1
|
Carata E, Muci M, Mariano S, Panzarini E. BV2 Microglial Cell Activation/Polarization Is Influenced by Extracellular Vesicles Released from Mutated SOD1 NSC-34 Motoneuron-like Cells. Biomedicines 2024; 12:2069. [PMID: 39335582 PMCID: PMC11428949 DOI: 10.3390/biomedicines12092069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Microglia-mediated neuroinflammation is a key player in the pathogenesis of amyotrophic lateral sclerosis (ALS) as it can contribute to the progressive degeneration of motor neurons (MNs). Here, we investigated the role of mSOD1 NSC-34 MN-like cell-derived extracellular vesicles (EVs) in inducing the activation of BV2 microglial cells. NSC-34-released EVs were isolated by culture medium differential ultracentrifugation to obtain two fractions, one containing small EVs (diameter < 200 nm) and the other containing large EVs (diameter > 200 nm). BV2 cells were incubated with the two EV fractions for 12, 24, and 48 h to evaluate 1) the state of microglial inflammation through RT-PCR of IL-1β, IL-6, IL-4, and IL-10 and 2) the expression of proteins involved in inflammasome activation (IL-β and caspase 1), cell death (caspase 3), and glial cell recruitment (CXCR1), and presence of the TGFβ cytokine receptor (TGFβ-R2). The obtained results suggest a mSOD1 type-dependent polarization of BV2 cells towards an early neurotoxic phenotype and a late neuroprotective status, with an appearance of mixed M1 and M2 microglia subpopulations. A significant role in driving microglial cell activation is played by the TGFβ/CX3CR1 axis. Therefore, targeting the dysregulated microglial response and modulating neuroinflammation could hold promise as a therapeutic strategy for ALS.
Collapse
Affiliation(s)
- Elisabetta Carata
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Marco Muci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Stefania Mariano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
2
|
Cunha-Oliveira T, Montezinho L, Simões RF, Carvalho M, Ferreiro E, Silva FSG. Mitochondria: A Promising Convergent Target for the Treatment of Amyotrophic Lateral Sclerosis. Cells 2024; 13:248. [PMID: 38334639 PMCID: PMC10854804 DOI: 10.3390/cells13030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons, for which current treatment options are limited. Recent studies have shed light on the role of mitochondria in ALS pathogenesis, making them an attractive therapeutic intervention target. This review contains a very comprehensive critical description of the involvement of mitochondria and mitochondria-mediated mechanisms in ALS. The review covers several key areas related to mitochondria in ALS, including impaired mitochondrial function, mitochondrial bioenergetics, reactive oxygen species, metabolic processes and energy metabolism, mitochondrial dynamics, turnover, autophagy and mitophagy, impaired mitochondrial transport, and apoptosis. This review also highlights preclinical and clinical studies that have investigated various mitochondria-targeted therapies for ALS treatment. These include strategies to improve mitochondrial function, such as the use of dichloroacetate, ketogenic and high-fat diets, acetyl-carnitine, and mitochondria-targeted antioxidants. Additionally, antiapoptotic agents, like the mPTP-targeting agents minocycline and rasagiline, are discussed. The paper aims to contribute to the identification of effective mitochondria-targeted therapies for ALS treatment by synthesizing the current understanding of the role of mitochondria in ALS pathogenesis and reviewing potential convergent therapeutic interventions. The complex interplay between mitochondria and the pathogenic mechanisms of ALS holds promise for the development of novel treatment strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Teresa Cunha-Oliveira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Liliana Montezinho
- Center for Investigation Vasco da Gama (CIVG), Escola Universitária Vasco da Gama, 3020-210 Coimbra, Portugal;
| | - Rui F. Simões
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Marcelo Carvalho
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Elisabete Ferreiro
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Filomena S. G. Silva
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Mitotag Lda, Biocant Park, 3060-197 Cantanhede, Portugal
| |
Collapse
|
3
|
Wang Y, Sun S, Zhai J, Liu Y, Song C, Sun C, Li Q, Liu J, Jiang H, Liu Y. scAAV9-VEGF alleviates symptoms of amyotrophic lateral sclerosis (ALS) mice through regulating aromatase. Exp Brain Res 2023; 241:2817-2827. [PMID: 37882882 DOI: 10.1007/s00221-023-06721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset, chronic, progressive, and fatal neurodegenerative disease that leads to progressive atrophy and weakness of the muscles throughout the body. Herein, we found that the intrathecal injection of adeno-associated virus (AAV)-delivered VEGF in SOD1-G93A transgenic mice, as well as ALS mice, could significantly delay disease onset and preserve motor functions and neurological functions, thus prolonging the survival of mice models. Moreover, we found that VEGF treatment could induce the elevated expression of aromatase, which is a key enzyme in estrogen synthesis, in neurons but not in astrocytes. On the other hand, the changes in the expression of oxidative stress-related factors HO-1 and GCLM and autophagy-related proteins p62 and LC3II upon the administration of VEGF revealed the involvement of oxidative stress and autophagy underlying the downstream of the VEGF-induced mitigation of ALS. In conclusion, this study proved the protective effects of VEGF in the onset and development of ALS and revealed the involvement of estrogen, oxidative stress and autophagy in the VEGF-induced alleviation of ALS. Our results highlighted the potential of VEGF as a promising therapeutic agent in the treatment of ALS.
Collapse
Affiliation(s)
- Ying Wang
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Shuo Sun
- Department of Neurosurgery, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Jingxu Zhai
- The Third Department of Pediatrics, Xingtai People's Hospital, 16 Hongxing Street, Xingtai, Hebei, People's Republic of China
| | - Yuanyuan Liu
- General practice department, Cangzhou Central Hospital, 16 Xinhua West Road, Cangzhou, Hebei, People's Republic of China
| | - Chaoyuan Song
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Cuimei Sun
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Qiang Li
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Jianqiang Liu
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Hong Jiang
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
4
|
Qin S, You P, Yu H, Su B. REEP1 Preserves Motor Function in SOD1 G93A Mice by Improving Mitochondrial Function via Interaction with NDUFA4. Neurosci Bull 2023; 39:929-946. [PMID: 36520405 PMCID: PMC10264344 DOI: 10.1007/s12264-022-00995-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/25/2022] [Indexed: 12/23/2022] Open
Abstract
A decline in the activities of oxidative phosphorylation (OXPHOS) complexes has been consistently reported in amyotrophic lateral sclerosis (ALS) patients and animal models of ALS, although the underlying molecular mechanisms are still elusive. Here, we report that receptor expression enhancing protein 1 (REEP1) acts as an important regulator of complex IV assembly, which is pivotal to preserving motor neurons in SOD1G93A mice. We found the expression of REEP1 was greatly reduced in transgenic SOD1G93A mice with ALS. Moreover, forced expression of REEP1 in the spinal cord extended the lifespan, decelerated symptom progression, and improved the motor performance of SOD1G93A mice. The neuromuscular synaptic loss, gliosis, and even motor neuron loss in SOD1G93A mice were alleviated by increased REEP1 through augmentation of mitochondrial function. Mechanistically, REEP1 associates with NDUFA4, and plays an important role in preserving the integrity of mitochondrial complex IV. Our findings offer insights into the pathogenic mechanism of REEP1 deficiency in neurodegenerative diseases and suggest a new therapeutic target for ALS.
Collapse
Affiliation(s)
- Siyue Qin
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Pan You
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Hui Yu
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Bo Su
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.
| |
Collapse
|
5
|
Wang R, Wu Y, Liu R, Liu M, Li Q, Ba Y, Huang H. Deciphering therapeutic options for neurodegenerative diseases: insights from SIRT1. J Mol Med (Berl) 2022; 100:537-553. [PMID: 35275221 DOI: 10.1007/s00109-022-02187-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/23/2022]
Abstract
Silent information regulator 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD +)-dependent protein deacetylase that exerts biological effects through nucleoplasmic transfer. Recent studies have highlighted that SIRT1 deacetylates protein substrates to exert its neuroprotective effects, including decreased oxidative stress and inflammatory, increases autophagy, increases levels of nerve growth factors (correlated with behavioral changes), and maintains neural integrity (affects neuronal development and function) in aging or neurological disorder. In this review, we highlight the molecular mechanisms underlying the protective role of SIRT1 in modulating neurodegeneration, focusing on protein homeostasis, aging-related signaling pathways, neurogenesis, and synaptic plasticity. Meanwhile, the potential of targeting SIRT1 to block the occurrence and progression of neurodegenerative diseases is also discussed. Taken together, this review provides an up-to-date evaluation of our current understanding of the neuroprotective mechanisms of SIRT1 and also be involved in the potential therapeutic opportunities of AD and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Yingying Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Mengchen Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Qiong Li
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China. .,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
MPO/HOCl Facilitates Apoptosis and Ferroptosis in the SOD1G93A Motor Neuron of Amyotrophic Lateral Sclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8217663. [PMID: 35178161 PMCID: PMC8845144 DOI: 10.1155/2022/8217663] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022]
Abstract
Background. Oxidative stress and reactive oxygen species (ROS) are important in the pathogenesis of amyotrophic lateral sclerosis (ALS). Hypochlorous acid (HOCl) is a powerful oxidant of the reactive oxygen species (ROS) family. HOCl’s role in the progress of ALS remains unclear due to the lack of an effective HOCl detection method. Cumulative evidence supports oxidative damage incurred by mutant hSOD1 contributing to motor neuron death; however, whether HOCl as well as its catalytic enzyme myeloperoxidase (MPO) function in the cell death of SOD1G93A ALS remains elusive. Methods. The hSOD1WT and hSOD1G93A NSC-34 cell and SOD1G93A ALS mouse models were employed. With a novel fluorescent HOCl probe, HKOCl-3, we detected the expressions of HOCl and its catalytic enzyme, MPO, in the above models in vitro and in vivo. The regulation of MPO/HOCl by hSOD1G93A mutation and cell deaths by MPO/HOCl were also assayed, including apoptosis, ferroptosis, and autophagy. Results. Our results showed that hSOD1G93A mutation promoted the activation of the MPO/HOCl pathway in SOD1G93A ALS cell models. The activation of MPO/HOCl pathways facilitated apoptosis and ferroptosis through increasing the Bax/Bcl-2 ratio and expression of caspase-3 or inhibiting the expressions of GPX4 and NQO1 and thus leading to irreversible lipid peroxidation. Overexpressed FSP1, a glutathione-independent suppressor, could ameliorate ferroptosis. In vivo, we demonstrated that the activation of the MPO/HOCl pathway occurred differently in motor neurons of the motor cortices, brain stems, and spinal cords in male and female SOD1G93A transgenic mice. In addition, inhibiting MPO improved the motor performance of SOD1G93A transgenic mice, as demonstrated by the rotarod test. Conclusions. We concluded that aggregation of mutant hSOD1 proteins contributed to activation of the MPO/HOCl pathway, triggering apoptosis and ferroptosis in motor neuronal deaths and exerting impaired motor performance.
Collapse
|
7
|
Talebi M, Mohammadi Vadoud SA, Haratian A, Talebi M, Farkhondeh T, Pourbagher-Shahri AM, Samarghandian S. The interplay between oxidative stress and autophagy: focus on the development of neurological diseases. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2022; 18:3. [PMID: 35093121 PMCID: PMC8799983 DOI: 10.1186/s12993-022-00187-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
Abstract
Regarding the epidemiological studies, neurological dysfunctions caused by cerebral ischemia or neurodegenerative diseases (NDDs) have been considered a pointed matter. Mount-up shreds of evidence support that both autophagy and reactive oxygen species (ROS) are involved in the commencement and progression of neurological diseases. Remarkably, oxidative stress prompted by an increase of ROS threatens cerebral integrity and improves the severity of other pathogenic agents such as mitochondrial damage in neuronal disturbances. Autophagy is anticipated as a cellular defending mode to combat cytotoxic substances and damage. The recent document proposes that the interrelation of autophagy and ROS creates a crucial function in controlling neuronal homeostasis. This review aims to overview the cross-talk among autophagy and oxidative stress and its molecular mechanisms in various neurological diseases to prepare new perceptions into a new treatment for neurological disorders. Furthermore, natural/synthetic agents entailed in modulation/regulation of this ambitious cross-talk are described.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Ali Mohammadi Vadoud
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Haratian
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019, USA
- Viatris Pharmaceuticals Inc, 3300 Research Plaza, San Antonio, TX, 78235, USA
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
8
|
Liu Y, Wei CH, Li C, Chen WZ, Zhu Y, Xu RS. Phosphoinositide-3-kinase regulatory subunit 4 participates in the occurrence and development of amyotrophic lateral sclerosis by regulating autophagy. Neural Regen Res 2021; 17:1609-1616. [PMID: 34916448 PMCID: PMC8771104 DOI: 10.4103/1673-5374.330621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The development of amyotrophic lateral sclerosis (ALS) may be related to the abnormal alterations of multiple proteins. Our previous study revealed that the expression of phosphoinositide-3-kinase regulatory subunit 4 (PIK3R4) was decreased in ALS. However, the role of PIK3R4 in ALS pathogenesis remains unknown. This study was the first to find that transfection of PC12 cells with small interfering RNA against the PIK3R4 gene significantly decreased the expression levels of PIK3R4 and the autophagy-related proteins p62 and LC3. Additionally, in vivo experiments revealed that the PIK3R4 protein was extensively expressed in the anterior horn, posterior horn, central canal, and areas surrounding the central canal in cervical, thoracic, and lumbar segments of the spinal cord in adult mice. PIK3R4 protein was mainly expressed in the neurons within the spinal lumbar segments. PIK3R4 and p62 expression levels were significantly decreased at both the pre-onset and onset stages of ALS disease in Tg(SOD1*G93A)1Gur mice compared with control mice, but these proteins were markedly increased at the progression stage. LC3 protein expression did not change during progression of ALS. These findings suggest that PIK3R4 likely participates in the prevention of ALS progression. This study was approved by the Ethics Committee for Animal Care and Use of Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University (approval No. 2020025) on March 26, 2020.
Collapse
Affiliation(s)
- Yue Liu
- Department of Neurology, First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Cai-Hui Wei
- Department of Neurology, First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Cheng Li
- Department of Neurology, First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Wen-Zhi Chen
- Department of Neurology, First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yu Zhu
- Department of Neurology, First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Ren-Shi Xu
- Department of Neurology, First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
9
|
Abstract
The ageing population is becoming a significant socio-economic issue. To address the expanding health gap, it is important to deepen our understanding of the mechanisms underlying ageing in various organisms at the single-cell level. The discovery of the antifungal, immunosuppressive, and anticancer drug rapamycin, which possesses the ability to extend the lifespan of several species, has prompted extensive research in the areas of cell metabolic regulation, development, and senescence. At the centre of this research is the mTOR pathway, with key roles in cell growth, proteosynthesis, ribosomal biogenesis, transcriptional regulation, glucose and lipid metabolism, and autophagy. Recently, it has become obvious that mTOR dysregulation is involved in several age-related diseases, such as cancer, neurodegenerative diseases, and type 2 diabetes mellitus. Additionally, mTOR hyperactivation affects the process of ageing per se. In this review, we provide an overview of recent insights into the mTOR signalling pathway, including its regulation and its influence on various hallmarks of ageing at the cellular level.
Collapse
Affiliation(s)
- Zofia Chrienova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| |
Collapse
|
10
|
Rana T, Behl T, Sehgal A, Mehta V, Singh S, Bhatia S, Al-Harrasi A, Bungau S. Exploring the Role of Autophagy Dysfunction in Neurodegenerative Disorders. Mol Neurobiol 2021; 58:4886-4905. [PMID: 34212304 DOI: 10.1007/s12035-021-02472-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022]
Abstract
Autophagy is a catabolic pathway by which misfolded proteins or damaged organelles are engulfed by autophagosomes and then transported to lysosomes for degradation. Recently, a great improvement has been done to explain the molecular mechanisms and roles of autophagy in several important cellular metabolic processes. Besides being a vital clearance pathway or a cell survival pathway in response to different stresses, autophagy dysfunction, either upregulated or down-regulated, has been suggested to be linked with numerous neurodegenerative disorders like Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis. Impairment at different stages of autophagy results in the formation of large protein aggregates and damaged organelles, which leads to the onset and progression of different neurodegenerative disorders. This article elucidates the recent progress about the role of autophagy in neurodegenerative disorders and explains how autophagy dysfunction is linked with the pathogenesis of such disorders as well as the novel potential autophagy-associated therapies for treating them.
Collapse
Affiliation(s)
- Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
- Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Distt. Shimla, Himachal Pradesh, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Haryana, India
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
11
|
Chen L, Na R, Danae McLane K, Thompson CS, Gao J, Wang X, Ran Q. Overexpression of ferroptosis defense enzyme Gpx4 retards motor neuron disease of SOD1G93A mice. Sci Rep 2021; 11:12890. [PMID: 34145375 PMCID: PMC8213805 DOI: 10.1038/s41598-021-92369-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/08/2021] [Indexed: 01/20/2023] Open
Abstract
Degeneration and death of motor neurons in Amyotrophic Lateral Sclerosis (ALS) are associated with increased lipid peroxidation. Lipid peroxidation is the driver of ferroptosis, an iron-dependent oxidative mode of cell death. However, the importance of ferroptosis in motor neuron degeneration of ALS remains unclear. Glutathione peroxidase 4 (Gpx4) is a key enzyme in suppressing ferroptosis by reducing phospholipid hydroperoxides in membranes. To assess the effect of increased protection against ferroptosis on motor neuron disease, we generated SOD1G93AGPX4 double transgenic mice by cross-breeding GPX4 transgenic mice with SOD1G93A mice, a widely used ALS mouse model. Compared with control SOD1G93A mice, both male and female SOD1G93AGPX4 mice had extended lifespans. SOD1G93AGPX4 mice also showed delayed disease onset and increased motor function, which were correlated with ameliorated spinal motor neuron degeneration and reduced lipid peroxidation. Moreover, cell toxicity induced by SOD1G93A was ameliorated by Gpx4 overexpression and by chemical inhibitors of ferroptosis in vitro. We further found that the anti-ferroptosis defense system in spinal cord tissues of symptomatic SOD1G93A mice and sporadic ALS patients might be compromised due to deficiency of Gpx4. Thus, our results suggest that ferroptosis plays a key role in motor neuron degeneration of ALS.
Collapse
Affiliation(s)
- Liuji Chen
- Department of Cell Systems & Anatomy, University of Texas Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Ren Na
- Department of Cell Systems & Anatomy, University of Texas Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Kirsten Danae McLane
- Department of Cell Systems & Anatomy, University of Texas Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Cody Sylvester Thompson
- Department of Cell Systems & Anatomy, University of Texas Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Ju Gao
- Department of Pharmacology and Experimental Neurosciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xinglong Wang
- Department of Pharmacology and Experimental Neurosciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Qitao Ran
- Department of Cell Systems & Anatomy, University of Texas Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA. .,Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
12
|
Post J, Kogel V, Schaffrath A, Lohmann P, Shah NJ, Langen KJ, Willbold D, Willuweit A, Kutzsche J. A Novel Anti-Inflammatory d-Peptide Inhibits Disease Phenotype Progression in an ALS Mouse Model. Molecules 2021; 26:molecules26061590. [PMID: 33805709 PMCID: PMC7999518 DOI: 10.3390/molecules26061590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterised by selective neuronal death in the brain stem and spinal cord. The cause is unknown, but an increasing amount of evidence has firmly certified that neuroinflammation plays a key role in ALS pathogenesis. Neuroinflammation is a pathological hallmark of several neurodegenerative disorders and has been implicated as driver of disease progression. Here, we describe a treatment study demonstrating the therapeutic potential of a tandem version of the well-known all-d-peptide RD2 (RD2RD2) in a transgenic mouse model of ALS (SOD1*G93A). Mice were treated intraperitoneally for four weeks with RD2RD2 vs. placebo. SOD1*G93A mice were tested longitudinally during treatment in various behavioural and motor coordination tests. Brain and spinal cord samples were investigated immunohistochemically for gliosis and neurodegeneration. RD2RD2 treatment in SOD1*G93A mice resulted not only in a reduction of activated astrocytes and microglia in both the brain stem and lumbar spinal cord, but also in a rescue of neurons in the motor cortex. RD2RD2 treatment was able to slow progression of the disease phenotype, especially the motor deficits, to an extent that during the four weeks treatment duration, no significant progression was observed in any of the motor experiments. Based on the presented results, we conclude that RD2RD2 is a potential therapeutic candidate against ALS.
Collapse
Affiliation(s)
- Julia Post
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (J.P.); (V.K.); (A.S.)
| | - Vanessa Kogel
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (J.P.); (V.K.); (A.S.)
| | - Anja Schaffrath
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (J.P.); (V.K.); (A.S.)
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine 4, INM-4, Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (P.L.); (N.J.S.); (K.-J.L.)
| | - N. Jon Shah
- Institute of Neuroscience and Medicine 4, INM-4, Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (P.L.); (N.J.S.); (K.-J.L.)
- Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- JARA-Brain-Translational Medicine, 52074 Aachen, Germany
- Department of Neurology, RWTH Aachen University, 52062 Aachen, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine 4, INM-4, Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (P.L.); (N.J.S.); (K.-J.L.)
- Department of Nuclear Medicine, RWTH Aachen University, 52062 Aachen, Germany
| | - Dieter Willbold
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (J.P.); (V.K.); (A.S.)
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Correspondence: (D.W.); (A.W.); (J.K.); Tel.: +49-2461-619496 (J.K.)
| | - Antje Willuweit
- Institute of Neuroscience and Medicine 4, INM-4, Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (P.L.); (N.J.S.); (K.-J.L.)
- Correspondence: (D.W.); (A.W.); (J.K.); Tel.: +49-2461-619496 (J.K.)
| | - Janine Kutzsche
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (J.P.); (V.K.); (A.S.)
- Correspondence: (D.W.); (A.W.); (J.K.); Tel.: +49-2461-619496 (J.K.)
| |
Collapse
|
13
|
Ruiz-Soto M, Riancho J, Tapia O, Lafarga M, Berciano MT. Satellite Glial Cells of the Dorsal Root Ganglion: A New "Guest/Physiopathological Target" in ALS. Front Aging Neurosci 2020; 12:595751. [PMID: 33240079 PMCID: PMC7680735 DOI: 10.3389/fnagi.2020.595751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction: Amyotrophic lateral sclerosis (ALS) might not only be circumscribed to the motor system but also involves other neuronal systems including sensory abnormalities. In line with this notion, we aimed to assess the pathophysiology of sensory disturbances in the SOD1G93A mouse model of ALS, focusing on the satellite glial cells (SGCs) at the dorsal root ganglion (DRG) as a new potential target of the disease. Material and Methods: The presence of sensory disturbances was evaluated using von Frey, hot plate, and hot water tail immersion tests at 75 days old, which represented the motor-pre-symptomatic stage. Cell biology analysis was performed at 75 and 95 days old and included conventional histology, immunofluorescence, and electron microscopy of sensory neuron-SGC unit dissociates as a well as western blotting from DRG lysates. Results: At 75 days old, von Frey and hot plate tests demonstrated clear thermoalgesic disturbances in ALS transgenic mice. Histological studies of the SN-SGC units revealed abnormal SOD1 accumulation, which was associated with nitro-oxidative stress and biogenesis of lipid droplets in SGCs. Interestingly, these alterations led to a progressive lysosomal storage disorder and occasionally vacuolar degeneration in SGCs. Conclusions: SGCs emerge as a primary pathophysiological target in the SOD1 transgenic murine model of ALS, clearly reinforcing the pathogenic role of glial cells in motor neuron disease. Presymptomatic alterations of SGCs, might not only be responsible of sensory disturbances in ALS, but due to spinal cord sensory-motor circuits could also contribute to anterior horn motor disturbances.
Collapse
Affiliation(s)
- María Ruiz-Soto
- Department of Anatomy and Cell Biology, University of Cantabria, Santander, Spain.,"Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas" (CIBERNED), Madrid, Spain
| | - Javier Riancho
- "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas" (CIBERNED), Madrid, Spain.,"Instituto de Investigación Sanitaria Valdecilla" (IDIVAL), Santander, Spain.,Service of Neurology, Hospital Sierrallana, Torrelavega, Spain.,Department of Medicine and Psychiatry, University of Cantabria, Santander, Spain
| | - Olga Tapia
- "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas" (CIBERNED), Madrid, Spain.,"Instituto de Investigación Sanitaria Valdecilla" (IDIVAL), Santander, Spain.,"Universidad Europea del Atlántico", Santander, Spain
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology, University of Cantabria, Santander, Spain.,"Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas" (CIBERNED), Madrid, Spain.,"Instituto de Investigación Sanitaria Valdecilla" (IDIVAL), Santander, Spain
| | - María T Berciano
- "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas" (CIBERNED), Madrid, Spain.,"Instituto de Investigación Sanitaria Valdecilla" (IDIVAL), Santander, Spain.,Department of Molecular Biology, University of Cantabria, Santander, Spain
| |
Collapse
|
14
|
Tian Y, Jin S, Promes V, Liu X, Zhang Y. Astragaloside IV and echinacoside benefit neuronal properties via direct effects and through upregulation of SOD1 astrocyte function in vitro. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:1019-1029. [PMID: 33219470 DOI: 10.1007/s00210-020-02022-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS), also known as a major type of motor neuron disease, is a disease characterized by the degeneration of both upper and lower motor neurons. Astragaloside IV (AST) is one of the most effective compounds isolated from Astragalus membranaceus. Echinacoside (ECH) is also an active constituent in Cistanche tubulosa. These two herbs had been used in treating disease described like ALS in ancient China under the guidance of traditional Chinese medicine theory and now they are still being used extensively for ALS in current Chinese medicine practice, but whether AST or ECH has effect on ALS disease condition is still unclear. Survivals of primary cultured neuron and astrocyte were determined by the MTS assay. Proteins including GLT1 and GFAP, from SOD1 G93A Tg (transgenic) astrocyte lysate were determined by Western blot. Synaptic markers, PSD95 and VGLUT1, were stained by immunofluorescence and observed by a confocal microscope. Proper dilution of AST and ECH was confirmed to be not harmful to both astrocytes and neurons. AST and ECH enhanced neuronal synaptic markers density or intensity/area in different aspects. Both AST and ECH could significantly rescue SOD1 astrocyte conditional medium-treated neuronal survival and synapse loss. Ten micromolars ECH could significantly rescue the suppressed GLT1 level expressed by SOD1 Tg astrocyte. This present research proved that AST and ECH could benefit neuronal properties and rescue certain dysfunction, such as GLT1 low expression, loss of neuron-supporting function, of astrocytes under SOD1 condition.
Collapse
Affiliation(s)
- Yang Tian
- Beijing University of Chinese Medicine, Beijing, People's Republic of China.,Tufts University School of Medicine, Boston, MA, USA
| | - Shijie Jin
- Tufts University School of Medicine, Boston, MA, USA
| | | | - Xuemei Liu
- Central Laboratory, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yunling Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, People's Republic of China.
| |
Collapse
|
15
|
Cao J, Tang C, Gao M, Rui Y, Zhang J, Wang L, Wang Y, Xu B, Yan BC. Hyperoside alleviates epilepsy-induced neuronal damage by enhancing antioxidant levels and reducing autophagy. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112884. [PMID: 32311482 DOI: 10.1016/j.jep.2020.112884] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypericum perforatum L. (genus Hypericum, family Hypericaceae), a plant commonly used in traditional Chinese medicine, is believed to confer a wide range of benefits, including fever reduction, detoxification, calming, and pain relief via decoctions of its stems and leaves. Hyperoside (HYP), a natural compound extracted from Hypericum perforatum L., has been shown to demonstrate a wide array of bioactivities including antioxidative, anti-inflammatory, and anti-apoptotic effects. In this study, we investigated the effects of HYP on epilepsy-induced neuronal damage in mice and the associated regulatory factors. AIM OF THE STUDY This study examined the potential therapeutic use of HYP for the treatment of neuronal damage in a mouse model of epilepsy and explored the relationships of the potential neuroprotective effects of HYP pretreatment with antioxidant levels and autophagy. MATERIALS AND METHODS ICR mice were randomly divided into six groups: sham group, sham-HYP group, KA group, KA-HYP group, KA-HYP-DDC group and KA-CQ group. Immunohistochemical staining was used to assess changes in NeuN, IBA-1, and GFAP expression in the CA3 region of the hippocampus. Immunofluorescence staining was used to assess the effects of HYP on the number of autophagosomes that accumulated in neurons in the hippocampal CA3 region. The levels of SOD1, SOD2, LC3I/II, Beclin1, and PI3K/AKT and MAPK signaling-related proteins were detected by Western blot. RESULTS Pretreatment with 50 mg/kg HYP protected against epilepsy-induced neuronal damage in the hippocampal CA3 region. Additionally, HYP enhanced antioxidant levels and reduced the levels of autophagy-related proteins via the PI3K/AKT and MAPK pathways. CONCLUSION HYP protected the hippocampal CA3 region against epilepsy-induced neuronal damage via enhancing antioxidant levels and reducing autophagy. The mechanism of action may be related to the maintenance of antioxidant levels and the suppression of autophagy via the PI3K/Akt and MAPK pathways.
Collapse
Affiliation(s)
- Jianwen Cao
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, PR China
| | - Cheng Tang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, PR China
| | - Manman Gao
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, PR China
| | - Yanggang Rui
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, PR China
| | - Jie Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, PR China
| | - Li Wang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, PR China
| | - Yang Wang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, PR China
| | - Bo Xu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, PR China
| | - Bing Chun Yan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, PR China; Department of Neurology, Affiliated Hospital, Yangzhou University, 225001, PR China; Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine of Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
16
|
Vicencio E, Beltrán S, Labrador L, Manque P, Nassif M, Woehlbier U. Implications of Selective Autophagy Dysfunction for ALS Pathology. Cells 2020; 9:cells9020381. [PMID: 32046060 PMCID: PMC7072226 DOI: 10.3390/cells9020381] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disorder that progressively affects motor neurons in the brain and spinal cord. Due to the biological complexity of the disease, its etiology remains unknown. Several cellular mechanisms involved in the neurodegenerative process in ALS have been found, including the loss of RNA and protein homeostasis, as well as mitochondrial dysfunction. Insoluble protein aggregates, damaged mitochondria, and stress granules, which contain RNA and protein components, are recognized and degraded by the autophagy machinery in a process known as selective autophagy. Autophagy is a highly dynamic process whose dysregulation has now been associated with neurodegenerative diseases, including ALS, by numerous studies. In ALS, the autophagy process has been found deregulated in both familial and sporadic cases of the disease. Likewise, mutations in genes coding for proteins involved in the autophagy machinery have been reported in ALS patients, including selective autophagy receptors. In this review, we focus on the role of selective autophagy in ALS pathology.
Collapse
Affiliation(s)
- Emiliano Vicencio
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile; (E.V.); (S.B.); (L.L.); (P.M.)
| | - Sebastián Beltrán
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile; (E.V.); (S.B.); (L.L.); (P.M.)
| | - Luis Labrador
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile; (E.V.); (S.B.); (L.L.); (P.M.)
| | - Patricio Manque
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile; (E.V.); (S.B.); (L.L.); (P.M.)
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile
| | - Melissa Nassif
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile; (E.V.); (S.B.); (L.L.); (P.M.)
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile
- Correspondence: (U.W.); (M.N.)
| | - Ute Woehlbier
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile; (E.V.); (S.B.); (L.L.); (P.M.)
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile
- Correspondence: (U.W.); (M.N.)
| |
Collapse
|
17
|
Seranova E, Palhegyi AM, Verma S, Dimova S, Lasry R, Naama M, Sun C, Barrett T, Rosenstock TR, Kumar D, Cohen MA, Buganim Y, Sarkar S. Human Induced Pluripotent Stem Cell Models of Neurodegenerative Disorders for Studying the Biomedical Implications of Autophagy. J Mol Biol 2020; 432:2754-2798. [PMID: 32044344 DOI: 10.1016/j.jmb.2020.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/12/2022]
Abstract
Autophagy is an intracellular degradation process that is essential for cellular survival, tissue homeostasis, and human health. The housekeeping functions of autophagy in mediating the clearance of aggregation-prone proteins and damaged organelles are vital for post-mitotic neurons. Improper functioning of this process contributes to the pathology of myriad human diseases, including neurodegeneration. Impairment in autophagy has been reported in several neurodegenerative diseases where pharmacological induction of autophagy has therapeutic benefits in cellular and transgenic animal models. However, emerging studies suggest that the efficacy of autophagy inducers, as well as the nature of the autophagy defects, may be context-dependent, and therefore, studies in disease-relevant experimental systems may provide more insights for clinical translation to patients. With the advancements in human stem cell technology, it is now possible to establish disease-affected cellular platforms from patients for investigating disease mechanisms and identifying candidate drugs in the appropriate cell types, such as neurons that are otherwise not accessible. Towards this, patient-derived human induced pluripotent stem cells (hiPSCs) have demonstrated considerable promise in constituting a platform for effective disease modeling and drug discovery. Multiple studies have utilized hiPSC models of neurodegenerative diseases to study autophagy and evaluate the therapeutic efficacy of autophagy inducers in neuronal cells. This review provides an overview of the regulation of autophagy, generation of hiPSCs via cellular reprogramming, and neuronal differentiation. It outlines the findings in various neurodegenerative disorders where autophagy has been studied using hiPSC models.
Collapse
Affiliation(s)
- Elena Seranova
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Adina Maria Palhegyi
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Surbhi Verma
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Simona Dimova
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Rachel Lasry
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, 91120, Israel
| | - Moriyah Naama
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, 91120, Israel
| | - Congxin Sun
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Timothy Barrett
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Tatiana Rosado Rosenstock
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Sciences, São Paulo, SP, 01221-020, Brazil
| | - Dhiraj Kumar
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Malkiel A Cohen
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, 91120, Israel
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
18
|
Wang JL, Xu CJ. Astrocytes autophagy in aging and neurodegenerative disorders. Biomed Pharmacother 2019; 122:109691. [PMID: 31786465 DOI: 10.1016/j.biopha.2019.109691] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/11/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
Astrocytes can serve multiple functions in maintaining cellular homeostasis of the central nervous system (CNS), and normal functions for autophagy in astrocytes is considered to have very vital roles in the pathogenesis of aging and neurodegenerative diseases. Autophagy is a major intracellular lysosomal (or its yeast analog, vacuolar) clearance pathways involved in the degradation and recycling of long-lived proteins, oxidatively damaged proteins and dysfunctional organelles by lysosomes. Current evidence has shown that autophagy might influence inflammation, oxidative stress, aging and function of astrocytes. Although the interrelation between autophagy and inflammation, oxidative stress, aging or neurological disorders have been addressed in detail, the influence of astrocytes mediated-autophagy in aging and neurodegenerative disorders has yet to be fully reviewed. In this review, we will summarize the most up-to-date findings and highlight the role of autophagy in astrocytes and link autophagy of astrocytes to aging and neurodegenerative diseases. Due to the prominent roles of astrocytic autophagy in age-related neurodegenerative diseases, we believe that we can provide new suggestions for the treatment of these disorders.
Collapse
Affiliation(s)
- Jun-Ling Wang
- Center for Reproductive Medicine, Affiliated Hospital 1 of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China.
| | - Chao-Jin Xu
- Department of Histology & Embryology, School of Basic Medical Science, Wenzhou Medical University, Cha Shan University Town, No.1 Central North Road, Wenzhou, Zhejiang, 325035, PR China.
| |
Collapse
|
19
|
Lithium facilitates removal of misfolded proteins and attenuated faulty interaction between mutant SOD1 and p-CREB (Ser133) through enhanced autophagy in mutant hSOD1G93A transfected neuronal cell lines. Mol Biol Rep 2019; 46:6299-6309. [DOI: 10.1007/s11033-019-05071-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
|
20
|
Qi W, Yan L, Liu Y, Zhou X, Li R, Wang Y, Bai L, Chen J, Nie X. Simvastatin aggravates impaired autophagic flux in NSC34-hSOD1G93A cells through inhibition of geranylgeranyl pyrophosphate synthesis. Neuroscience 2019; 409:130-141. [DOI: 10.1016/j.neuroscience.2019.04.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/05/2019] [Accepted: 04/13/2019] [Indexed: 11/28/2022]
|
21
|
Vijayakumar UG, Milla V, Cynthia Stafford MY, Bjourson AJ, Duddy W, Duguez SMR. A Systematic Review of Suggested Molecular Strata, Biomarkers and Their Tissue Sources in ALS. Front Neurol 2019; 10:400. [PMID: 31139131 PMCID: PMC6527847 DOI: 10.3389/fneur.2019.00400] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/02/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease, is an incurable neurodegenerative condition, characterized by the loss of upper and lower motor neurons. It affects 1-1.8/100,000 individuals worldwide, and the number of cases is projected to increase as the population ages. Thus, there is an urgent need to identify both therapeutic targets and disease-specific biomarkers-biomarkers that would be useful to diagnose and stratify patients into different sub-groups for therapeutic strategies, as well as biomarkers to follow the efficacy of any treatment tested during clinical trials. There is a lack of knowledge about pathogenesis and many hypotheses. Numerous "omics" studies have been conducted on ALS in the past decade to identify a disease-signature in tissues and circulating biomarkers. The first goal of the present review was to group the molecular pathways that have been implicated in monogenic forms of ALS, to enable the description of patient strata corresponding to each pathway grouping. This strategy allowed us to suggest 14 strata, each potentially targetable by different pharmacological strategies. The second goal of this review was to identify diagnostic/prognostic biomarker candidates consistently observed across the literature. For this purpose, we explore previous biomarker-relevant "omics" studies of ALS and summarize their findings, focusing on potential circulating biomarker candidates. We systematically review 118 papers on biomarkers published during the last decade. Several candidate markers were consistently shared across the results of different studies in either cerebrospinal fluid (CSF) or blood (leukocyte or serum/plasma). Although these candidates still need to be validated in a systematic manner, we suggest the use of combinations of biomarkers that would likely reflect the "health status" of different tissues, including motor neuron health (e.g., pNFH and NF-L, cystatin C, Transthyretin), inflammation status (e.g., MCP-1, miR451), muscle health (miR-338-3p, miR-206) and metabolism (homocysteine, glutamate, cholesterol). In light of these studies and because ALS is increasingly perceived as a multi-system disease, the identification of a panel of biomarkers that accurately reflect features of pathology is a priority, not only for diagnostic purposes but also for prognostic or predictive applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephanie Marie-Rose Duguez
- Northern Ireland Center for Stratified Medicine, Biomedical Sciences Research Institute, Londonderry, United Kingdom
| |
Collapse
|
22
|
Meng T, Lin S, Zhuang H, Huang H, He Z, Hu Y, Gong Q, Feng D. Recent progress in the role of autophagy in neurological diseases. Cell Stress 2019; 3:141-161. [PMID: 31225510 PMCID: PMC6551859 DOI: 10.15698/cst2019.05.186] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autophagy (here refers to macroautophagy) is a catabolic pathway by which large protein aggregates and damaged organelles are first sequestered into a double-membraned structure called autophago-some and then delivered to lysosome for destruction. Recently, tremen-dous progress has been made to elucidate the molecular mechanism and functions of this essential cellular metabolic process. In addition to being either a rubbish clearing system or a cellular surviving program in response to different stresses, autophagy plays important roles in a large number of pathophysiological conditions, such as cancer, diabetes, and especially neurodegenerative disorders. Here we review recent progress in the role of autophagy in neurological diseases and discuss how dysregulation of autophagy initiation, autophagosome formation, maturation, and/or au-tophagosome-lysosomal fusion step contributes to the pathogenesis of these disorders in the nervous system.
Collapse
Affiliation(s)
- Tian Meng
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University; Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Shiyin Lin
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University; Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Haixia Zhuang
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University; Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Haofeng Huang
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac-Cerebral Vascular Disease, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Zhengjie He
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University; Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Yongquan Hu
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University; Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Qing Gong
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Du Feng
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University; Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
23
|
Nguyen DKH, Thombre R, Wang J. Autophagy as a common pathway in amyotrophic lateral sclerosis. Neurosci Lett 2019; 697:34-48. [PMID: 29626651 PMCID: PMC6170747 DOI: 10.1016/j.neulet.2018.04.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/26/2018] [Accepted: 04/02/2018] [Indexed: 12/11/2022]
Abstract
Age-dependent neurodegenerative diseases are associated with a decline in protein quality control systems including autophagy. Amyotrophic lateral sclerosis (ALS) is a motor neuron degenerative disease of complex etiology with increasing connections to other neurodegenerative conditions such as frontotemporal dementia. Among the diverse genetic causes for ALS, a striking feature is the common connection to autophagy and its associated pathways. There is a recurring theme of protein misfolding as in other neurodegenerative diseases, but importantly there is a distinct common thread among ALS genes that connects them to the cascade of autophagy. However, the roles of autophagy in ALS remain enigmatic and it is still unclear whether activation or inhibition of autophagy would be a reliable avenue to ameliorate the disease. The main evidence that links autophagy to different genetic forms of ALS is discussed.
Collapse
Affiliation(s)
- Dao K H Nguyen
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ravi Thombre
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
24
|
Joshi AU, Saw NL, Vogel H, Cunnigham AD, Shamloo M, Mochly-Rosen D. Inhibition of Drp1/Fis1 interaction slows progression of amyotrophic lateral sclerosis. EMBO Mol Med 2019; 10:emmm.201708166. [PMID: 29335339 PMCID: PMC5840540 DOI: 10.15252/emmm.201708166] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bioenergetic failure and oxidative stress are common pathological hallmarks of amyotrophic lateral sclerosis (ALS), but whether these could be targeted effectively for novel therapeutic intervention needs to be determined. One of the reported contributors to ALS pathology is mitochondrial dysfunction associated with excessive mitochondrial fission and fragmentation, which is predominantly mediated by Drp1 hyperactivation. Here, we determined whether inhibition of excessive fission by inhibiting Drp1/Fis1 interaction affects disease progression. We observed mitochondrial excessive fragmentation and dysfunction in several familial forms of ALS patient‐derived fibroblasts as well as in cultured motor neurons expressing SOD1 mutant. In both cell models, inhibition of Drp1/Fis1 interaction by a selective peptide inhibitor, P110, led to a significant reduction in reactive oxygen species levels, and to improvement in mitochondrial structure and functions. Sustained treatment of mice expressing G93A SOD1 mutation with P110, beginning at the onset of disease symptoms at day 90, produced an improvement in motor performance and survival, suggesting that Drp1 hyperactivation may be an attractive target in the treatment of ALS patients.
Collapse
Affiliation(s)
- Amit U Joshi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nay L Saw
- Behavioral and Functional Neuroscience Laboratory, Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anna D Cunnigham
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mehrdad Shamloo
- Behavioral and Functional Neuroscience Laboratory, Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
25
|
Consales C, Panatta M, Butera A, Filomeni G, Merla C, Carrì MT, Marino C, Benassi B. 50-Hz magnetic field impairs the expression of iron-related genes in the in vitro SOD1 G93A model of amyotrophic lateral sclerosis. Int J Radiat Biol 2019; 95:368-377. [PMID: 30513241 DOI: 10.1080/09553002.2019.1552378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE We characterized the response to the extremely low frequency magnetic field (ELF-MF) in an in vitro model of familial Amyotrophic Lateral Sclerosis (fALS), carrying two mutant variants of the superoxide dismutase 1 (SOD1) gene. MATERIALS AND METHODS SH-SY5Y human neuroblastoma cells, stably over-expressing the wild type, the G93A or the H46R mutant SOD1 cDNA, were exposed to either the ELF-MF (50 Hz, 1 mT) or the sham control field, up to 72 h. Analysis of (i) viability, proliferation and apoptosis, (ii) reactive oxygen species generation, and (iii) assessment of the iron metabolism, were carried out in all clones in response to the MF exposure. RESULTS We report that 50-Hz MF exposure induces: (i) no change in proliferation and viability; (ii) no modulation of the intracellular superoxide and H2O2 levels; (iii) a significant deregulation in the expression of iron-related genes IRP1, MFRN1 and TfR1, this evidence being exclusive for the SOD1G93A clone and associated with a slight (p = .0512) difference in the total iron content. CONCLUSIONS 50-Hz MF affects iron homeostasis in the in vitro SOD1G93A ALS model.
Collapse
Affiliation(s)
- Claudia Consales
- a Department of Energy and Sustainable Economic Development , Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies , Rome , Italy
| | - Martina Panatta
- a Department of Energy and Sustainable Economic Development , Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies , Rome , Italy.,b Department of Chemistry and Biochemistry , University of Bern , Bern , Switzerland
| | - Alessio Butera
- a Department of Energy and Sustainable Economic Development , Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies , Rome , Italy
| | - Giuseppe Filomeni
- c Department of Biology , University of Rome Tor Vergata , Rome , Italy.,d Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD) , Danish Cancer Society Research Center , Copenhagen , Denmark
| | - Caterina Merla
- a Department of Energy and Sustainable Economic Development , Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies , Rome , Italy
| | | | - Carmela Marino
- a Department of Energy and Sustainable Economic Development , Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies , Rome , Italy
| | - Barbara Benassi
- a Department of Energy and Sustainable Economic Development , Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies , Rome , Italy
| |
Collapse
|
26
|
Dučić T, Stamenković S, Lai B, Andjus P, Lučić V. Multimodal Synchrotron Radiation Microscopy of Intact Astrocytes from the hSOD1 G93A Rat Model of Amyotrophic Lateral Sclerosis. Anal Chem 2018; 91:1460-1471. [DOI: 10.1021/acs.analchem.8b04273] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tanja Dučić
- CELLS − ALBA, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Stefan Stamenković
- Faculty of Biology, University of Belgrade, Center for Laser Microscopy−CLM, Studentski Trg 3, 11000 Belgrade, Serbia
| | - Barry Lai
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Pavle Andjus
- Faculty of Biology, University of Belgrade, Center for Laser Microscopy−CLM, Studentski Trg 3, 11000 Belgrade, Serbia
| | - Vladan Lučić
- Max Planck Institute of Biochemistry, Am Klopferspitz 1, 82152, Martinsried, Germany
| |
Collapse
|
27
|
Oxidative Stress and the Microbiota-Gut-Brain Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2406594. [PMID: 30622664 PMCID: PMC6304899 DOI: 10.1155/2018/2406594] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 11/04/2018] [Indexed: 12/27/2022]
Abstract
The gut-brain axis is increasingly recognized as an important pathway of communication and of physiological regulation, and gut microbiota seems to play a significant role in this mutual relationship. Oxidative stress is one of the most important pathogenic mechanisms for both neurodegenerative diseases, such as Alzheimer's or Parkinson's, and acute conditions, such as stroke or traumatic brain injury. A peculiar microbiota type might increase brain inflammation and reactive oxygen species levels and might favor abnormal aggregation of proteins. Reversely, brain lesions of various etiologies result in alteration of gut properties and microbiota. These recent hypotheses could open a door for new therapeutic approaches in various neurological diseases.
Collapse
|
28
|
Cellular and Molecular Aspects of the β-N-Methylamino-l-alanine (BMAA) Mode of Action within the Neurodegenerative Pathway: Facts and Controversy. Toxins (Basel) 2017; 10:toxins10010006. [PMID: 29271898 PMCID: PMC5793093 DOI: 10.3390/toxins10010006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/12/2022] Open
Abstract
The implication of the cyanotoxin β-N-methylamino-l-alanine (BMAA) in long-lasting neurodegenerative disorders is still a matter of controversy. It has been alleged that chronic ingestion of BMAA through the food chain could be a causative agent of amyotrophic lateral sclerosis (ALS) and several related pathologies including Parkinson syndrome. Both in vitro and in vivo studies of the BMAA mode of action have focused on different molecular targets, demonstrating its toxicity to neuronal cells, especially motoneurons, and linking it to human neurodegenerative diseases. Historically, the hypothesis of BMAA-induced excitotoxicity following the stimulation of glutamate receptors has been established. However, in this paradigm, most studies have shown acute, rather than chronic effects of BMAA. More recently, the interaction of this toxin with neuromelanin, a pigment present in the nervous system, has opened a new research perspective. The issues raised by this toxin are related to its kinetics of action, and its possible incorporation into cellular proteins. It appears that BMAA neurotoxic activity involves different targets through several mechanisms known to favour the development of neurodegenerative processes.
Collapse
|
29
|
Milošević M, Milićević K, Božić I, Lavrnja I, Stevanović I, Bijelić D, Dubaić M, Živković I, Stević Z, Giniatullin R, Andjus P. Immunoglobulins G from Sera of Amyotrophic Lateral Sclerosis Patients Induce Oxidative Stress and Upregulation of Antioxidative System in BV-2 Microglial Cell Line. Front Immunol 2017; 8:1619. [PMID: 29218049 PMCID: PMC5703705 DOI: 10.3389/fimmu.2017.01619] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/08/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder with a very fast progression, no diagnostic tool for the presymptomatic phase, and still no effective treatment of the disease. Although ALS affects motor neurons, the overall pathophysiological condition points out to the non-cell autonomous mechanisms, where astrocytes and microglia play crucial roles in the disease progression. We have already shown that IgG from sera of ALS patients (ALS IgG) induce calcium transients and an increase in the mobility of acidic vesicles in cultured rat astrocytes. Having in mind the role of microglia in neurodegeneration, and a well-documented fact that oxidative stress is one of the many components contributing to the disease, we decided to examine the effect of ALS IgG on activation, oxidative stress and antioxidative system of BV-2 microglia, and to evaluate their acute effect on cytosolic peroxide, pH, and on reactive oxygen species (ROS) generation. All tested ALS IgGs (compared to control IgG) induced oxidative stress (rise in nitric oxide and the index of lipid peroxidation) followed by release of TNF-α and higher antioxidative defense (elevation of Mn- and CuZn-superoxide dismutase, catalase, and glutathione reductase with a decrease of glutathione peroxidase and glutathione) after 24 h treatment. Both ALS IgG and control IgG showed same localization on the membrane of BV-2 cells following 24 h treatment. Cytosolic peroxide and pH alteration were evaluated with fluorescent probes HyPer and SypHer, respectively, having in mind that HyPer also reacts to pH changes. Out of 11 tested IgGs from ALS patients, 4 induced slow exponential rise of HyPer signal, with maximal normalized fluorescence in the range 0.2–0.5, also inducing similar increase of SypHer intensity, but of a lower amplitude. None of the control IgGs induced changes with neither of the indicators. Acute ROS generation was detected in one out of three tested ALS samples with carboxy-H2DCFDA. The observed phenomena demonstrate the potential role of inflammatory humoral factors, IgGs, as potential triggers of the activation in microglia, known to occur in later stages of ALS. Therefore, revealing the ALS IgG signaling cascade in microglial cells could offer a valuable molecular biomarker and/or a potential therapeutic target.
Collapse
Affiliation(s)
- Milena Milošević
- Center for Laser Microscopy, Department for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Katarina Milićević
- Center for Laser Microscopy, Department for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Iva Božić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Ivana Stevanović
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Dunja Bijelić
- Center for Laser Microscopy, Department for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marija Dubaić
- Center for Laser Microscopy, Department for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Irena Živković
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Zorica Stević
- Clinic of Neurology, Clinical Center of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Rashid Giniatullin
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Laboratory in Neurobiology, Kazan Federal University, Kazan, Russia
| | - Pavle Andjus
- Center for Laser Microscopy, Department for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
30
|
Stamenković S, Pavićević A, Mojović M, Popović-Bijelić A, Selaković V, Andjus P, Bačić G. In vivo EPR pharmacokinetic evaluation of the redox status and the blood brain barrier permeability in the SOD1 G93A ALS rat model. Free Radic Biol Med 2017; 108:258-269. [PMID: 28366802 DOI: 10.1016/j.freeradbiomed.2017.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder affecting the motor pathways of the central nervous system. Although a number of pathophysiological mechanisms have been described in the disease, post mortem and animal model studies indicate blood-brain barrier (BBB) disruption and elevated production of reactive oxygen species as major contributors to disease pathology. In this study, the BBB permeability and the brain tissue redox status of the SOD1G93A ALS rat model in the presymptomatic (preALS) and symptomatic (ALS) stages of the disease were investigated by in vivo EPR spectroscopy using three aminoxyl radicals with different cell membrane and BBB permeabilities, Tempol, 3-carbamoyl proxyl (3CP), and 3-carboxy proxyl (3CxP). Additionally, the redox status of the two brain regions previously implicated in disease pathology, brainstem and hippocampus, was investigated by spectrophotometric biochemical assays. The EPR results indicated that among the three spin probes, 3CP is the most suitable for reporting the intracellular redox status changes, as Tempol was reduced in vivo within minutes (t1/2 =2.0±0.5min), thus preventing reliable kinetic modeling, whereas 3CxP reduction kinetics gave divergent conclusions, most probably due to its membrane impermeability. It was observed that the reduction kinetics of 3CP in vivo, in the head of preALS and ALS SOD1G93A rats was altered compared to the controls. Pharmacokinetic modeling of 3CP reduction in vivo, revealed elevated tissue distribution and tissue reduction rate constants indicating an altered brain tissue redox status, and possibly BBB disruption in these animals. The preALS and ALS brain tissue homogenates also showed increased nitrilation, superoxide production, lipid peroxidation and manganese superoxide dismutase activity, and a decreased copper-zinc superoxide dismutase activity. The present study highlights in vivo EPR spectroscopy as a reliable tool for the investigation of changes in BBB permeability and for the unprecedented in vivo monitoring of the brain tissue redox status, as early markers of ALS.
Collapse
Affiliation(s)
- Stefan Stamenković
- University of Belgrade - Faculty of Biology, Center for Laser Microscopy, Studentski trg 3, 11158 Belgrade, Serbia
| | - Aleksandra Pavićević
- University of Belgrade - Faculty of Physical Chemistry, EPR Laboratory, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Miloš Mojović
- University of Belgrade - Faculty of Physical Chemistry, EPR Laboratory, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Ana Popović-Bijelić
- University of Belgrade - Faculty of Physical Chemistry, EPR Laboratory, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Vesna Selaković
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Pavle Andjus
- University of Belgrade - Faculty of Biology, Center for Laser Microscopy, Studentski trg 3, 11158 Belgrade, Serbia.
| | - Goran Bačić
- University of Belgrade - Faculty of Physical Chemistry, EPR Laboratory, Studentski trg 12-16, 11158 Belgrade, Serbia
| |
Collapse
|
31
|
Nijssen J, Comley LH, Hedlund E. Motor neuron vulnerability and resistance in amyotrophic lateral sclerosis. Acta Neuropathol 2017; 133:863-885. [PMID: 28409282 PMCID: PMC5427160 DOI: 10.1007/s00401-017-1708-8] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 12/11/2022]
Abstract
In the fatal disease-amyotrophic lateral sclerosis (ALS)-upper (corticospinal) motor neurons (MNs) and lower somatic MNs, which innervate voluntary muscles, degenerate. Importantly, certain lower MN subgroups are relatively resistant to degeneration, even though pathogenic proteins are typically ubiquitously expressed. Ocular MNs (OMNs), including the oculomotor, trochlear and abducens nuclei (CNIII, IV and VI), which regulate eye movement, persist throughout the disease. Consequently, eye-tracking devices are used to enable paralysed ALS patients (who can no longer speak) to communicate. Additionally, there is a gradient of vulnerability among spinal MNs. Those innervating fast-twitch muscle are most severely affected and degenerate first. MNs innervating slow-twitch muscle can compensate temporarily for the loss of their neighbours by re-innervating denervated muscle until later in disease these too degenerate. The resistant OMNs and the associated extraocular muscles (EOMs) are anatomically and functionally very different from other motor units. The EOMs have a unique set of myosin heavy chains, placing them outside the classical characterization spectrum of all skeletal muscle. Moreover, EOMs have multiple neuromuscular innervation sites per single myofibre. Spinal fast and slow motor units show differences in their dendritic arborisations and the number of myofibres they innervate. These motor units also differ in their functionality and excitability. Identifying the molecular basis of cell-intrinsic pathways that are differentially activated between resistant and vulnerable MNs could reveal mechanisms of selective neuronal resistance, degeneration and regeneration and lead to therapies preventing progressive MN loss in ALS. Illustrating this, overexpression of OMN-enriched genes in spinal MNs, as well as suppression of fast spinal MN-enriched genes can increase the lifespan of ALS mice. Here, we discuss the pattern of lower MN degeneration in ALS and review the current literature on OMN resistance in ALS and differential spinal MN vulnerability. We also reflect upon the non-cell autonomous components that are involved in lower MN degeneration in ALS.
Collapse
|
32
|
Imaging of glial cell morphology, SOD1 distribution and elemental composition in the brainstem and hippocampus of the ALS hSOD1 G93A rat. Neuroscience 2017; 357:37-55. [PMID: 28576725 DOI: 10.1016/j.neuroscience.2017.05.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/23/2017] [Accepted: 05/23/2017] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting motor and cognitive domains of the CNS. Mutations in the Cu,Zn-superoxide dismutase (SOD1) cause 20% of familial ALS and provoke formation of intracellular aggregates and copper and zinc unbinding, leading to glial activation and neurodegeneration. Therefore, we investigated glial cell morphology, intracellular SOD1 distribution, and elemental composition in the brainstem and hippocampus of the hSOD1G93A transgenic rat model of ALS. Immunostaining for astrocytes, microglia and SOD1 revealed glial proliferation and progressive tissue accumulation of SOD1 in both brain regions of ALS rats starting already at the presymptomatic stage. Glial cell morphology analysis in the brainstem of ALS rats revealed astrocyte activation occurring before disease symptoms onset, followed by activation of microglia. Hippocampal ALS astrocytes exhibited an identical reactive profile, while microglial morphology was unchanged. Additionally, ALS brainstem astrocytes demonstrated progressive SOD1 accumulation in the cell body and processes, while microglial SOD1 levels were reduced and its distribution limited to distal cell processes. In the hippocampus both glial cell types exhibited SOD1 accumulation in the cell body. X-ray fluorescence imaging revealed decreased P and increased Ca, Cl, K, Ni, Cu and Zn in the brainstem, and higher levels of Cl, Ni and Cu, but lower levels of Zn in the hippocampus of symptomatic ALS rats. These results bring new insights into the glial response during disease development and progression in motor as well as in non-motor CNS structures, and indicate disturbed tissue elemental homeostasis as a prominent hallmark of disease pathology.
Collapse
|
33
|
Shahheydari H, Ragagnin A, Walker AK, Toth RP, Vidal M, Jagaraj CJ, Perri ER, Konopka A, Sultana JM, Atkin JD. Protein Quality Control and the Amyotrophic Lateral Sclerosis/Frontotemporal Dementia Continuum. Front Mol Neurosci 2017; 10:119. [PMID: 28539871 PMCID: PMC5423993 DOI: 10.3389/fnmol.2017.00119] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis, or proteostasis, has an important regulatory role in cellular function. Protein quality control mechanisms, including protein folding and protein degradation processes, have a crucial function in post-mitotic neurons. Cellular protein quality control relies on multiple strategies, including molecular chaperones, autophagy, the ubiquitin proteasome system, endoplasmic reticulum (ER)-associated degradation (ERAD) and the formation of stress granules (SGs), to regulate proteostasis. Neurodegenerative diseases are characterized by the presence of misfolded protein aggregates, implying that protein quality control mechanisms are dysfunctional in these conditions. Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases that are now recognized to overlap clinically and pathologically, forming a continuous disease spectrum. In this review article, we detail the evidence for dysregulation of protein quality control mechanisms across the whole ALS-FTD continuum, by discussing the major proteins implicated in ALS and/or FTD. We also discuss possible ways in which protein quality mechanisms could be targeted therapeutically in these disorders and highlight promising protein quality control-based therapeutics for clinical trials.
Collapse
Affiliation(s)
- Hamideh Shahheydari
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Audrey Ragagnin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Adam K Walker
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Reka P Toth
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Marta Vidal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Cyril J Jagaraj
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Emma R Perri
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Anna Konopka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Jessica M Sultana
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe UniversityMelbourne, VIC, Australia
| |
Collapse
|
34
|
Mutant PFN1 causes ALS phenotypes and progressive motor neuron degeneration in mice by a gain of toxicity. Proc Natl Acad Sci U S A 2016; 113:E6209-E6218. [PMID: 27681617 DOI: 10.1073/pnas.1605964113] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mutations in the profilin 1 (PFN1) gene cause amyotrophic lateral sclerosis (ALS), a neurodegenerative disease caused by the loss of motor neurons leading to paralysis and eventually death. PFN1 is a small actin-binding protein that promotes formin-based actin polymerization and regulates numerous cellular functions, but how the mutations in PFN1 cause ALS is unclear. To investigate this problem, we have generated transgenic mice expressing either the ALS-associated mutant (C71G) or wild-type protein. Here, we report that mice expressing the mutant, but not the wild-type, protein had relentless progression of motor neuron loss with concomitant progressive muscle weakness ending in paralysis and death. Furthermore, mutant, but not wild-type, PFN1 forms insoluble aggregates, disrupts cytoskeletal structure, and elevates ubiquitin and p62/SQSTM levels in motor neurons. Unexpectedly, the acceleration of motor neuron degeneration precedes the accumulation of mutant PFN1 aggregates. These results suggest that although mutant PFN1 aggregation may contribute to neurodegeneration, it does not trigger its onset. Importantly, these experiments establish a progressive disease model that can contribute toward identifying the mechanisms of ALS pathogenesis and the development of therapeutic treatments.
Collapse
|
35
|
Ha J, Kim J. Novel pharmacological modulators of autophagy: an updated patent review (2012-2015). Expert Opin Ther Pat 2016; 26:1273-1289. [PMID: 27476990 DOI: 10.1080/13543776.2016.1217996] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Autophagy is a lysosome-dependent degradation pathway that maintains cellular homeostasis in response to a variety of cellular stresses. Accumulating reports based on animal models have indicated the importance of this catabolic program in many human pathophysiological conditions, including diabetes, neurodegenerative diseases, aging, and cancers. Therefore, autophagy has been highlighted as a novel therapeutic target with a wide range of beneficial effects on human diseases. Here, we review the recent advances of our knowledge toward autophagy, as well as the efforts for developing autophagy modulators. Areas covered: The relevant patents (published at 2012-2015) and the research literature claiming the pharmacological modulation of autophagy are reviewed. Also, their molecular mechanisms and potential therapeutic utilities are discussed. Expert opinion: Considering the molecular machinery involved in autophagy induction, the targeting of autophagy-specific protein is very important to design the therapeutic interventions for specifically treating a variety of autophagy-associated disorders. Many patents and the research literature described in this review have shown promising applications of the relevant autophagy modulators for cancer or neurodegeneration treatments, a few of which are already being considered for clinical evaluation. However, most patents have claimed the modulators of autophagy with little information regarding their mechanisms of action. To design highly potent therapeutics, further work, such as developing compounds that specifically target the autophagy-specific machinery, are required.
Collapse
Affiliation(s)
- Joohun Ha
- a Department of Biochemistry and Molecular Biology , School of Medicine, Kyung Hee University , Seoul , Korea
| | - Joungmok Kim
- b Department of Oral Biochemistry and Molecular Biology , School of Dentistry, Kyung Hee University , Seoul , Korea
| |
Collapse
|
36
|
Koch Y, Helferich AM, Steinacker P, Oeckl P, Walther P, Weishaupt JH, Danzer KM, Otto M. Aggregated α-Synuclein Increases SOD1 Oligomerization in a Mouse Model of Amyotrophic Lateral Sclerosis. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2152-2161. [PMID: 27322773 DOI: 10.1016/j.ajpath.2016.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/18/2016] [Accepted: 04/09/2016] [Indexed: 01/02/2023]
Abstract
Aggregation of misfolded disease-related proteins is a hallmark of neurodegenerative diseases. Aggregate propagation accompanying disease progression has been demonstrated for different proteins (eg, for α-synuclein). Additional evidence supports aggregate cross-seeding activity for α-synuclein. For mutated superoxide dismutase 1 (SOD1), which causes familial amyotrophic lateral sclerosis (ALS), self-propagation of aggregation and cell-to-cell transmission have been demonstrated in vitro. However, there is a prominent lack of in vivo data concerning aggregation and cross-aggregation processes of SOD1. We analyzed the effect of α-synuclein and SOD1 seeds in cell culture using protein fragment complementation assay and intracerebral injection of α-synuclein and SOD1 seeds into SOD1(G93A) transgenic ALS mice. Survival of injected mice was determined, and SOD1 aggregates in the facial nuclei were quantified during disease course. We found that α-synuclein preformed fibrils increased the oligomerization rate of SOD1 in vivo and in vitro, whereas aggregated SOD1 did not exert any effect in both experimental setups. Notably, survival of ALS mice was not changed after inoculation of preformed fibrils. We conclude that misfolded α-synuclein can increase SOD1 aggregation and suppose that α-synuclein seeds are transported from the temporal cortex to the facial nuclei. However, unlike other proteins, the further enhancement of a self-aggregation process by additional SOD1 could not be confirmed in our models.
Collapse
Affiliation(s)
- Yvonne Koch
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | | | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, University of Ulm, Ulm, Germany
| | | | - Karin M Danzer
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany.
| |
Collapse
|
37
|
Ogundele OM, Wasiu Gbolahan B, Emmanuel Cobham A, Azeez Olakunle I, Abdulbasit A. Differential oxidative stress thresholds distinguishes cellular response to vascular occlusion and chemotoxicityin vivo. Drug Chem Toxicol 2016; 40:101-109. [DOI: 10.1080/01480545.2016.1188300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Gargiulo S, Anzilotti S, Coda ARD, Gramanzini M, Greco A, Panico M, Vinciguerra A, Zannetti A, Vicidomini C, Dollé F, Pignataro G, Quarantelli M, Annunziato L, Brunetti A, Salvatore M, Pappatà S. Imaging of brain TSPO expression in a mouse model of amyotrophic lateral sclerosis with (18)F-DPA-714 and micro-PET/CT. Eur J Nucl Med Mol Imaging 2016; 43:1348-59. [PMID: 26816193 DOI: 10.1007/s00259-016-3311-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022]
Abstract
PURPOSE To evaluate the feasibility and sensitivity of (18)F-DPA-714 for the study of microglial activation in the brain and spinal cord of transgenic SOD1(G93A) mice using high-resolution PET/CT and to evaluate the Iba1 and TSPO expression with immunohistochemistry. METHODS Nine symptomatic SOD1(G93A) mice (aged 117 ± 12.7 days, clinical score range 1 - 4) and five WT SOD1 control mice (aged 108 ± 28.5 days) underwent (18)F-DPA-714 PET/CT. SUV ratios were calculated by normalizing the cerebellar (rCRB), brainstem (rBS), motor cortex (rMCX) and cervical spinal cord (rCSC) activities to that of the frontal association cortex. Two WT SOD1 and six symptomatic SOD1(G93A) mice were studied by immunohistochemistry. RESULTS In the symptomatic SOD1(G93A) mice, rCRB, rBS and rCSC were increased as compared to the values in WT SOD1 mice, with a statistically significantly difference in rBS (2.340 ± 0.784 vs 1.576 ± 0.287, p = 0.014). Immunofluorescence studies showed that TSPO expression was increased in the trigeminal, facial, ambiguus and hypoglossal nuclei, as well as in the spinal cord, of symptomatic SOD1(G93A) mice and was colocalized with increased Iba1 staining. CONCLUSION Increased (18)F-DPA-714 uptake can be detected with high-resolution PET/CT in the brainstem of transgenic SOD1(G93A) mice, a region known to be a site of degeneration and increased microglial activation in amyotrophic lateral sclerosis, in agreement with increased TSPO expression in the brainstem nuclei shown by immunostaining. Therefore, (18)F-DPA-714 PET/CT might be a suitable tool to evaluate microglial activation in the SOD1(G93A) mouse model.
Collapse
Affiliation(s)
- S Gargiulo
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy.,Ceinge Biotecnologie Avanzate s. c. a r. l., Via G. Salvatore 486, 80145, Naples, Italy
| | - S Anzilotti
- IRCCS SDN, Via E. Gianturco 113, 80143, Naples, Italy
| | - A R D Coda
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy
| | - M Gramanzini
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy.,Ceinge Biotecnologie Avanzate s. c. a r. l., Via G. Salvatore 486, 80145, Naples, Italy
| | - A Greco
- Ceinge Biotecnologie Avanzate s. c. a r. l., Via G. Salvatore 486, 80145, Naples, Italy.,Department of Advanced Biomedical Sciences, University "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - M Panico
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy
| | - A Vinciguerra
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - A Zannetti
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy
| | - C Vicidomini
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy
| | - F Dollé
- CEA, Institute for Biomedical Imaging, 4 Place du Général Leclerc, 91401, Orsay, France
| | - G Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - M Quarantelli
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy
| | - L Annunziato
- IRCCS SDN, Via E. Gianturco 113, 80143, Naples, Italy.,Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - A Brunetti
- Ceinge Biotecnologie Avanzate s. c. a r. l., Via G. Salvatore 486, 80145, Naples, Italy.,Department of Advanced Biomedical Sciences, University "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - M Salvatore
- IRCCS SDN, Via E. Gianturco 113, 80143, Naples, Italy
| | - S Pappatà
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy.
| |
Collapse
|
39
|
Volonté C, Apolloni S, Parisi C, Amadio S. Purinergic contribution to amyotrophic lateral sclerosis. Neuropharmacology 2015; 104:180-93. [PMID: 26514402 DOI: 10.1016/j.neuropharm.2015.10.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 12/13/2022]
Abstract
By signalling through purinergic receptors classified as ionotropic P2X (for ATP) and metabotropic P1 (for adenosine) and P2Y (mainly for ADP, UDP, UTP, ATP), the extracellular nucleotides and their metabolic derivatives originated by extracellular activity of several different ectonucleotidases, are involved in the functioning of the nervous system. Here they exert a central role during physiological processes, but also in the precarious balance between beneficial and noxious events. Indeed, in recent years, the dysregulation of extracellular purinergic homeostasis has been correlated to well-characterized acute and chronic neurodegenerative and neuroinflammatory diseases. Among these, we focus our attention on purinergic signalling occurring in amyotrophic lateral sclerosis (ALS), the most common late onset motoneuron disease, characterized by specific loss of motoneurons in brain stem and ventral horns of spinal cord. ALS is a progressive non-cell-autonomous and multifactorial neuroinflammatory disease, whose aetiology and pathological mechanisms are unidentified for most patients and initiate long before any sign or symptom becomes apparent. By combining purinergic with ALS knowledge, in this work we thus present and sustain a novel line of investigation on the purinergic contribution to ALS. In particular, here we recapitulate very early results about P2X4, P2X7 and P2Y6 receptor expression in tissues from ALS animal and cell models and patients, and more recent achievements about purinergic signalling mainly performed in vitro in microglia and lately in astrocytes and motoneurons. We finally highlight how purinergic signalling has progressively evolved up to preclinical trials, to the point of deserving now full consideration with reference to ALS. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Cinzia Volonté
- Institute of Cell Biology and Neurobiology, CNR, Rome, Italy; Fondazione Santa Lucia, IRCCS, Rome, Italy.
| | - Savina Apolloni
- Fondazione Santa Lucia, IRCCS, Rome, Italy; Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
| | - Chiara Parisi
- Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
| | - Susanna Amadio
- Fondazione Santa Lucia, IRCCS, Rome, Italy; Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
| |
Collapse
|
40
|
Biasiotto G, Di Lorenzo D, Archetti S, Zanella I. Iron and Neurodegeneration: Is Ferritinophagy the Link? Mol Neurobiol 2015; 53:5542-74. [PMID: 26468157 DOI: 10.1007/s12035-015-9473-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/01/2015] [Indexed: 12/12/2022]
Abstract
Mounting evidence indicates that the lysosome-autophagy pathway plays a critical role in iron release from ferritin, the main iron storage cellular protein, hence in the distribution of iron to the cells. The recent identification of nuclear receptor co-activator 4 as the receptor for ferritin delivery to selective autophagy sheds further light on the understanding of the mechanisms underlying this pathway. The emerging view is that iron release from ferritin through the lysosomes is a general mechanism in normal and tumour cells of different tissue origins, but it has not yet been investigated in brain cells. Defects in the lysosome-autophagy pathway are often involved in the pathogenesis of neurodegenerative disorders, and brain iron homeostasis disruption is a hallmark of many of these diseases. However, in most cases, it has not been established whether iron dysregulation is directly involved in the pathogenesis of the diseases or if it is a secondary effect derived from other pathogenic mechanisms. The recent evidence of the crucial involvement of autophagy in cellular iron handling offers new perspectives about the role of iron in neurodegeneration, suggesting that autophagy dysregulation could cause iron dyshomeostasis. In this review, we recapitulate our current knowledge on the routes through which iron is released from ferritin, focusing on the most recent advances. We summarise the current evidence concerning lysosome-autophagy pathway dysfunctions and those of iron metabolism and discuss their potential interconnections in several neurodegenerative disorders, such as Alzheimer's, Parkinson's and Huntington's diseases; amyotrophic lateral sclerosis; and frontotemporal lobar dementia.
Collapse
Affiliation(s)
- Giorgio Biasiotto
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Diego Di Lorenzo
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Silvana Archetti
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy.
| |
Collapse
|
41
|
Riancho J, Ruiz-Soto M, Berciano MT, Berciano J, Lafarga M. Neuroprotective Effect of Bexarotene in the SOD1(G93A) Mouse Model of Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2015; 9:250. [PMID: 26190974 PMCID: PMC4486838 DOI: 10.3389/fncel.2015.00250] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive weakness and muscle atrophy related to the loss of upper and lower motor neurons (MNs) without a curative treatment. There is experimental evidence suggesting that retinoids may be involved in ALS pathogenesis. Bexarotene (Bxt) is a retinoid-X receptor agonist used in the treatment of cutaneous lymphoma with a favorable safety profile whose effects have been recently investigated in other neurodegenerative diseases. In this study, we analyze the potential therapeutic effect of Bxt in the SOD1(G93A) mouse model of ALS. Mice were treated with Bxt or vehicle five times per week from day 60 onward. Survival, weight, and neuromuscular function studies together with histological and biochemical analyses were performed. Bxt significantly delayed motor function deterioration, ameliorated the loss of body weight, and extended mice survival up to 30% of the symptomatic period. Histological analyses of the lumbosacral spinal cord revealed that Bxt markedly delayed the early motor-neuron degeneration occurring at presymptomatic stages in ALS-transgenic mice. Bxt treatment contributed to preserve the MN homeostasis in the SOD1(G93A) mice. Particularly, it reduced the neuronal loss and the chromatolytic response, induced nucleolar hypertrophy, decreased the formation of ubiquitylated inclusions, and modulated the lysosomal response. As an agonist of the retinoic-X receptor (RXR) pathway, Bxt notably increased the nuclear expression of the RXRα throughout transcriptionally active euchromatin domains. Bxt also contributed to protect the MN environment by reducing reactive astrogliosis and preserving perisomatic synapsis. Overall, these neuroprotective effects suggest that treatment with Bxt could be useful in ALS, particularly in those cases related to SOD1 mutations.
Collapse
Affiliation(s)
- Javier Riancho
- Neurology Service, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Marqués de Valdecilla (IDIVAL), University Hospital Marqués de Valdecilla, University of Cantabria, Santander, Spain
| | - María Ruiz-Soto
- Department of Anatomy and Cell Biology, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Marqués de Valdecilla (IDIVAL), University of Cantabria, Santander, Spain
| | - María T. Berciano
- Department of Anatomy and Cell Biology, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Marqués de Valdecilla (IDIVAL), University of Cantabria, Santander, Spain
| | - José Berciano
- Neurology Service, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Marqués de Valdecilla (IDIVAL), University Hospital Marqués de Valdecilla, University of Cantabria, Santander, Spain
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Marqués de Valdecilla (IDIVAL), University of Cantabria, Santander, Spain
| |
Collapse
|
42
|
Carroll J, Page TKW, Chiang SC, Kalmar B, Bode D, Greensmith L, Mckinnon PJ, Thorpe JR, Hafezparast M, El-Khamisy SF. Expression of a pathogenic mutation of SOD1 sensitizes aprataxin-deficient cells and mice to oxidative stress and triggers hallmarks of premature ageing. Hum Mol Genet 2015; 24:828-40. [PMID: 25274775 PMCID: PMC4291253 DOI: 10.1093/hmg/ddu500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/02/2014] [Accepted: 09/26/2014] [Indexed: 11/13/2022] Open
Abstract
Aprataxin (APTX) deficiency causes progressive cerebellar degeneration, ataxia and oculomotor apraxia in man. Cell free assays and crystal structure studies demonstrate a role for APTX in resolving 5'-adenylated nucleic acid breaks, however, APTX function in vertebrates remains unclear due to the lack of an appropriate model system. Here, we generated a murine model in which a pathogenic mutant of superoxide dismutase 1 (SOD1(G93A)) is expressed in an Aptx-/- mouse strain. We report a delayed population doubling and accelerated senescence in Aptx-/- primary mouse fibroblasts, which is not due to detectable telomere instability or cell cycle deregulation but is associated with a reduction in transcription recovery following oxidative stress. Expression of SOD1(G93A) uncovers a survival defect ex vivo in cultured cells and in vivo in tissues lacking Aptx. The surviving neurons feature numerous and deep nuclear envelope invaginations, a hallmark of cellular stress. Furthermore, they possess an elevated number of high-density nuclear regions and a concomitant increase in histone H3 K9 trimethylation, hallmarks of silenced chromatin. Finally, the accelerated cellular senescence was also observed at the organismal level as shown by down-regulation of insulin-like growth factor 1 (IGF-1), a hallmark of premature ageing. Together, this study demonstrates a protective role of Aptx in vivo and suggests that its loss results in progressive accumulation of DNA breaks in the nervous system, triggering hallmarks of premature ageing, systemically.
Collapse
Affiliation(s)
- Jean Carroll
- Genome Damage and Stability Center, University of Sussex, Brighton BN1 9RQ, UK
| | - Tristan K W Page
- School of Life Science, University of Sussex, Brighton BN1 9QG, UK
| | - Shih-Chieh Chiang
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Bernadett Kalmar
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - David Bode
- School of Life Science, University of Sussex, Brighton BN1 9QG, UK
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Peter J Mckinnon
- Department of Genetics, St Jude Children's Research Hospital, Memphis, TN 38105-3678, USA and
| | - Julian R Thorpe
- School of Life Science, University of Sussex, Brighton BN1 9QG, UK
| | | | - Sherif F El-Khamisy
- Genome Damage and Stability Center, University of Sussex, Brighton BN1 9RQ, UK Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Sheffield S10 2TN, UK Center of Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
43
|
Han H, Wei W, Duan W, Guo Y, Li Y, Wang J, Bi Y, Li C. Autophagy-linked FYVE protein (Alfy) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). In Vitro Cell Dev Biol Anim 2014; 51:249-63. [PMID: 25385288 DOI: 10.1007/s11626-014-9832-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/30/2014] [Indexed: 12/12/2022]
Abstract
Autophagy-linked FYVE (Alfy) is a protein implicated in the selective degradation of aggregated proteins. In our present study, we found that Alfy was recruited into the aggregated G93A-SOD1 in transgenic mice with amyotrophic lateral sclerosis (ALS). We demonstrated that Alfy overexpression could decrease the expression of mutant proteins via the autophagosome-lysosome pathway, and thereby, the toxicity of mutant proteins was reduced. The clearance of the mutant proteins in NSC34 cells was significantly inhibited in an Alfy knockdown cellular model. We therefore deduced that Alfy translocalization likely is involved in the pathogenesis of ALS. Alfy may be developed into a useful target for ALS therapy.
Collapse
Affiliation(s)
- Huihui Han
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei Province, China
| | | | | | | | | | | | | | | |
Collapse
|