate that these ions (K+, Cl-, Ca2+) are all able to affect the function of RVD, among which intracellular Cl- depletion reduced RVD during measurement, but which recovered with K+ supplement, and Ca2+ enhanced RVD due to activation of ion channels. Therefore, this work provides a comprehensive assessment of cellular behavior and offers an innovative method for gaining insight into cellular functions and mechanisms. A novel strategy was conducted by integrating a quartz crystal microbalance (QCM) with the function of cell volume regulation for analyzing the role of the pivotal ions ( K+, Cl-, Ca2+) in NaCl media on the behaviors of regulatory cell volume decrease (RVD).
Collapse
Affiliation(s)
- Peihui Yang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Shan Bao
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Suting Xiao
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Jingwei Feng
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Xinxin Lu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| |
Collapse
|
2
|
Chen BY, Huang CC, Lv XF, Zheng HQ, Zhang YJ, Sun L, Wang GL, Ma MM, Guan YY. SGK1 mediates the hypotonic protective effect against H 2O 2-induced apoptosis of rat basilar artery smooth muscle cells by inhibiting the FOXO3a/Bim signaling pathway. Acta Pharmacol Sin 2020; 41:1073-1084. [PMID: 32139897 PMCID: PMC7470837 DOI: 10.1038/s41401-020-0357-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/01/2020] [Indexed: 01/31/2023] Open
Abstract
Serum- and glucocorticoid-inducible kinease-1 (SGK1) is a serine/threonine kinase regulated by hypotonic stimuli, which is involved in regulation of cell cycle and apoptosis. Our previous study shows that activation of volume-regulated Cl- channels (VRCCs) protects rat basilar artery smooth muscle cells (BASMCs) against hydrogen peroxide (H2O2)-induced apoptosis. In the present study, we investigated whether SGK1 was involved in the protective effect of VRCCs in BASMCs. We showed that hypotonic challenge significantly reduced H2O2-induced apoptosis, and increased SGK1 phosphorylation, but did not affect SGK1 protein expression. The protective effect of hypotonic challenge against H2O2-induced apoptosis was mediated through inhibiting mitochondria-dependent apoptotic pathway, evidenced by increased Bcl-2/Bax ratio, stabilizing mitochondrial membrane potential (MMP), decreased cytochrome c release from the mitochondria to the cytoplasm, and inhibition of the activation of caspase-9 and caspase-3. These protective effects of hypotonic challenge against H2O2-induced apoptosis was diminished and enhanced, respectively, by SGK1 knockdown and overexpression. We further revealed that SGK1 activation significantly increased forkhead box O3a (FOXO3a) phosphorylation, and then inhibited the translocation of FOXO3a into nucleus and the subsequent expression of Bcl-2 interacting mediator of cell death (Bim). In conclusion, SGK1 mediates the protective effect of VRCCs against H2O2-induced apoptosis in BASMCs via inhibiting FOXO3a/Bim signaling pathway. Our results provide compelling evidences that SGK1 is a critical link between VRCCs and apoptosis, and shed a new light on the treatment of vascular apoptosis-associated diseases, such as vascular remodeling, angiogenesis, and atherosclerosis.
Collapse
|
3
|
Manouchehri N, Khodagholi F, Dargahi L, Ahmadiani A. Mitochondrial Complex I Is an Essential Player in LPS-Induced Preconditioning in Differentiated PC12 Cells. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:1445-1455. [PMID: 32641953 PMCID: PMC6934967 DOI: 10.22037/ijpr.2019.1100711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Preconditioning (PC) as a protective strategy against noxious insults can decline cell death and apoptosis. It has been approved that mitochondria play a key role in PC mechanism. The critical role of complex I (CI) in oxidative phosphorylation machinery and intracellular ROS production, particularly in the brain, accentuates its possible role in PC-induced neuroprotection. Here, differentiated PC12 cells were preconditioned with ultra-low dose LPS (ULD, 3 μg/mL) prior to exposure to high concentration of LPS (HD, 750 μg/mL). Our results showed that HD LPS treatment reduces cell viability and CI activity, and intensifies expression of cleaved caspase 3 compared to the control group. Intriguingly, PC induction resulted in enhancement of cell viability and CI activity and reduction of caspase3 cleavage compared to HD LPS group. In order to explore the role of CI in PC, we combined the ULD LPS with rotenone, a CI inhibitor. Following rotenone administration, cell viability significantly reduced while caspase3 cleavage increased compared to PC induction group. Taken together, cell survival and reduction of apoptosis followed by PC can be at least partially attributed to the preservation of mitochondrial CI function.
Collapse
Affiliation(s)
- Nasim Manouchehri
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Xu X, Xu J, Zhao C, Hou X, Li M, Wang L, Chen L, Chen Y, Zhu L, Yang H. Antitumor effects of disulfiram/copper complex in the poorly-differentiated nasopharyngeal carcinoma cells via activating ClC-3 chloride channel. Biomed Pharmacother 2019; 120:109529. [PMID: 31606620 DOI: 10.1016/j.biopha.2019.109529] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
The enhancement of the anticancer activity by disulfiram (DSF) chelated with copper (DSF/Cu2+) has been investigated recently, while the underlying molecular mechanisms still need to be fully elucidated. Chloride channel-3 (ClC-3) is over-expressed in a variety of cancers and involves multiple tumor biological events. However, whether the over-expression of ClC-3 in tumor cells affects the sensitivity of anti-tumor drugs remains unclear. Here, we showed that the involvement of ClC-3 chloride channel in the selective cytotoxicity of DSF/Cu2+ in the poorly-differentiated nasopharyngeal carcinoma. The EC50 of DSF alone and DSF/Cu2+ in activating the Cl- channel were 95.36 μM and 0.31 μM in the CNE-2Z cells, respectively. DSF/Cu2+ exhibited a positive correlation between the induction of the Cl- currents and the inhibition of cell proliferation. DSF/Cu2+ increased the ClC-3 protein expression and induced the cell apoptosis. Cl- channel blockers, NPPB and DIDS, and ClC-3 siRNA partially inhibited the cell apoptosis, and depleted the Cl- currents induced by DSF/Cu2+ in CNE-2Z cells. However, these effects could not be observed in the normal nasopharyngeal epithelium NP69-SV40 T cells. In vivo, the transplanted human nasopharyngeal carcinoma tumors size in the DSF/Cu2+ group decreased about 73.2% of those in the solvent control group. The chloride blockers partially inhibited the antitumor action of DSF/Cu2+. These data demonstrated that the selective cytotoxicity of DSF/Cu2+ may relate to its selective activation of ClC-3 Cl- channel pathways in CNE-2Z cells. ClC-3 Cl- channel can be viewed as a new and promising target for the treatment of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Physiology, School of Medicine, Henan University, Kaifeng, 475000, China; Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jingkui Xu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chongyu Zhao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiuying Hou
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Mengjia Li
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Liwei Wang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Lixin Chen
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yehui Chen
- Department of Urology, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Linyan Zhu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Haifeng Yang
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China.
| |
Collapse
|
5
|
Huang LY, Li YJ, Li PP, Li HC, Ma P. Aggravated intestinal apoptosis by ClC-3 deletion is lethal to mice endotoxemia. Cell Biol Int 2018; 42:1445-1453. [PMID: 29972266 DOI: 10.1002/cbin.11025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/01/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Lin-Yan Huang
- School of Medical Technology; Xuzhou Medical University; 209 Tongshan Rd Xuzhou Jiangsu 221004 P.R. China
| | - Yu-Jie Li
- School of Medical Technology; Xuzhou Medical University; 209 Tongshan Rd Xuzhou Jiangsu 221004 P.R. China
| | - Peng-Peng Li
- Department of Medical Laboratory; The Affiliated Hospital of Xuzhou Medical University; No.99 Huaihai West Road Xuzhou Jiangsu 221000 P.R. China
| | - Hong-Chun Li
- School of Medical Technology; Xuzhou Medical University; 209 Tongshan Rd Xuzhou Jiangsu 221004 P.R. China
| | - Ping Ma
- School of Medical Technology; Xuzhou Medical University; 209 Tongshan Rd Xuzhou Jiangsu 221004 P.R. China
- Department of Medical Laboratory; The Affiliated Hospital of Xuzhou Medical University; No.99 Huaihai West Road Xuzhou Jiangsu 221000 P.R. China
| |
Collapse
|
6
|
Yang H, Ma L, Wang Y, Zuo W, Li B, Yang Y, Chen Y, Chen L, Wang L, Zhu L. Activation of ClC-3 chloride channel by 17β-estradiol relies on the estrogen receptor α expression in breast cancer. J Cell Physiol 2017; 233:1071-1081. [PMID: 28419445 DOI: 10.1002/jcp.25963] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/14/2017] [Indexed: 11/11/2022]
Abstract
Although extensively studied, the mechanisms by which estrogen promotes breast cancer growth remain to be fully elucidated. Tamoxifen, an antiestrogen agent to treat ERα+ breast cancer, is also a high-affinity blocker of the chloride channels. In this study, we explored the involvement of the chloride channels in the action of estrogen in breast cancer. We found that 17β-estradiol (17β-E2) concentration-dependently activated the chloride currents in ERα+ breast cancer MCF-7 cells. Extracellular hypertonic challenge and chloride channel blockers, NPPB and DIDS inhibited the 17β-E2-activated chloride currents. Decreased the ClC-3 protein expression caused the depletion of the 17β-E2-activated chloride currents. 17β-E2-activated chloride currents which relied on the ERα expression were demonstrated by the following evidences. Firstly, 17β-E2-activated chloride currents could not be observed in ERα- breast cancer MDA-MB-231 cells. Secondly, ER antagonists, tamoxifen and ICI 182,780, and downregulation of ERα expression inhibited or abolished the 17β-E2-activated chloride currents. Thirdly, ERα expression was induced in MDA-MB-231 cells by ESR1 gene transfection, and then 17β-E2-activated chloride currents could be observed. In MCF-7 cells, ERα and ClC-3 mainly located in nucleus and translocated to cell plasma and membrane with respect to co-localization following treatment of 17β-E2. Downregulation of ERα expression could decrease the expression of ClC-3 protein. Conversely, downregulation of ClC-3 expression did not influence the ERα expression. Taken together, our findings demonstrated that ClC-3 is a potential target of 17β-E2 and is modulated by the ERα in breast cancer cell. Pharmacological modulation of ClC-3 may provide a deep understanding in antiestrogen treatment of breast cancer patients.
Collapse
Affiliation(s)
- Haifeng Yang
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Lianshun Ma
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yawei Wang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Wanhong Zuo
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Bingxue Li
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Yaping Yang
- Analysis and Test Center, Jinan University, Guangzhou, China
| | - Yehui Chen
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lixin Chen
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Liwei Wang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Linyan Zhu
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Emodin suppresses the nasopharyngeal carcinoma cells by targeting the chloride channels. Biomed Pharmacother 2017; 90:615-625. [DOI: 10.1016/j.biopha.2017.03.088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 12/27/2022] Open
|
8
|
Deng Z, Peng S, Zheng Y, Yang X, Zhang H, Tan Q, Liang X, Gao H, Li Y, Huang Y, Zhu L, Jacob TJC, Chen L, Wang L. Estradiol activates chloride channels via estrogen receptor-α in the cell membranes of osteoblasts. Am J Physiol Cell Physiol 2017; 313:C162-C172. [PMID: 28468943 DOI: 10.1152/ajpcell.00014.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 11/22/2022]
Abstract
Estrogen plays important roles in regulation of bone formation. Cl- channels in the ClC family are expressed in osteoblasts and are associated with bone physiology and pathology, but the relationship between Cl- channels and estrogen is not clear. In this study the action of estrogen on Cl- channels was investigated in the MC3T3-E1 osteoblast cell line. Our results show that 17β-estradiol could activate a current that reversed at a potential close to the Cl- equilibrium potential, with a sequence of anion selectivity of I- > Br- > Cl- > gluconate, and was inhibited by the Cl- channel blockers 5-nitro-2-(3-phenylpropylamino)-benzoate and 4,4'-diisothiocyano-2,2'-stilbene disulfonic acid. Knockdown of ClC-3 Cl- channel expression by a specific small interfering RNA to ClC-3 attenuated activation of the 17β-estradiol-induced Cl- current. Extracellular application of membrane-impermeable 17β-estradiol-albumin conjugates activated a similar current. The estrogen-activated Cl- current could be inhibited by the estrogen receptor (ER) antagonist fulvestrant (ICI 182780). The selective ERα agonist, but not ERβ agonist, activated a Cl- current similar to that induced by 17β-estradiol. Silencing ERα expression prevented activation of estrogen-induced currents. Immunofluorescence and coimmunoprecipitation experiments demonstrated that ClC-3 Cl- channels and ERα were colocalized and closely related in cells. Estrogen promoted translocation of ClC-3 and ERα to the cell membrane from the nucleus. In conclusion, our findings show that Cl- channels can be activated by estrogen via ERα on the cell membrane and suggest that the ClC-3 Cl- channel may be one of the targets of estrogen in the regulation of osteoblast activity.
Collapse
Affiliation(s)
- Zhiqin Deng
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecule Immunology and Antibody Engineering, Jinan University, Guangzhou, China.,Department of Pathophysiology, Medical College, Jinan University, Guangzhou, China
| | - Shuang Peng
- Department of Physiology, Medical College, Jinan University, Guangzhou, China.,Department of Pathophysiology, Medical College, Jinan University, Guangzhou, China.,Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Yanfang Zheng
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China.,Department of Pathophysiology, Medical College, Jinan University, Guangzhou, China
| | - Xiaoya Yang
- Department of Physiology, Medical College, Jinan University, Guangzhou, China.,Department of Pathophysiology, Medical College, Jinan University, Guangzhou, China
| | - Haifeng Zhang
- Department of Pathology, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qiuchan Tan
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Xiechou Liang
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Hong Gao
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China
| | - Yuan Li
- Department of Physiology, Medical College, Jinan University, Guangzhou, China.,Department of Pathophysiology, Medical College, Jinan University, Guangzhou, China
| | - Yanqing Huang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou, China; and
| | - Linyan Zhu
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecule Immunology and Antibody Engineering, Jinan University, Guangzhou, China
| | - Tim J C Jacob
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Lixin Chen
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecule Immunology and Antibody Engineering, Jinan University, Guangzhou, China
| | - Liwei Wang
- Department of Physiology, Medical College, Jinan University, Guangzhou, China; .,Guangdong Province Key Laboratory of Molecule Immunology and Antibody Engineering, Jinan University, Guangzhou, China.,International School, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Wu J, Wang F, Su Z, Liu J, Hu S, Li H, Hu P, Wu D. Role of ataxia-telangiectasia mutated in hydrogen peroxide preconditioning against oxidative stress in Neuro-2a cells. Mol Med Rep 2017; 15:4280-4285. [DOI: 10.3892/mmr.2017.6510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/27/2017] [Indexed: 11/05/2022] Open
|
10
|
SO4 = uptake and catalase role in preconditioning after H2O2-induced oxidative stress in human erythrocytes. Pflugers Arch 2016; 469:235-250. [DOI: 10.1007/s00424-016-1927-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/04/2016] [Accepted: 12/06/2016] [Indexed: 10/20/2022]
|
11
|
Greene AS, Hajduk SL. Trypanosome Lytic Factor-1 Initiates Oxidation-stimulated Osmotic Lysis of Trypanosoma brucei brucei. J Biol Chem 2016; 291:3063-75. [PMID: 26645690 PMCID: PMC4742767 DOI: 10.1074/jbc.m115.680371] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/12/2015] [Indexed: 01/18/2023] Open
Abstract
Human innate immunity against the veterinary pathogen Trypanosoma brucei brucei is conferred by trypanosome lytic factors (TLFs), against which human-infective T. brucei gambiense and T. brucei rhodesiense have evolved resistance. TLF-1 is a subclass of high density lipoprotein particles defined by two primate-specific apolipoproteins: the ion channel-forming toxin ApoL1 (apolipoprotein L1) and the hemoglobin (Hb) scavenger Hpr (haptoglobin-related protein). The role of oxidative stress in the TLF-1 lytic mechanism has been controversial. Here we show that oxidative processes are involved in TLF-1 killing of T. brucei brucei. The lipophilic antioxidant N,N'-diphenyl-p-phenylenediamine protected TLF-1-treated T. brucei brucei from lysis. Conversely, lysis of TLF-1-treated T. brucei brucei was increased by the addition of peroxides or thiol-conjugating agents. Previously, the Hpr-Hb complex was postulated to be a source of free radicals during TLF-1 lysis. However, we found that the iron-containing heme of the Hpr-Hb complex was not involved in TLF-1 lysis. Furthermore, neither high concentrations of transferrin nor knock-out of cytosolic lipid peroxidases prevented TLF-1 lysis. Instead, purified ApoL1 was sufficient to induce lysis, and ApoL1 lysis was inhibited by the antioxidant DPPD. Swelling of TLF-1-treated T. brucei brucei was reminiscent of swelling under hypotonic stress. Moreover, TLF-1-treated T. brucei brucei became rapidly susceptible to hypotonic lysis. T. brucei brucei cells exposed to peroxides or thiol-binding agents were also sensitized to hypotonic lysis in the absence of TLF-1. We postulate that ApoL1 initiates osmotic stress at the plasma membrane, which sensitizes T. brucei brucei to oxidation-stimulated osmotic lysis.
Collapse
Affiliation(s)
- Amy Styer Greene
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Stephen L Hajduk
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
12
|
The AQP-3 water channel is a pivotal modulator of glycerol-induced chloride channel activation in nasopharyngeal carcinoma cells. Int J Biochem Cell Biol 2016; 72:89-99. [PMID: 26794461 DOI: 10.1016/j.biocel.2016.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/11/2016] [Accepted: 01/15/2016] [Indexed: 11/22/2022]
Abstract
Aquaporin (AQP) and chloride channels are ubiquitous in virtually all living cells, playing pivotal roles in cell proliferation, migration and apoptosis. We previously reported that AQP-3 aquaglyceroporin and ClC-3 chloride channels could form complexes to regulate cell volume in nasopharyngeal carcinoma cells. In this study, the roles of AQP-3 in their hetero-complexes were further investigated. Glycerol entered the cells via AQP-3 and induced two different Cl(-) currents through cell swelling-dependent or -independent pathways. The swelling-dependent Cl(-) current was significantly inhibited by pretreatment with CuCl2 and AQP-3-siRNA. After siRNA-induced AQP-3 knock-down, the 140 mM glycerol isoosmotic solution swelled cells by 22% (45% in AQP-3-intact cells) and induced a smaller Cl(-) current; this current was smaller than that activated by 8% cell volume swelling, which induced by the 140 mM glycerol hyperosmotic solution in AQP-3-intact cells. This suggests that the interaction between AQP-3 and ClC-3 plays an important role in cell volume regulation and that AQP-3 may be a modulator that opens volume-regulated chloride channels. The swelling-independent Cl(-) current, which was activated by extracellular glycerol, was reduced by CuCl2 and AQP-3-siRNA pretreatment. Dialyzing glycerol into cells via the pipette directly induced the swelling-independent Cl(-) current; however this current was blocked by AQP-3 down-regulation, suggesting AQP-3 is essential for the opening of chloride channels. In conclusion, AQP-3 is the pathway for water, glycerol and other small solutes to enter cells, and it may be an essential modulator for the gating of chloride channels.
Collapse
|
13
|
Zhang L, Zhang T, Xiang Z, Lu S. The rs3737964 single-nucleotide polymorphism of the chloride channel-6 gene as a risk factor for coronary heart disease. Mol Genet Genomic Med 2015; 3:537-42. [PMID: 26740945 PMCID: PMC4694129 DOI: 10.1002/mgg3.163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 11/25/2022] Open
Abstract
The present study investigates the association of single‐nucleotide polymorphisms (SNPs) on the chloride channel‐6 (CLC‐6) gene with coronary heart disease (CHD) in China. We carried out a large case–control study among 1193 CHD patients and 1200 unrelated healthy control subjects. Information on the participants' health status was collected through the modified Inter‐heart questionnaire. Genomic DNA from peripheral blood samples was analyzed for the genotypes of rs3737964 and rs3737965 SNPs on the CLC‐6 gene using Taqman probe‐based quantitative real‐time PCR (qPCR). We compared the collected data between the case group and the control group by chi‐square test and t/nonparametric test. Furthermore, we performed logistic regression to evaluate factors associated with CHD. The frequency of TT genotypes in rs3737964 was significantly higher in CHD patients compared to the control group, with an odds ratio (OR) of 2.32 (95% confidence interval, CI: 1.17–4.06, P = 0.016). The association of CHD with TT genotype was even stronger in smoking population after adjusting for confounders (OR = 3.19, 95% CI: 1.04–9.79, P = 0.043). Multivariate logistic regression showed the CHD risk associated with TT genotype in rs3737964 was particularly among population who were more than 60 years old, smoking, and male (P = 0.023, 0.008 and 0.043, respectively). The present study has revealed that rs3737964 SNP of CLC‐6 was associated with CHD. In particular, subjects with TT genotype who were 60‐plus years old, with smoking habit or were male were more susceptible to CHD.
Collapse
Affiliation(s)
- Li Zhang
- Intensive Care Unit Hubei Cancer Hospital Wuhan 430079 China
| | - Tao Zhang
- Department of Ultrasound Hubei Maternal and Child Health Hospital Wuhan 430070 China
| | - Zhengkai Xiang
- Department of Chest Surgery Hubei Cancer Hospital Wuhan 430079 China
| | - Shengqiang Lu
- Intensive Care Unit Hubei Cancer Hospital Wuhan 430079 China
| |
Collapse
|
14
|
Richter M, Nickel C, Apel L, Kaas A, Dodel R, Culmsee C, Dolga AM. SK channel activation modulates mitochondrial respiration and attenuates neuronal HT-22 cell damage induced by H2O2. Neurochem Int 2015; 81:63-75. [DOI: 10.1016/j.neuint.2014.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 01/08/2023]
|
15
|
Cai S, Zhang T, Zhang D, Qiu G, Liu Y. Volume-sensitive chloride channels are involved in cisplatin treatment of osteosarcoma. Mol Med Rep 2014; 11:2465-70. [PMID: 25503821 PMCID: PMC4337627 DOI: 10.3892/mmr.2014.3068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 11/14/2014] [Indexed: 01/23/2023] Open
Abstract
Chemotherapy is the most common therapeutic strategy used to treat osteosarcoma. The present study aimed to investigate the effects of functionally activated chloride channels on cisplatin-induced apoptosis of MG-63 human osteosarcoma cells. An MTT assay and flow cytometry were used to detect proliferation and apoptosis of the cells, respectively. Live cell imaging was used to detect volume changes in response to treatment with cisplatin and/or chloride channel blockers. The effects of these treatments on chloride currents were also assayed using the patch-clamp technique. The results of the present study indicate that chloride channel blockers may suppress cisplatin-induced apoptosis. The MG-63 cells cultured with cisplatin demonstrated an apoptotic volume decrease, as well as suppression of cell proliferation; which were reversed by co-treatment with chloride channel blockers. These results suggest that cisplatin may activate chloride channels, and that channel activation is an early signal in the pathways that lead to cisplatin-induced apoptosis and inhibition of proliferation in MG-63 cells. In conclusion, these results indicate that chloride channels have an important role in cisplatin treatment of osteosarcoma.
Collapse
Affiliation(s)
- Siyi Cai
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, P.R. China
| | - Tao Zhang
- Department of Internal Medicine, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Dandan Zhang
- Department of Histology and Embryology, Medical College of Jinan University; Guangzhou, Guangdong 510632, P.R. China
| | - Guixing Qiu
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, P.R. China
| | - Yong Liu
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, P.R. China
| |
Collapse
|